首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cauda epididymidis functions in the storage and protection of mature, fertile spermatozoa. We previously identified a region-specific secretory glycoprotein (termed HEP64) of the hamster proximal cauda epididymidis that specifically bound and coated the nonviable, but not the viable, spermatozoa within the epididymal lumen. In this study we employed expression screening of a hamster epididymal cDNA library to obtain the full-length sequence of HEP64 and to identify it as the fibrinogen-like protein fgl2. Northern blot analysis demonstrated that fgl2 mRNA is highly expressed by the proximal cauda epididymidis in comparison to other hamster tissues examined, and, in situ hybridization analysis of the epididymis revealed that fgl2 mRNA exhibited a region- and principal cell-specific expression pattern. Immunohistochemistry confirmed the association of fgl2 with abnormal spermatozoa in the cauda epididymidis and revealed smaller fgl2-containing particles. Immunoelectron microscopy revealed that fgl2 was distributed throughout an amorphous, "death cocoon," complex assembled onto abnormal spermatozoa and that the smaller fgl2 aggregates consisted of the amorphous material with embedded sperm fragments, organelles, and membrane vesicles. A protocol was developed to isolate an enriched death cocoon fraction. SDS-PAGE and microsequence analyses revealed that the Mr 64,000 fgl2 monomer was assembled into two disulfide-linked oligomers of Mr 260,000 and 280,000. These data demonstrate that the epididymis possesses a specific mechanism to identify and envelop defective spermatozoa with a protein complex containing the fibrinogen-like protein fgl2. We propose that this represents an important protective mechanism not only to shield the viable sperm population from potentially deleterious enzymes released by dying spermatozoa but also to prevent the release of sperm proteins that could initiate an immune response if they escaped the epididymal environment.  相似文献   

2.
Even though the epididymis produces an environment promoting sperm maturation and viability, some sperm do not survive transit through the epididymal tubule. Mechanisms that segregate the epididymal epithelium and/or the viable sperm population from degenerating spermatozoa are poorly understood. We report here the identification and characterization of HEP64, a 64-kDa glycoprotein secreted by principal cells of the corpus and proximal cauda epididymidis of the hamster that specifically binds to and coats dead/dying spermatozoa. The HEP64 monomer contains approximately 12 kDa carbohydrate and, following chemical deglycosylation, migrates as a approximately 52-kDa polypeptide. Both soluble (luminal fluid) and sperm-associated HEP64 are assembled into disulfide-linked high molecular weight oligomers that migrate as a doublet band of 260/280 kDa by nonreducing SDS-PAGE. In the epididymal lumen, HEP64 is concentrated into focal accumulations containing aggregates of structurally abnormal or degenerating spermatozoa, and examination of sperm suspensions reveals that HEP64 forms a shroudlike coating surrounding abnormal spermatozoa. The HEP64 glycoprotein firmly binds degenerating spermatozoa and is not released by either nonionic detergent or high salt extraction. Electron microscopic immunocytochemistry demonstrates that HEP64 localized to an amorphous coating surrounding the abnormal spermatozoa. The potential mechanisms by which this epididymal secretory protein binds dead spermatozoa as well as its possible functions in the sperm storage function of the cauda epididymidis are discussed.  相似文献   

3.
The present report identifies epididymal boar anti-agglutinin and examines its effect on sperm motility. Boar spermatozoa from the cauda epididymidis were washed and incubated in modified Krebs–Ringer bicarbonate at 37°C (5% CO2 in air). In the samples washed three or five times and then incubated for 3–5 h, higher rates (72–79%) of spermatozoa were associated with one another at the acrosomal region, mainly in groups of 2–5 cells (head-to-head agglutination), and many cells exhibited intensively flagellant and/or circular types of movement but rarely progressive motility. The addition of epididymal plasma or 25 kDa protein purified from it markedly inhibited the occurrence of head-to-head agglutination in washed spermatozoa, whereas heat treatment and subsequent removal of insoluble materials reduced the anti-agglutination activity of epididymal plasma. The percentages of progressively motile cells in the samples incubated with epididymal plasma or 25 kDa epididymal protein rose coincident with the reduction of sperm agglutination. These findings demonstrate that the 25 kDa epididymal protein is an anti-agglutinin for the cauda spermatozoa and that it effectively functions to maintain progressive motility of the cells in vitro. © 1994 Wiley-Liss, Inc.  相似文献   

4.
《Reproductive biology》2014,14(4):257-261
The aims of this study were to evaluate: (1) the effect of cryopreservation on DNA fragmentation of canine epididymal spermatozoa, and (2) the potential protective effect of melatonin on post-thaw sperm quality (motility, morphology, acrosomal and DNA integrity). Epididymal spermatozoa were collected after orchiectomy of ten dogs. Sperm samples were frozen in the presence or absence of melatonin (1 mM). DNA fragmentation index (percentage of spermatozoa with fragmented DNA) was similar in fresh samples (3.3 ± 3.6) and samples frozen with (4.2 ± 3.8) or without (3.6 ± 3.7) melatonin. Sperm motility was significantly (p < 0.0001) higher in fresh compared to frozen samples. The presence of melatonin in the freezing extender did not affect the sperm motility. Proportions of spermatozoa with normal morphology were similar in fresh and frozen samples, irrespective of the presence of melatonin in the extender. Acrosome integrity was significantly decreased (p < 0.01) by cryopreservation, and melatonin did not exert any beneficial effects. In conclusion, DNA fragmentation of canine epididymal spermatozoa was not affected by the freezing procedure, and the presence of melatonin did not preserve motility and acrosome integrity which were adversely affected by cryopreservation. The evaluation of DNA status of thawed gametes is particularly relevant for epididymal spermatozoa since these spermatozoa are usually stored and used in assisted reproductive techniques.  相似文献   

5.
Fertilin, a heterodimeric protein complex composed of ADAM1 and ADAM2 located on the sperm surface, is involved in sperm–egg interaction. In our study, we examined the physiological processing and subcellular localization of M. fascicularis ADAM2 during spermatogenesis in the testis and epididymal tract. M. fascicularis ADAM2 was initially synthesized as a 100 kDa precursor in testicular germ cells. After passing into 50 kDa intermediate form in the epididymal tracts, the precursor form was finally processed into a 47 kDa protein in sperm. We found that M. fascicularis ADAM2 is localized on the sperm surface and contributes to the formation of a candidate fertilin complex. In particular, Far-Western blot analysis revealed that M. fascicularis ADAM2 cystein-rich domain may be related to protein–protein interaction. Therefore, the cystein-rich domain of ADAM2 could provide a mechanism to form a fertilin complex.  相似文献   

6.
Mammalian spermatozoa mature while passing through the epididymis. Maturation is accompanied by thiol oxidation to disulfides. In rats, sperm become motile and fertile in the cauda. We have previously demonstrated that rat caput sperm contain mostly thiols and that upon passage from the corpus to the cauda epididymidis, sperm protein thiols are oxidized. The present work was undertaken to study the role of the regions of the epididymis in sperm maturation as reflected in the thiol status, fertility, and motility of the spermatozoa. The distal caput epididymidis of mature albino rats was ligated on one side. After 5 days, sperm were isolated from the ligated caput and from caput and cauda of the control side. Thiol groups in sperm, epididymal luminal fluid (EF), and epididymal tissue were labeled using the fluorescent thiol-labeling agent monobromobimane. After ligation, changes were observed in a) sperm proteins, sperm nuclear proteins, and epididymal fluid by electrophoresis; b) epididymal tissues by histochemistry; c) progressive motility by phase microscopy; and d) fertilizing ability after insemination into uteri of immature females. We found that after ligation, caput sperm thiols, especially protamine thiols, are oxidized, rendering them similar to mature sperm isolated from the cauda epididymidis. Spermatozoa from ligated caput epididymidis gain progressive motility and partial fertilizing ability. Morphology of epithelial cells of ligated caput is similar to that of cauda cells. However, other changes in caput EF and epithelium induced by ligation render the ligated caput epididymidis different from either control caput or cauda. Hence, sperm thiol oxidation, along with the development of fertilizing ability, can occur in sperm without necessity for sperm transit through the corpus and cauda epididymidis.  相似文献   

7.
The plasma membrane of spermatozoa undergoes substantial remodeling during passage through the epididymal duct, principally because of changes in phospholipid composition, exchange of glycoproteins with epididymal fluid, and processing of existing membrane proteins. Here, we describe the interaction of an epididymal glycoprotein recognized by monoclonal antibody 2D6 with the plasma membrane of rat spermatozoa. Our goals have been to understand more about the mechanism of secretion of epididymal glycoproteins, how they interact with the sperm's plasma membrane, and their disposition within it. Reactivity to 2D6 monoclonal antibody was first detectable in principal cells in the distal caput epididymidis and as a soluble high-molecular-weight complex in the secreted fluid. It was not associated with membranous vesicles in the duct lumen. On cauda spermatozoa 2D6 monoclonal antibody recognized a 24-kDa glycoprotein (the subunit of a disulfide cross-linked homodimer of 48 kDa) that was present on the plasma membrane overlying the sperm tail. Binding of 2D6 to immature spermatozoa in vitro was cell-type specific but not species specific, and the antigen could only be extracted from cauda spermatozoa with detergents. Sequencing studies revealed that the 24-kDa glycoprotein was a member of the beta-defensin superfamily of small pore-forming glycopeptides of which several others (ESP13.2, Bin1b, E-2, EP2, HE2) are found in the epididymis. This evidence suggests that some epididymal glycoproteins are secreted into the luminal fluid in a soluble form and bind to specific regions of the sperm's surface via hydrophobic interactions. Given the antimicrobial function of beta-defensins, they have a putative role in protecting spermatozoa and the epididymis from bacterial infections.  相似文献   

8.
Effect of diabetes mellitus on epididymal enzymes of adult rats.   总被引:1,自引:0,他引:1  
Diabetes mellitus caused significant reduction in serum testosterone and accessory sex glands weight. The sperm content of epididymal regions also decreased. Among the epididymal regions, the cauda epididymidal tissue alone showed significant reduction in Na(+)-K+ ATPase activity. However, Mg2+ ATPase activity was lowered in caput epididymidis only. Specific activity of Ca2+ ATPase significantly decreased in caput and cauda epididymides. All three ATPases decreased significantly in caput epididymidal spermatozoa leaving cauda epididymidal spermatozoa unaffected. Specific activity of alkaline phosphatase was suppressed in caput epididymidis and in the spermatozoa collected from caput and cauda epididymides, while the acid phosphatase was unaffected. In general, the results are suggestive of definite influence of diabetes on epididymal phosphatases which is region specific. Diabetes induced decrease in phosphatases may have an impact on secretory and absorptive functions of epididymis and thus on sperm maturation.  相似文献   

9.
《Cryobiology》2013,66(3):215-223
Rat sperm cryopreservation is an effective method of archiving valuable strains for biomedical research and handling of rat spermatozoa is very important for successful cryopreservation. The aim of this study was to evaluate changes in rat sperm function during cryopreservation and centrifugation. Epididymal rat spermatozoa were subjected to cooling and freezing–thawing processes and then motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were compared before and after minimum centrifugation force (200×g). Cryopreservation decreased sperm motility, PMI, and MMP (P < 0.05). Basal (without ROS inducer, tert-butyl hydroperoxide [TBHP] treatment) and stimulated ROS (with TBHP treatment) were increased in viable cooled spermatozoa compared to viable fresh spermatozoa (P < 0.01), with equal susceptibility to TBHP among fresh, cooled, and frozen–thawed spermatozoa. Centrifugation decreased motility and PMI of frozen–thawed spermatozoa (P < 0.05). Centrifugation decreased basal ROS of all spermatozoa (P < 0.01), while it led to higher susceptibility to TBHP in viable cooled spermatozoa, showing higher increased fold in ROS and decreased rate in viability by TBHP in viable cooled spermatozoa (P < 0.05). Cooling process was the major step of ROS generation, with loss in sperm motility, PMI, and MMP. Centrifugation affected function of cryopreserved spermatozoa. These data suggest that centrifugation makes rat spermatozoa susceptible to external ROS source, in particular during cooling process. Thus, protection from ROS damage and minimizing centrifugation should be considered during cryopreservation and post-thaw use of cryopreserved epididymal rat spermatozoa.  相似文献   

10.
This study was undertaken to investigate the effects of sulphapyridine on the transport of spermatozoa through different regions of the epididymis and on the contractility of the epididymal duct in the rat. Sperm transport was investigated by labelling testicular spermatozoa with [3H]thymidine and measuring intraluminal pressures of the epididymis by micropuncture, using a servo-nulling pressure transducer system. In control rats, the transit times of epididymal spermatozoa from the initial segment to the caput, from the caput to the proximal cauda, and from the proximal cauda to the distal cauda were 2, 6 and 3 days, respectively, giving a total transit time of 11 days. The total transit time was shortened to 8 days after treatment with sulphapyridine at a dosage of 450 mg kg-1 for 38-52 days. The rate of sperm transport was most affected in the caput epididymidis. Measurements of intraluminal pressures showed that sulphapyridine had no effect on spontaneous contractions in any regions of the epididymis. However, the frequency of contraction of the corpus and cauda epididymides in response to administration of 10 micrograms noradrenaline kg-1 in the sulphapyridine-treated rats was significantly higher (P < 0.05) than it was in the controls. Methacholine, at a dose of 20 micrograms kg-1, produced a smaller increase in basal pressure in the caput epididymidis of sulphapyridine-treated rats (P < 0.05) compared with controls. The results led to the conclusion that sulphapyridine increases the rate of sperm transport from the caput through the cauda epididymidis, in part, by changes in the responsiveness of the epididymis to the autonomic nervous system.  相似文献   

11.
The highest levels of carnitine and acylcarnitine were found in the cauda epididymidis, and spermatozoa from the cauda contained greater amounts of total carnitine (free carnitine plus acylcarnitine) than those removed from the corpus or caput epididymidis. Spermatozoa from the distal cauda contained significantly greater amounts of both free and total carnitine than those removed from the proximal cauda epididymidis. The acylcarnitine:carnitine ratio was 1.7 and 0.37 in caput and cauda spermatozoa, respectively and 1.7 and 1.3 in caput and cauda fluid, respectively. It is suggested that the accumulation of carnitine is involved in sperm maturation and that acylcarnitine serves as an energy substrate for epididymal spermatozoa.  相似文献   

12.
SDS-PAGE analysis of luminal fluid from the ram testis and epididymis revealed a protein of about 105 kDa in the fluid in the caput epididymal region. The molecular mass of this fluid protein shifted from 105 kDa to 94 kDa in the distal caput epididymidis and remained at 94 kDa in the lower regions of the epididymis. The possible sperm origin of this protein was suggested by the decrease in intensity of a 105-kDa compound on the sperm plasma membrane extract and by its total disappearance from the fluid of animals with impaired sperm production caused by scrotal heating. The 94-kDa protein was purified from ram cauda epididymal fluid, and a rabbit polyclonal antiserum was obtained. This antiserum showed that membranes of testicular sperm and sperm from the initial caput were positive for the presence of an immunologically related antigen. The protein was immunolocalized mainly on the flagellar intermediate piece, whereas in some corpus and caudal sperm, only the apical ridge of the acrosomal vesicle was labeled. The purified protein was microsequenced: its N-terminal was not found in the sequence database, but its tryptic fragments matched the sequence of the angiotensin I-converting enzyme (ACE). Indeed, the purified 94-kDa protein exhibited a carboxypeptidase activity inhibited by specific blockers of ACE. All the soluble seminal plasma ACE activity in the ram was attributable to the 94-kDa epididymal fluid ACE. The polyclonal antiserum also showed that a soluble form of ACE appeared specifically in the caput epididymal fluid of the boar, stallion, and bull. This soluble form was responsible for all the ACE activity observed in the fluid from the distal caput to the cauda epididymidis in these species. Our results strongly suggest that the epididymal fluid ACE derives from the germinal form of ACE that is liberated from the testicular sperm in a specific epididymal area.  相似文献   

13.
《Tissue & cell》2016,48(5):496-502
Osteopontin (OPN) is indispensable in mammalian reproduction, but the role of OPN in male reproductive tract and fertility remains unclear. The objective of this study is to elucidate the function of OPN by unveiling the localization and expression of OPN in the reproductive tract (testis, epididymis, and ductus deferens) of male Hu sheep in different ages (10-days, 4-months, and 8-months). To accomplish this, the localization, mRNA and protein expression patterns of OPN in all samples were investigated. Immune staining showed that OPN was present in the testicular interstitium of prepubertal Hu sheep testis (10-days and 4-months group), while it was immunostained in acrosomes of spermatids nearby adluminal compartment of seminiferous tubules in sexual maturity Hu sheep testis (8-months group). The localization of OPN in epididymis gradually changed from the loose connective tissue to the apical region of principal cells (pseudostratified columnar epithelium) with growing (10-days to 8-months). In addition, increase trend was observed in the mRNA expression levels of OPN with growing in the same reproductive tissues (P < 0.05). Furthermore, two different OPN isoforms of 30 kDa and 34 kDa were detected in the reproductive tract of male Hu sheep by western blot. Immunofluorescence detection showed that OPN was localized in the cauda epididymal spermatozoa. These results suggested that the expression of OPN might be closely related to spermatogenesis and spermatozoa function in Hu sheep. This will be helpful for us to understand how OPN regulate the high reproductive capacity in Hu sheep.  相似文献   

14.
Rabbit polyclonal antibodies were raised against ram cauda epididymal sperm proteins solubilized by N-octyl-beta-D-glucopy-ranoside (anti-CESP) and against proteins of the fluid obtained from the cauda epididymidis (anti-CEF). The anti-CESP polyclonal antibody reacted with several bands from 17 to 111 kDa with different regionalization throughout the epididymis. The strongest epitopes at 17 kDa and 23 kDa were restricted to the cauda epididymidis. The anti-CEF polyclonal antibody reacted mainly with a 17-kDa and a 23-kDa compound in the cauda sperm extract. These cauda epididymal 17- and 23-kDa proteins disappeared after orchidectomy, but they reappeared in the same regions after testosterone supplementation, indicating that they were secreted by the epithelium. The fluid and membrane 17- and 23-kDa antigens had a low isoelectric point and were glycosylated. The fluid 17- and 23-kDa proteins had hydrophobic properties: they were highly enriched in the Triton X-114 detergent phase and could be extracted from the cauda epididymal fluid by a chloroform-methanol mixture. These proteins were further purified, and their N-terminal sequences did not match any protein in current databases. A polyclonal antibody against the fluid 17-kDa protein recognized the protein in the cauda epididymal sperm extract and immunolocalized it on the sperm flagellum membrane and at the luminal border of all cells in the cauda epididymal epithelium. These results indicated that secreted glycoproteins with hydrophobic properties could be directly integrated in a specific domain of the sperm plasma membrane.  相似文献   

15.
《Cryobiology》2010,60(3):291-296
In the present study, we investigated the possibility of spontaneous carp spermatozoa activation by freeze-thawing. To evaluate this, the parameters of spermatozoa motility percentage, velocity, ATP content level and fertility rate of sperm were used. The motility and velocity of spermatozoa activated by freeze-thawing were characterized by motile spermatozoa with a median value of 16% and a velocity of 98 μm/s. In addition, the motility and velocity of sperm from the thawed samples were significantly lower than in the control (median value of 100% for sperm motility and 175 μm/s for sperm velocity). Furthermore, a spontaneously activated spermatozoa motility terminated within five minutes post-thaw time. After freeze-thawing the ATP level significantly decreased with post-thaw time (46 nmol ATP/109 and 10 nmol ATP/109 at 25 s and 10 min after thawing, respectively). Fertility of spermatozoa was not significantly affected within 10 min post-thaw. On the other hand, the fertility of frozen-thawed sperm was significantly lower if compared to fresh sperm. We conclude that the freeze-thawing procedure spontaneously activated spermatozoa motility in common carp. However, this activation did not negatively affect the fertility of frozen-thawed sperm.  相似文献   

16.
Changes in the number and distribution of spermatozoa in the epididymis of the adult brown marsupial mouse were examined during July/August in mated and unmated males. The effects of mating on epididymal sperm populations were studied in 2 groups of males each mated 3 times and compared with the number and distribution of spermatozoa in the epididymides of 4 unmated control groups. One testis and epididymis were removed from each animal (hemicastration) either before or early in the mating season to provide information on initial sperm content and distribution. The contralateral side was removed later in the mating season to examine the effects of mating or sexual abstinence on epididymal sperm distribution. Epididymal sperm number peaked in both the distal caput and distal corpus/proximal cauda epididymidis in late July. The total number of spermatozoa, including those remaining in the testis, available to each male at the beginning of the mating season in early August was approximately 4.4 x 10(6)/side. Although recruitment of spermatozoa into the epididymis from the testis continued until mid-August, sperm content of the epididymis reached a peak of about 3.5 x 10(6)/epididymis in early August. At this time approximately 0.9 x 10(6) spermatozoa remained in the testis which had ceased spermatogenic activity. Throughout the mating season, epididymal spermatozoa were concentrated in the distal corpus/proximal cauda regions of the epididymis and were replenished by spermatozoa from upper regions of the duct. Relatively few spermatozoa were found in the distal cauda epididymidis, confirming a low sperm storage capacity in this region. A constant loss of spermatozoa from the epididymis, probably via spermatorrhoea, occurred throughout the mating season and very few spermatozoa remained in unmated males in late August before the annual male die-off. Mating studies showed that an average of 0.23 x 10(6) spermatozoa/epididymis were delivered per mating in this species, but the number of spermatozoa released at each ejaculation may be as few as 0.04 x 10(6)/epididymis when sperm loss via spermatorrhoea is taken into account. We suggest that the unusual structure of the cauda epididymidis, which has a very restricted sperm storage capacity, may function to limit the numbers of spermatozoa available at each ejaculation and thus conserve the dwindling epididymal sperm reserves in order to maximize the number of successful matings which are possible during the mating season.  相似文献   

17.
Rat spermatozoa from the cauda epididymidis were found to have a lower activity of the surface ATPase than the spermatozoa from the caput region. The enzyme from spermatozoa of both regions had the same Michaelis constant (Km) for ATP of 5 X 10(-4) M. It was partly inhibited by ouabain and fluoride, but strongly inhibited by Cu2+, Zn2+,p-chloromercuribenzoate, 8-anilino-1-naphthalenesulphonate Triton X-100, Lubrol-PX, urea, guanidine hydrochloride, sodium dodecyl sulphate and glycerylphosphorylcholine. The enzyme of the spermatozoa from the cauda epididymidis was more sensitive to inhibition by ouabain and fluoride but less sensitive to inhibition by Cu2+ than that of the cells form the caput region. The Arrhenius plot of the temperature dependence of enzymatic activity varied for the cells from the caput and cauda epididymidis. The differences in the enzyme properties of spermatozoa from the two regions of the epididymis suggested that the decline in the activity during epididymal maturation may reflect changes in the lipids and sulphydryl groups of the sperm membrane.  相似文献   

18.
The structural features of the epididymis and the number and distribution of spermatozoa along the duct, during the breeding season, were examined in two semelparous and three iteroparous dasyurid marsupials. Total numbers of epididymal spermatozoa were extremely low in all of these species when compared with epididymal sperm numbers in most other marsupials and eutherian mammals. Although semelparous dasyurids had significantly more epididymal spermatozoa than itcroparous species, very few spermatozoa were seen in the distal cauda epididymidis of any of the species examined. This coincided with distinct changes in duct shape and the surface area of the lumen in caudal regions which resulted in a reduced sperm storage capacity in the cauda epididymidis of these species. The data suggest that, like Antechinus stuartii (Taggart & Temple-Smith, 1990a), sperm content of the ejaculates in these species will be extremely low, and that sperm motility and/or transport in the female tract is highly efficient. The functional and evolutionary significance of the reproductive strategies of semelparous and iteroparous dasyurid marsupials is still obscure and further study is needed to determine if the length of sperm storage in the female and sperm competition for storage sites is related to sperm distribution in the male and mating activities. This study does, however, clearly indicate that large numbers of spermatozoa are not required to ensure successful fertilization in either semelparous or iteroparous members of the family Dasyuridae.  相似文献   

19.
《Theriogenology》2009,71(9):1550-1559
Epididymal cat sperm is commonly used for in vitro fertilization. Because of the high variability in preparation protocols and methods of evaluation, sperm quality may vary considerably between experiments and laboratories. The aims of the present study were (1) to describe an epididymal sperm preparation protocol to produce clean, highly motile samples using density gradient centrifugation, (2) to provide reference values of computer-assisted semen analysis (CASA) parameters of fresh epididymal cat sperm after density gradient centrifugation and (3) to investigate the effect of cool storage on various spermatozoa characteristics. After slicing the epididymides, viable and motile sperm cells were isolated using Percoll® centrifugation. Sperm motility parameters were subsequently assessed using CASA in experiment 1. In experiment 2, fresh (day 0) sperm samples were evaluated for motility parameters (HTR) and stained for assessment of acrosomal status (FITC-PSA), morphology (eosin/nigrosin (E/N)), membrane integrity (E/N and SYBR®14-PI) and DNA fragmentation (TUNEL). After addition of a Tris–glucose-citrate diluent containing 20% egg yolk, samples were cooled to 4 °C and reassessed on d1, d3, d5, d7 and d10. Cool storage impaired most motility and velocity parameters: MOT, PMOT, VAP, VSL, VCL, BCF, RAPID and the percentage of normal spermatozoa showed a decrease over time (P < 0.05) as compared to fresh samples. In contrast, STR, ALH, membrane integrity, DNA fragmentation and the percentage of acrosome intact spermatozoa were not affected by cool storage. However, the influence of cool storage of cat spermatozoa on subsequent in vitro embryo development and quality after IVF requires further investigation.  相似文献   

20.
Spermatozoa, fluids, and principal cells from different regions of the epididymis were characterized by two-dimensional electrophoresis. Rete testis fluid was collected after 36-h efferent duct ligation, and cauda epididymal fluid was collected by retrograde perfusion through the vas deferens. Spermatozoa were collected after their exudation from minced caput and corpus epididymal tissue. Principal cells were recovered after enzymatic disaggregation and centrifugal elutriation of epididymides. Two-dimensional polyacrylamide gel electrophoresis was used to prepare protein profiles of all samples. Comparison of the proteins found in rete testis fluid versus those found in cauda epididymal fluid revealed a dramatic change in composition, including the loss, addition, or retention of specific proteins as well as changes in the relative concentrations of certain proteins. Prominent cauda epididymal fluid proteins, possibly contributed by the epididymal epithelium, were detected at 16, 23, and 34 kDa. After epididymal transit, a considerable decrease was observed in the number of aqueous-soluble sperm proteins. Differences in the protein composition of epididymal epithelial principal cells from the caput versus corpus epididymidis were also noted, suggesting that functional differences exist for these epididymal regions. Of particular interest was the occurrence of a prominent protein of approximately 20-23 kDa found in all sperm samples, in fluids, and in caput and corpus principal cells. However, this protein was absent in cauda epididymal sperm after 36-h efferent duct ligation. The rapid loss of this protein from sperm after efferent duct ligation suggests that this surgical intervention may affect spermatozoa residing within the epididymis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号