首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight strains of Bacillus cereus isolated from bacteremia and soft tissue infections were assigned to seven sequence types (STs) by multilocus sequence typing (MLST). Two strains from different locations had identical STs. The concatenated sequences of the seven STs were aligned with 65 concatenated sequences from reference STs and a neighbor-joining tree was constructed. Two strains were distantly related to all reference STs. Three strains were recovered in a clade that included Bacillus anthracis, B. cereus and rare Bacillus thuringiensis strains while the other three strains were assigned to two STs that were more closely affiliated to most of the B. thuringiensis STs. We conclude that invasive B. cereus strains do not form a single clone or clonal complex of highly virulent strains.  相似文献   

2.
DNA from over 300 Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis isolates was analyzed by fluorescent amplified fragment length polymorphism (AFLP). B. thuringiensis and B. cereus isolates were from diverse sources and locations, including soil, clinical isolates and food products causing diarrheal and emetic outbreaks, and type strains from the American Type Culture Collection, and over 200 B. thuringiensis isolates representing 36 serovars or subspecies were from the U.S. Department of Agriculture collection. Twenty-four diverse B. anthracis isolates were also included. Phylogenetic analysis of AFLP data revealed extensive diversity within B. thuringiensis and B. cereus compared to the monomorphic nature of B. anthracis. All of the B. anthracis strains were more closely related to each other than to any other Bacillus isolate, while B. cereus and B. thuringiensis strains populated the entire tree. Ten distinct branches were defined, with many branches containing both B. cereus and B. thuringiensis isolates. A single branch contained all the B. anthracis isolates plus an unusual B. thuringiensis isolate that is pathogenic in mice. In contrast, B. thuringiensis subsp. kurstaki (ATCC 33679) and other isolates used to prepare insecticides mapped distal to the B. anthracis isolates. The interspersion of B. cereus and B. thuringiensis isolates within the phylogenetic tree suggests that phenotypic traits used to distinguish between these two species do not reflect the genomic content of the different isolates and that horizontal gene transfer plays an important role in establishing the phenotype of each of these microbes. B. thuringiensis isolates of a particular subspecies tended to cluster together.  相似文献   

3.
Bacillus thuringiensis serovar Monterrey strain BGSC 4AJ1 produced a microscopically visible capsule that reacted with a fluorescent antibody specific for the poly-gamma-d-glutamic acid (PGA) capsule of Bacillus anthracis. PGA capsule biosynthesis genes with 75%, 81%, 72%, 65% and 63% similarity, respectively, to those of the B. anthracis capBCADE cluster were present on a plasmid (pAJ1-1). Strain BGSC 4AJ1, together with five strains of Bacillus cereus that hybridized to a PGA cap gene probe, were analyzed phylogenetically using six housekeeping genes of a B. cereus multilocus sequence typing scheme. Bacillus thuringiensis BGSC 4AJ1 shared four identical alleles with B. anthracis and was the second most closely related to this bacterium of the 674 isolates in the multilocus sequence typing database. The other cap+ strains were distributed among various lineages of Clade 1 of the B. cereus group.  相似文献   

4.
Bacillus thuringiensis is classified into serovars on the basis of H-flagellar antigens. Several alternative typing methods have been described. Among them, a B. cereus group-specific repetitive extragenic palindromic (Rep)-PCR fingerprinting technique was shown to be discriminative and able to identify B. thuringiensis serovars. The aim of this study was to investigate the genomic diversity and relationship among B. thuringiensis strains collected from different Argentinean ecosystems. Thirty-seven B. thuringiensis reference strains and 131 Argentinean isolates were analyzed using a B. cereus group-specific Rep-PCR. Fourteen different patterns were identified among the Argentinean isolates. Eight could not be associated to any pattern obtained from a reference strain. The pattern identical to the serovar kurstaki HD-1 strain was the most frequently identified in 68 native isolates. The profiles allowed tracing a single dendrogram with two groups and eight main lineages. Some strains showed distinctive patterns despite belonging to the same serovar. An intraspecific diversity resulted from this analysis that was highlighted by this technique since strains from a given serovar showed distinct profiles. This study may help to establish a system of B. thuringiensis classification with a higher discrimination level than established by the H antigen serotyping.  相似文献   

5.
Bacillus anthracis , Bacillus cereus and Bacillus thuringiensis have been described as members of the Bacillus cereus group but are, in fact, one species. B. anthracis is a mammal pathogen, B. thuringiensis an entomopathogen and B. cereus a ubiquitous soil bacterium and an occasional human pathogen. In two clinical isolates of B. cereus , in some B. thuringiensis strains and in B. anthracis , an S-layer has been described. We investigated how the S-layer is distributed in B. cereus , and whether phylogeny or ecology could explain its presence on the surface of some but not all strains. We first developed a simple biochemical assay to test for the presence of the S-layer. We then used the assay with 51 strains of known genetic relationship: 26 genetically diverse B. cereus and 25 non- B. anthracis of the B. anthracis cluster. When present, the genetic organization of the S-layer locus was analysed further. It was identical in B. cereus and B. anthracis . Nineteen strains harboured an S-layer, 16 of which belonged to the B. anthracis cluster. All 19 were B. cereus clinical isolates or B. thuringiensis , except for one soil and one dairy strain. These findings suggest a common phylogenetic origin for the S-layer at the surface of B. cereus strains and, presumably, ecological pressure on its maintenance.  相似文献   

6.
Bacillus thuringiensis was isolated from the phylloplane of organically grown cabbage in one field during two growth seasons (1992-93). The frequency of B. thuringiensis varied between 0.02 and 0.67 of the total B. cereus/B. thuringiensis population, with an average of 0.11. Characterization of the B. thuringiensis isolates from foliage showed that the majority (64% of 150 isolates) belonged to serovar kurstaki, had bipyramidal crystals and toxicity towards Pieris brassicae and/or Trichoplusia ni. Other serovars were also found on the foliage but occurred at very low frequencies (one to three isolates of each serovar). Bacillus thuringiensis was also isolated from insects associated with the cabbage crop (Pieris rapae (Lep.), Delia radicum (Dip.), Syrphidae ribesii (Dip.) and Aleochara bilineata (Col.)), which were collected alive at different developmental stages in the same field. Serologically these isolates were assigned to the serovars kurstaki, aizawai, tochigiensis, colmeri and indiana/colmeri.  相似文献   

7.
We set out to analyze the sequence diversity of the Bacillus thuringiensis flagellin (H antigen [Hag]) protein and compare it with H serotype diversity. Some other Bacillus cereus sensu lato species and strains were added for comparison. The internal sequences of the flagellin (hag) alleles from 80 Bacillus thuringiensis strains and 16 strains from the B. cereus sensu lato group were amplified and cloned, and their nucleotide sequences were determined and translated into amino acids. The flagellin allele nucleotide sequences for 10 additional strains were retrieved from GenBank for a total of 106 Bacillus species and strains used in this study. These included 82 B. thuringiensis strains from 67 H serotypes, 5 B. cereus strains, 3 Bacillus anthracis strains, 3 Bacillus mycoides strains, 11 Bacillus weihenstephanensis strains, 1 Bacillus halodurans strain, and 1 Bacillus subtilis strain. The first 111 and the last 66 amino acids were conserved. They were referred to as the C1 and C2 regions, respectively. The central region, however, was highly variable and is referred to as the V region. Two bootstrapped neighbor-joining trees were generated: a first one from the alignment of the translated amino acid sequences of the amplified internal sequences of the hag alleles and a second one from the alignment of the V region amino acid sequences, respectively. Of the eight clusters revealed in the tree inferred from the entire C1-V-C2 region amino acid sequences, seven were present in corresponding clusters in the tree inferred from the V region amino acid sequences. With regard to B. thuringiensis, in most cases, different serovars had different flagellin amino acid sequences, as might have been expected. Surprisingly, however, some different B. thuringiensis serovars shared identical flagellin amino acid sequences. Likewise, serovars from the same H serotypes were most often found clustered together, with exceptions. Indeed, some serovars from the same H serotype carried flagellins with sufficiently different amino acid sequences as to be located on distant clusters. Species-wise, B. halodurans, B. subtilis, and B. anthracis formed specific branches, whereas the other four species, all in the B. cereus sensu lato group, B. mycoides, B. weihenstephanensis, B. cereus, and B. thuringiensis, did not form four specific clusters as might have been expected. Rather, strains from any of these four species were placed side by side with strains from the other species. In the B. cereus sensu lato group, B. anthracis excepted, the distribution of strains was not species specific.  相似文献   

8.
Anthrax Blood Agar (ABA) and Cereus Ident Agar (CEI) were evaluated as selective growth media for the isolation of Bacillus anthracis using 92 B. anthracis and 132 other Bacillus strains from 30 species. The positive predictive values for the identification of B. anthracis on ABA, CEI, and the combination of both were 72%, 71%, and 90%, respectively. Thus, less than 10% of all species were misidentified using both nutrient media. Species which might be misidentified as B. anthracis were B. cereus, B. mycoides, and B. thuringiensis. Particularly, 30% of B. weihenstephanensis strains were misidentified as B. anthracis.  相似文献   

9.
A total of 119 Bacillus thuringiensis strains (83 type strains and 26 native isolates), as well as five B. cereus group species, were analyzed by repetitive extragenic palindromic sequence-based PCR analysis (Rep-PCR) fingerprinting. Primers Bc-REP-1 and Bc-REP-2 were specifically designed according to an extragenic 26-bp repeated sequence found in the six B. cereus group genomes reported. A total of 47 polymorphic bands were detected, and the patterns varied from 5 to 13 bands in number and from 0.2 to 3.8 kb in size. Virtually each type strain showed a distinctive B. cereus (Bc)-Rep-PCR pattern, except for B. thuringiensis serovars dakota (H serotype 15 [H15]) and sotto (H4a,4b), as well as serovars amagiensis (H29) and seoulensis (H35), which shared the same patterns. As expected, serovar entomocidus (H6) and its biovar subtoxicus showed an identical pattern; similarly, serovars sumiyoshiensis (H3a,3d) and fukuokaensis (H3a,3d,3e), which share two antigenic determinants, also showed identical Bc-Rep-PCR patterns. Interestingly, serovars israelensis (H14) and malaysiensis (H36), which share several phenotypic attributes, also showed identical Bc-Rep-PCR patterns. Native, coleopteran-active strains, including the self-agglutinated LBIT-74 strain, showed Bc-Rep-PCR patterns identical or very similar to that of the tenebrionis strain. Likewise, native mosquitocidal strains (including some self-agglutinated strains) also showed patterns identical or very similar to that of the serovar israelensis IPS-82 strain. Additionally, native beta-exotoxin-producing strains from serovar thuringiensis showed patterns identical to that of the B. thuringiensis type strain. The B. cereus group-specific Bc-Rep-PCR fingerprinting technique was shown to be highly discriminative, fast, easy, and able to identify B. thuringiensis serotypes, including nonflagellar and self-agglutinated strains.  相似文献   

10.
As 16S rRNA sequence analysis has proven inadequate for the differentiation of Bacillus cereus from closely related species, we employed the gyrase B gene (gyrB) as a molecular diagnostic marker. The gyrB genes of B. cereus JCM 2152(T), Bacillus thuringiensis IAM 12077(T), Bacillus mycoides ATCC 6462(T), and Bacillus anthracis Pasteur #2H were cloned and sequenced. Oligonucleotide PCR primer sets were designed from within gyrB sequences of the respective bacteria for the specific amplification and differentiation of B. cereus, B. thuringiensis, and B. anthracis. The results from the amplification of gyrB sequences correlated well with results obtained with the 16S rDNA-based hybridization study but not with the results of their phenotypic characterization. Some of the reference strains of both B. cereus (three serovars) and B. thuringiensis (two serovars) were not positive in PCR amplification assays with gyrB primers. However, complete sequencing of 1.2-kb gyrB fragments of these reference strains showed that these serovars had, in fact, lower homology than their originally designated species. We developed and tested a procedure for the specific detection of the target organism in boiled rice that entailed 15 h of preenrichment followed by PCR amplification of the B. cereus-specific fragment. This method enabled us to detect an initial inoculum of 0.24 CFU of B. cereus cells per g of boiled rice food homogenate without extracting DNA. However, a simple two-step filtration step is required to remove PCR inhibitory substances.  相似文献   

11.
There have been many efforts to develop Bacillus anthracis detection assays, but the problem of false-positive results has often been encountered. Therefore, to validate an assay for B. anthracis detection, it is critical to examine its specificity with the most closely related Bacillus isolates that are available. To define the most closely related Bacillus isolates to B. anthracis in our Bacillus collections, we analyzed by multilocus sequence typing (MLST) the phylogeny of 77 closely related Bacillus isolates selected from 264 Bacillus isolates. The selection includes all the Bacillus isolates that have been shown in our previous studies to produce false-positive results by some anthrax-detection assays. The MLST phylogenetic analyses revealed that 27 of the non-B. anthracis isolates clustered within the B. anthracis clade, and four of them (three sequence types, STs) had the highest degree of genetic relatedness with B. anthracis, 18 (11 STs) had the second highest, and five (five STs) had the third highest. We anticipate that the inclusion of the 19 ST isolates when analyzing B. anthracis detection assays will prove to be useful for screening for their specificity to detect B. anthracis.  相似文献   

12.
Bacillus thuringiensis spacer regions between the 16S and 23S rRNAs were amplified with conserved primers, designated 19-mer and 23-mer primers. A spacer region of 144 bp was determined for all of 6 B. thuringiensis strains, 7 B. thuringiensis subspecies, and 11 B. thuringiensis field isolates, as well as for the closely related species Bacillus cereus and Bacillus anthracis. Computer analysis and alignment of nucleotide sequences identified three mutations and one deletion in the intergenic spacer region (ISR) of B. thuringiensis subsp. kurstaki HD-1 when compared with ISR sequences from other subspecies. The same differences were identified between the ISR of B. thuringiensis strains and the ISR of B. cereus and B. anthracis. These minor differences do not seem to be sufficient to allow the design of a species-specific oligonucleotide probe.  相似文献   

13.
Seventy-four strains of Bacillus thuringiensis thuringiensis representing 24 serovars were examined for the presence of three enterotoxin genes/operons; the non-haemolytic enterotoxin Nhe, the haemolytic enterotoxin hbl and the Bacillus cereus toxin bceT using polymerase chain reaction. The nheBC genes were found in all strains examined, the hblCD genes in 65 of the 74 strains and bceT in 63 strains. There was little consistency of the distribution of enterotoxin loci among strains of the same serovar in serovars that were well represented in our collection. Culture supernatants from all but one strain inhibited protein synthesis in Vero cells, generally with a toxicity equivalent to that seen in strains of B. cereus isolated from incidents of food poisoning. Microbiological Societies.  相似文献   

14.
Multilocus sequence typing scheme for bacteria of the Bacillus cereus group   总被引:3,自引:0,他引:3  
In this study we developed a multilocus sequence typing (MLST) scheme for bacteria of the Bacillus cereus group. This group, which includes the species B. cereus, B. thuringiensis, B. weihenstephanensis, and B. anthracis, is known to be genetically very diverse. It is also very important because it comprises pathogenic organisms as well as bacteria with industrial applications. The MLST system was established by using 77 strains having various origins, including humans, animals, food, and soil. A total of 67 of these strains had been analyzed previously by multilocus enzyme electrophoresis, and they were selected to represent the genetic diversity of this group of bacteria. Primers were designed for conserved regions of housekeeping genes, and 330- to 504-bp internal fragments of seven such genes, adk, ccpA, ftsA, glpT, pyrE, recF, and sucC, were sequenced for all strains. The number of alleles at individual loci ranged from 25 to 40, and a total of 53 allelic profiles or sequence types (STs) were distinguished. Analysis of the sequence data showed that the population structure of the B. cereus group is weakly clonal. In particular, all five B. anthracis isolates analyzed had the same ST. The MLST scheme which we developed has a high level of resolution and should be an excellent tool for studying the population structure and epidemiology of the B. cereus group.  相似文献   

15.
Bacillus cereus strains from cases of severe or lethal systemic infections, including respiratory symptoms cases, were analyzed using multilocus sequence typing scheme of B. cereus MLST database. The isolates were evenly distributed between the two main clades, and 60% of them had allele profiles new to the database. Half of the collection's strains clustered in a lineage neighboring Bacillus anthracis phylogenetic origin. Strains from lethal cases with respiratory symptoms were allocated in both main clades. This is the first report of strains causing respiratory symptoms to be identified as genetically distant from B. anthracis. The phylogenetic location of the presented here strains was compared with all previously submitted to the database isolates from systemic infections, and were found to appear in the same clusters where clinical isolates from other studies had been assigned. It seems that the pathogenic strains are forming clusters on the phylogenetic tree.  相似文献   

16.
A total of 525 Bacillus thuringiensis environmental isolates, belonging to the five flagellar (H) serovars (alesti, sotto, kenyae, aizawai, and morrisoni), were serotyped by extracellular heat-stable somatic antigens (HSSAs). The isolates belonging to a given H serovar were assigned to a single HSSA serogroup at a high frequency, 87-100%. This indicates that the extent of HSSA variation within a single H serovar is small in the field populations of these B. thuringiensis serovars.  相似文献   

17.
We analyzed the genetic relationships and molecular characteristics of 34 Bacillus anthracis isolates from soil and clinical samples in various regions of Korea and 17 related Bacillus species, using the amplified fragment length polymorphism (AFLP) and multilocus variable-number tandem repeat (MLVA) approaches. Triplicate AFLP profiles of these strains showed high reproducibility and identified 376 polymorphisms. AFLP phylogenetic analysis of B. anthracis isolates showed a high level of similarity, 0.93, and this monomorphic fragment profile proved to be useful to differentiate B. anthracis strains from other Bacillus species. The B. cereus group was separated from other Bacillus species at a level of similarity of 0.68. Among them, some B. cereus strains showed genetic interspersion with B. thuringiensis strains. The evolutionary pattern of nucleotide differences among B. anthracis strains with the eight MLVA markers showed nine MLVA types. Three MLVA types, M1 to M3, were pathogenic B. anthracis isolates and were assigned as new genotypes belonging to the A4 and B3 clusters, compared with 89 genotypes deduced from previous data. This indicates that differences in cluster prevalence and distribution may be influenced more by MLVA markers on two plasmids loci and human activity. Consequently, we suggest that the novel MLVA type may represent significant evidence for historic adaptation to environmental conditions of the Asian continent, particularly Korea. Therefore, MLVA techniques may be available for molecular monitoring on anthrax-release-related bioterrorism and further study is required for the continuous epidemiological study of variable anthrax collections.  相似文献   

18.
A pulsed-field gel electrophoresis (PFGE) method was developed for discriminating Bacillus anthracis from B. cereus and B. thuringiensis. A worldwide collection of 25 B. anthracis isolates showed high-profile homology, and these isolates were unambiguously distinguished from B. cereus and B. thuringiensis isolates by cluster analysis of the whole-genome macrorestriction enzyme digestion patterns generated by NotI.  相似文献   

19.
beta-Exotoxin is a thermostable metabolite produced by some strains of Bacillus thuringiensis. Because of vertebrate toxicity, most commercial preparations of B. thuringiensis are prepared from isolates that do not produce beta-exotoxin. The aim of the present study was to find out the possible relationship between serovars of B. thuringiensis and beta-exotoxin production. A specific HPLC assay for type I beta-exotoxin has been used to detect this exotoxin in supernatants from final whole cultures of 100 strains belonging to four serovars of B. thuringiensis: thuringiensis, kurstaki, aizawai, and morrisoni. For each serovar, 25 strains randomly chosen from two Spanish collections were analyzed. Frequency of beta-exotoxin production was higher in B. thuringiensis serovar thuringiensis, whereas only two strains from serovar kurstaki showed beta-exotoxin production. None of the 25 strains belonging to serovars aizawai and morrisoni was found to produce this compound. Along with data from other studies, serovars can be classified as "common," "seldom," or "rare" beta-exotoxin producers. The serovar-dependent beta-exotoxin production is discussed in relation to the evolutionary process of serovar differentiation, the plasmid compatibility and limited plasmid exchange between serovars, and with the serovar-dependent regulation of plasmid-encoded genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号