首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of changes in pulse frequency of exogenously infused gonadotropin-releasing hormone (GnRH) were investigated in 6 adult surgically hypothalamo/pituitary-disconnected (HPD) gonadal-intact rams. Ten-minute sampling in 16 normal animals prior to HPD showed endogenous luteinizing hormone (LH) pulses occurring every 2.3 h with a mean pulse amplitude of 1.11 +/- 0.06 (SEM) ng/ml. Mean testosterone and follicle-stimulating hormone (FSH) concentrations were 3.0 +/- 0.14 ng/ml and 0.85 +/- 0.10 ng/ml, respectively. Before HPD, increasing single doses of GnRH (50-500 ng) elicited a dose-dependent rise of LH, 50 ng producing a response of similar amplitude to those of spontaneous LH pulses. The effects of varying the pulse frequency of a 100-ng GnRH dose weekly was investigated in 6 HPD animals; the pulse intervals explored were those at 1, 2, and 4 h. The pulsatile GnRH treatment was commenced 2-6 days after HPD when plasma testosterone concentrations were in the castrate range (less than 0.5 ng/ml) in all animals. Pulsatile LH and testosterone secretion was reestablished in all animals in the first 7 days by 2-h GnRH pulses, but the maximal pulse amplitudes of both hormones were only 50 and 62%, respectively, of endogenous pulses in the pre-HPD state. The plasma FSH pattern was nonpulsatile and FSH concentrations gradually increased in the first 7 days, although not to the pre-HPD range. Increasing GnRH pulse frequency from 2- to 1-hour immediately increased the LH baseline and pulse amplitude. As testosterone concentrations increased, the LH responses declined in a reciprocal fashion between Days 2 and 7. FSH concentration decreased gradually over the 7 days at the 1-h pulse frequency. Slowing the GnRH pulse to a 4-h frequency produced a progressive fall in testosterone concentrations, even though LH baselines were unchanged and LH pulse amplitudes increased transiently. FSH concentrations were unaltered during the 4-h regime. These results show that 1) the pulsatile pattern of LH and testosterone secretion in HPD rams can be reestablished by exogenous GnRH, 2) the magnitude of LH, FSH, and testosterone secretion were not fully restored to pre-HPD levels by the GnRH dose of 100 ng per pulse, and 3) changes in GnRH pulse frequency alone can influence both gonadotropin and testosterone secretion in the HPD model.  相似文献   

2.
Testosterone (T) replacement suppresses the postcastraction hypersection of follicle-stimulating hormone (FSH) in monkeys with an intact central nervous system (CNS), but not in hypothalamic-lesioned animals in which the pituitary-testicular axis is driven by an i.v. infusion of gonadotropin-releasing hormone (GnRH). One possible explanation for this finding is that T replacement markedly reduces the frequency of pulsatile GnRH release in CNS-intact animals. Under such a state of compromised hypophysiotropic drive to the gonadotropes, removal of a specific FSH-inhibiting factor would not be expected to lead to a hypersecretion of FSH. To test this hypothesis indirectly, adult monkeys were orchidectomized and immediately implanted with T-containing Silastic capsules to maintain circulating T concentrations in the upper physiological range, thereby preventing the postcastration hypersecretion of luteinizing hormone (LH) and FSH. An intermittent i.v. infusion of GnRH, identical to that used in studies with the hypothalamic-lesioned, GnRH-replaced model (1 microgram/min for 3 min every 3 h), was initiated 1 wk after castration and T replacement; subsequently, plasma LH and FSH concentrations were determined on Days 8 and 16-18 of GnRH treatment in samples collected every 20 min for 9 h. This GnRH stimulus resulted in a striking elevation in FSH concentrations from 5.2 +/- 1.5 ng/ml (mean +/- SE) before GnRH treatment to 62.6 +/- 20.8 and 118.3 +/- 33.1 ng/ml on Days 8 and 16-18 of GnRH treatment, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The differential control of gonadotropin secretion by GnRH pulse frequency may reflect changes in the storage of LH and FSH. To test this hypothesis, ovariectomized ewes passively immunized against GnRH received pulsatile injections of saline (group 1) or GnRH analogue: 1 pulse/6 h for group 2 or 1 pulse/h for group 3, during 48 h. Immunization against GnRH suppressed pulsatility of LH release and reduced mean FSH plasma levels (3.1 +/- 0.2 vs. 2.2 +/- 0.1 ng/ml before and 3 days after immunization, respectively). Pulsatile GnRH analogue replacement restored LH pulses but not FSH plasma levels. Low and high frequencies of GnRH analogue increased the percentage of LH-containing cells in a similar way (group 1 = 6.9 +/- 0.5% vs. group 2 = 10.5 +/- 0.8%, or vs. group 3 = 9.6 +/- 0.4%). In contrast, the rise of the percentage of FSH-containing cells was greater after administration of the analogue at low frequency than at high frequency (group 1 = 3.7 +/- 0.4% vs. group 2 = 8.4 +/- 0.2%, or vs. group 3 = 5.2 +/- 0.8%). Moreover, while GnRH pulse frequency had no differential effect on FSHbeta mRNA levels, LHbeta mRNA levels were higher under high than low frequency. These data showed that the frequency of GnRH pulses can modulate the gonadotropin storage pattern in the ewe. These changes may be a component of the differential regulation of LH and FSH secretion.  相似文献   

4.
To assess the role of testosterone (T) in regulating the minute-to-minute release of pulsatile luteinizing hormone (LH) secretion in the adult male rat, we investigated the negative feedback of acute increases in plasma T concentrations on pulsatile LH secretion in acutely castrated male rats. At the time of castration, we implanted T-filled Silastic capsules, s.c., which maintained plasma T concentrations at approximately 1.8 ng/ml and suppressed LH pulses. On the next day, the capsules were removed; blood sampling (every 6 min) was started 8 h after implant removal, thereby allowing LH pulses to be reinitiated. Immediately following a control bleeding interval of 2 h, either T or vehicle alone was infused s.c., and blood sampling continued for another 4 h. In animals receiving vehicle alone, LH pulse frequency and mean LH levels increased over the 6 h bleeding period. The administration of 200 ng T/min caused a rapid rise in plasma T concentrations of about 4 ng/ml ("physiological") and prevented the increase in pulse frequency that occurred in the control group; it did not, however, reduce pulse frequency over the 4 h infusion period. When T was infused at the rate of 400 ng/ml, plasma T concentrations rose to approximately 18 ng/ml ("supraphysiological") and LH pulse frequency was significantly reduced, but not completely inhibited, during the last 2 h of the infusion. The pulse amplitude of luteinizing hormone did not change significantly in any of the groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Effects of estradiol on serum luteinizing hormone (LH) were studied in prepubertal boars. In Exp. 1, 15-wk-old boars were given (iv) 50 mug estradiol, 1 mg testosterone or 1.5 ml ethanol. Estradiol (P<0.05) decreased LH over a 2.5-hr period, but testosterone did not. In Exp. 2, an estradiol implant reduced LH sample variance (P<0.01) while LH (547 +/- 96 vs 655 +/- 43 pg/ml) and estradiol (14.2 +/- 3.3 vs 18.4 +/- 1.0 pg/ml; control vs implant) were unchanged in 12-wk-old boars. Pulsatile LH releases (4.3 +/- 1.1 vs 3.0 +/- 0.4 pulses/pig/8 hr; control vs treated) and pulse amplitude (272 +/- 34 vs 305 +/- 40 pg/ml) were not affected. The implant tended to decrease serum testosterone (4.86 +/- 0.75 vs 7.66 +/- 1.51 ng/ml; P<0.10). In Exp. 3, LH was higher after zero implants than after four implants (279 +/- 7 vs 227 +/- 9 pg/ml; P<0.01), and LH after two implants was also higher than after four implants (263 +/- 7 pg/ml; P<0.01) in 14-wk-old boars in a Latin square design. Peak LH after 40 mug gonadotropin releasing hormone (GnRH) was less after two and four implants (1,100 +/- 126 and 960 +/- 167 pg/ml, respectively; P<0.01) than after zero implants (1,742 +/- 126 pg/ml). Slope of the first 20 min of LH response to GnRH was greater after zero implants (45.3 pg/min; P<0.05) than after either two or four implants (20.6 and 16.9 pg/min, respectively). Implant treatment decreased serum testosterone (P<0.025) but increased estradiol (P<0.10). Small changes in serum estradiol resulted in changes in LH. These changes in sample variance and mean LH were recognized by boars as different from normal because serum testosterone decreased. Changes in LH may result from estradiol's negative effect on pituitary responsiveness to endogenous GnRH because response to exogenous GnRH was depressed by estradiol.  相似文献   

6.
The influence of GnRH pulse frequency on LH subunit mRNA concentrations was examined in castrate, testosterone-replaced male rats. GnRH pulses (25 ng/pulse) or saline to controls, were given via a carotid cannula at intervals of 7.5-240 min for 48 h. alpha and LH beta mRNA concentrations were 109 +/- 23 and 30 +/- 5 pg cDNA bound/100 micrograms pituitary DNA, respectively, in saline controls. GnRH pulse intervals of 15, 30, and 60 min resulted in elevated alpha and LH beta mRNAs (P less than 0.01) and maximum responses (4-fold, alpha; 3-fold, LH beta) were seen after the 30-min pulses. Acute LH release to the last GnRH pulse was seen after the 15-, 30-, and 60-min pulse intervals. In contrast, LH subunit mRNAs were not increased and acute LH release was markedly impaired after the rapid (7.5 min) or slower (120 and 240 min) pulse intervals. Equalization of total GnRH dose/48 h using the 7.5- and 240-min intervals did not increase LH subunit mRNAs to levels produced by the optimal 30-min interval. These data indicate that the frequency of the pulsatile GnRH stimulus regulates expression of alpha and LH beta mRNAs in male rats. Further, GnRH pulse frequencies that increase subunit mRNA concentrations are associated with continuing LH responsiveness to GnRH.  相似文献   

7.
Eight adult, Yorkshire-Landrace crossbred boars were used to evaluate the effects of the synthetic glucocorticoid, dexamethasone (DXM) on the secretion of luteinizing hormone (LH) and testosterone. Four treatments of 4 d each were administered: 1) 2 ml i.m. of 0.9% (w/v) NaCl solution (control); 2) DXM (2 ml i.m. as a dose of 50 mug/kg body weight, every 12 h); 3) DXM plus gonadotropin releasing hormone (GnRH; 50 mug in 1 ml i.m. every 6 h); 4) 2 ml NaCl solution i.m. plus a single dose of 50 mug i.v. GnRH. Blood samples were collected twice daily from an indwelling jugular vein catheter for 3 d and at 15 min intervals for 12 h on the fourth day. DXM treatment resulted in lower (P M0.01) testosterone values in samples collected twice daily. More frequent sampling on Day 4 revealed that DXM reduced (P<0.01) the number of pulsatile increases of LH in plasma, although the individual mean pulse areas did not fiffer between the NaCl- and DXM-treated groups. This was associated with a decreased pulse frequency of testosterone (P<0.05). GnRH plus DXM treatment caused a significant elevation (P<0.05) in mean values as well as in the mean pulse area and in the total of the individual pulse areas of LH. Pulse area and mean concentrations of testosterone were also increased (P<0.01) when GnRH was given concurrently with DXM. Comparison of a single injection of GnRH when NaCl was being administered (Treatment 4) to one of the injections of GnRH (Day 4, 0800 h, Treatment 3) revealed a subsequently greater (P<0.01) pulse area in LH above base-line during DXM treatment (7.67 +/- 1.17 ng/ml) than during the NaCl (4.17 +/- 0.73 ng/ml) treatment period. This was reflected in a greater (P<0.01) pulse increase of testosterone following the LH pulse in boars treated with DXM. It is concluded that DXM treatment in the boar can reduce the pulse frequency of LH secretion, presumably by affecting GnRH secretion, but it has less effect directly on pituitary LH synthesis and release.  相似文献   

8.
We have shown that 4 ng luteinizing hormone releasing hormone (LHRH) pulses induced significantly greater luteinizing hormone (LH) release from proestrous rat superfused anterior pituitary cells with no cycle related differences in follicle stimulating hormone (FSH). Current studies gave 8 ng LHRH in various pulse regimens to study amplitude, duration and frequency effects on LH and FSH secretion from estrous 0800, proestrous 1500 and proestrous 1900 cells. Regimen 1 gave 8 ng LHRH as a single bolus once/h; regimen 2 divided the 8 ng into 3 equal 'minipulses' given at 4 min intervals to extend duration; regimen 3 gave the 3 'minipulses' at 10 min intervals, thereby further extending duration: regimen 4 was the same as regimen 2, except that the 3 'minipulses' were given at a pulse frequency of 2 h rather than 1 h. In experiment 1, all four regimens were employed at proestrus 1900. FSH was significantly elevated by all 8 ng regimens as compared to 4 ng pulses; further, 8 ng divided into 3 equal 'minipulses' separated by 4 min at 1 and 3 h frequencies (regimens 2 and 4) resulted in FSH secretion that was significantly greater than with either a single 8 ng bolus (regimen 1) or when the 'minipulses' were separated by 10 min (regimen 3). In experiment 2, at proestrus 1500, FSH response to the second pulse of regimen 4 was significantly greater than in regimen 2; LH release was significantly suppressed at pulse 2 compared to regimen 2 accentuating divergent FSH secretion. At estrus 0800, FSH response to the second pulse of regimen 4 was significantly stimulated FSH at proestrus 1900, 1500 and estrus 0800, FSH divergence was most marked at proestrus 1500. These data indicate a potential role for hypothalamic LHRH secretory pattern in inducing divergent gonadotropin secretion in the rat.  相似文献   

9.
We wish to use a gonadotrophin-releasing hormone (GnRH) antagonist in the mare as a tool for investigating the control of the oestrous cycle. The aim of this study was to test the effectiveness of the antagonist cetrorelix by testing both in vitro, using perifused equine anterior pituitary cells, and in vivo in seasonally acyclic mares. Pituitary cells were prepared and after 3-4 days incubation, loaded onto columns and given four pulses of GnRH (at 0, 30, 60 and 90 min; dose-response study). After the second GnRH pulse, infusion of cetrorelix began (0, 100, 1000 and 2000 pmol/l) and continued until the end of the experiment. To mimic luteal phase conditions, cells were pre-incubated and perifused with progesterone (25 nmol/l) and GnRH pulses given at 0, 90, 180 and 270 min. Cetrorelix (0 or 1000 pmol/l) began after the second GnRH pulse. Follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations were measured in 5 min fractions. Both FSH and LH response areas (above baseline) after GnRH were inhibited by 1000 pmol/l cetrorelix (P < 0.01, P < 0.01, respectively) but not by 100 pmol/l cetrorelix. Similarly, in the presence of progesterone, cetrorelix inhibited the FSH (P < 0.001) and LH (P = 0.0002) response area. Seasonally acyclic mares, pre-treated for 3 days with progesterone (150 mg i.m. per day) were given cetrorelix as (i) a loading dose of 1 microg/kg then infusion at 2.2 ng/(kg min) for 90 min, (ii) a s.c. injection at 20 microg/kg, (iii) infusion at 2.2 ng/(kg min) for 48 h, and (iv) no cetrorelix (control mares). At 90 min, 6, 24 and 48 h after cetrorelix was first administered, mares were given a bolus injection of GnRH (22.2 ng/kg i.v.) and the FSH and LH responses measured. All doses of cetrorelix inhibited the FSH response at 90 min. The response was no longer suppressed at 6 h in the 90 min infusion group, showing a rapid recovery from inhibition. At 24 h, the FSH responses in the injected and 48 h infusion group were suppressed. The LH concentrations were low and showed no significant changes. This study has defined the time course and dose of cetrorelix with respect to its effect on FSH in the horse. It is concluded that cetrorelix could be used to elucidate the role of FSH in follicular development in cyclic mares.  相似文献   

10.
Anestrous lighthorse mares were treated in December with dihydrotestosterone (DHT; 150 micrograms/kg of body weight), progesterone (P; 164 micrograms/kg), both DHT and P (DHT+P), testosterone (T; 150 micrograms/kg), or vehicle (n = 4/group). Daily blood sampling was started on Day 1, and on Day 4 all mares were administered a pretreatment injection of gonadotropin-releasing hormone (GnRH) and were bled frequently to characterize the responses of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) concentrations. Treatment injections were given on Day 4 and then daily through Day 17. On Day 18, all mares were again administered GnRH and were bled frequently. Treatment of mares with DHT, P, or T increased (p less than 0.01) plasma concentrations of these steroids to approximately 1.5 ng/ml during the last 10 days of treatment. There was no effect (p greater than 0.10) of treatment on LH or FSH concentrations in daily blood samples. Relative to the pretreatment GnRH injection, mares treated with T or DHT+P secreted approximately 65% more (p less than 0.01) FSH in response to the post-treatment GnRH injection; FSH response to the second GnRH injection was not altered (p greater than 0.10) in control mares or in DHT- or P-treated mares. There was no effect of any steroid treatment on LH secretion after administration of GnRH (p greater than 0.10). Averaged over all mares, approximately 94 times more FSH than LH was secreted in response to injection of GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The objective was to determine the effect of chronic testosterone (T) treatment on GnRH and LH secretion in wethers. Rams were either castrated only or castrated and immediately treated with Silastic implants containing T. Several weeks later, a device for collecting hypophyseal-portal blood was surgically implanted. Six to seven days later, blood samples were collected simultaneously and continuously from the portal vessels and jugular vein of pairs of conscious animals. Samples were divided at 10-min intervals for 6-12 h. One hour before the end of collection, all animals received i.v. injections of 250 ng of GnRH. In samples collected simultaneously from 6 pairs of animals, T reduced the frequency of both GnRH pulses (1.8 +/- 0.2 vs. 0.9 +/- 0.3/h, p less than 0.03) and LH pulses (1.6 +/- 0.1 vs. 0.8 +/- 0.3/h, p less than 0.03). T did not alter amplitude of either GnRH or LH pulses. Testosterone reduced mean GnRH (9.7 +/- 0.6 vs. 7.9 +/- 0.5 pg/ml, p less than 0.05), whereas mean LH was not significantly reduced (9.6 +/- 1.4 vs. 6.1 +/- 1.8 ng/ml, p = 0.16). These results support the hypothesis that T reduces GnRH pulse frequency.  相似文献   

12.
Objectives were to determine: 1) whether estradiol, given via implants in amounts to stimulate a proestrus increase, induces preovulatory-like luteinizing hormone (LH) and follicle-stimulating hormone (FSH) surges; and 2) whether progesterone, given via infusion in amounts to simulate concentrations found in blood during the luteal phase of the estrous cycle, inhibits gonadotropin surges. All heifers were in the luteal phase of an estrous cycle when ovariectomized. Replacement therapy with estradiol and progesterone was started immediately after ovariectomy to mimic luteal phase concentrations of these steroids. Average estradiol (pg/ml) and progesterone (ng/ml) resulting from this replacement were 2.5 and 6.2 respectively; these values were similar (P greater than 0.05) to those on the day before ovariectomy (2.3 and 7.2, respectively). Nevertheless, basal concentrations of LH and FSH increased from 0.7 and 43 ng/ml before ovariectomy to 2.6 and 96 ng/ml, respectively, 24 h after ovariectomy. This may indicate that other ovarian factors are required to maintain low baselines of LH and FSH. Beginning 24 h after ovariectomy, replacement of steroids were adjusted as follows: 1) progesterone infusion was terminated and 2 additional estradiol implants were given every 12 h for 36 h (n = 5); 2) progesterone infusion was maintained and 2 additional estradiol implants were given every 12 h for 36 h (n = 3); or 3) progesterone infusion was terminated and 2 additional empty implants were given every 12 h for 36 h (n = 6). When estradiol implants were given every 12 h for 36 h, estradiol levels increased in plasma to 5 to 7 pg/ml, which resembles the increase in estradiol that occurs at proestrus. After ending progesterone infusion, levels of progesterone in plasma decreased to less than 1 ng/ml by 8 h. Preovulatory-like LH and FSH surges were induced only when progesterone infusion was stopped and additional estradiol implants were given. These surges were synchronous, occurring 61.8 +/- 0.4 h (mean +/- SE) after ending infusion of progesterone. We conclude that estradiol, at concentrations which simulate those found during proestrus, induces preovulatory-like LH and FSH surges in heifers and that progesterone, at concentrations found during the luteal phase of the estrous cycle, inhibits estradiol-induced gonadotropin surges. Furthermore, ovarian factors other than estradiol and progesterone may be required to maintain basal concentrations of LH and FSH in heifers.  相似文献   

13.
The nature of secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) was followed in female rabbits on a daily basis from age 36 to 60 days by sequential 5-min blood sampling over 1- to 2-h periods each day. Both LH and FSH were found to be secreted in a pulsatile manner. The mean LH pulse amplitude over the 25 days was 0.95 +/- 0.32 ng/mL and for FSH it was 10.15 +/- 1.11 ng/mL. Mean plasma LH levels were significantly increased from 1.46 +/- 0.08 ng/mL in 36 to 42-day-old rabbits to 1.89 +/- 0.12 ng/mL in 43 to 50-day-old rabbits and remained elevated from 50 to 60 days. FSH levels during the same periods also rose significantly from 14.93 +/- 0.79 to 19.57 +/- 2.05 ng/mL. To examine the influence of endogenous opioid peptides on the release of LH and FSH in 36 to 60-day-old female rabbits, morphine sulfate at 0.2, 0.5, 2.0, and 5.0 mg/kg was administered subcutaneously after 30 min baseline sampling, and blood was taken for another 60-120 min. Morphine at all doses and at all ages inhibited the amplitude and frequency of LH pulses but had no effect on FSH secretion. To determine whether the effects of morphine on LH secretion could be reversed with naloxone, females aged 82-114 days were used. Naloxone administered 1 h after morphine reversed the inhibitory effects of morphine, whereas the simultaneous administration of naloxone with morphine had variable effects but seemed to delay the LH increase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The frequency of spontaneous luteinizing hormone (LH) pulses is thought to be a direct result of the frequency of luteinizing hormone-releasing hormone (LHRH) pulses from the hypothalamus. By contrast, the amplitude of spontaneous LH pulses may be controlled by several factors other than the amplitude of LHRH pulses. We tested two hypotheses: 1) that LH pulse amplitude is determined in part by the frequency of LHRH pulses of constant magnitude, and 2) that testosterone (T) exerts a direct feedback effect on the pituitary gland to regulate LH pulse amplitude. Gonadal feedback was eliminated by castrating adult male rats (n = 20). Endogenous LHRH secretion was eliminated by lesioning the medial basal hypothalamus. Serum LH levels (0.19 +/- 0.04 ng/ml RP-2, mean +/- SEM) and T levels (0.15 +/- 0.02 ng/ml), measured several weeks after hypothalamic lesioning, confirmed the hypogonadotropic hypogonadal state of the animals. During a 8-h period, unanesthetized, unrestrained animals were injected with 40-ng pulses of LHRH via catheters into the jugular vein, and blood samples for LH measurement were drawn at 10-min intervals. The LHRH pulse interval was 20 min during the first 4 h in all animals. The pulse interval was doubled to 40 min in half of the animals (n = 10) during the next 4 hours; in the other 10 animals, the pulse interval was maintained constant at 20 min throughout the study. Within both of these groups, one-half of the animals (n = 5) were infused with T to achieve a physiological level of T in serum (2.46 +/- 0.36 ng/ml at 4 h), while the other half received vehicle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The levels of follicle stimulating hormone (FSH) and luteinizing hormone (LH) were determined in the buffalo bull seminal plasma by double-antibody radioimmunoassay. The mean levels of FSH and LH ranged from 8.98 ± 3.08 to 18.40 ± 2.19 ng/ml and from 0.598 ± 0.200 to 1.22 ± 0.334 ng/ml, respectively. FSH and LH concentration was positively correlated with mass motility and sperm concentration of buffalo semen samples. Concentration of hormones did not differ significantly among bulls.  相似文献   

16.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion.  相似文献   

17.
The basal and gonadotropin releasing hormone (GnRH)-induced plasma concentrations of follicle stimulating hormone (FSH) and luteinizing hormone (LH) were studied in four anestrous and four ovariectomized (OVX) bitches. Blood samples were obtained via jugular venipuncture 40min before and 0, 10, 20, 30, 60, 90, and 120min after the i.v. administration of synthetic GnRH in a dose of 10microg/kg body weight. The basal plasma FSH and LH concentrations were significantly higher in the OVX bitches than in the anestrous bitches. In the anestrous bitches, the plasma FSH concentration was significantly higher than the pretreatment level at 10, 20, and 30min, whereas the plasma LH concentration was significantly elevated at 10 and 20min. The maximal GnRH-induced plasma FSH concentration in the anestrous bitches did not surpass the lowest plasma FSH concentration in the OVX bitches, whereas the GnRH-induced plasma LH concentrations in the anestrous bitches overlapped with the basal plasma LH concentrations in the OVX bitches. In the OVX bitches, GnRH administration did not induce a significant change in the plasma FSH concentration, whereas the plasma LH concentration increased significantly at 10 and 20min. In conclusion, the results of the present study indicate that in anestrous bitches GnRH challenge results in increased plasma levels of both FSH and LH, whereas in the OVX bitches, in which the basal plasma FSH and LH concentrations are higher, only a rise in the plasma LH concentration is present after GnRH stimulation. The results also suggest that a test to measure plasma concentration of FSH in single samples appears to have potential in verification of neuter status in bitches.  相似文献   

18.
Basal serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) and the responsiveness of these hormones to a challenge dose of luteinizing hormone releasing hormone (LHRH), were determined in juvenile, pubertal, and adult rhesus monkeys. The monkey gonadotrophins were analyzed using RIA reagents supplied by the World Health Organization (WHO) Special Programme of Human Reproduction. The FSH levels which were near the assay sensitivity in immature monkeys (2.4 +/- 0.8 ng/ml) showed a discernible increase in pubertal animals (6.4 +/- 1.8 ng/ml). Compared to other two age groups, the serum FSH concentration was markedly higher (16.1 +/- 1.8 ng/ml) in adults. Serum LH levels were below the detectable limits of the assay in juvenile monkeys but rose to 16.2 +/- 3.1 ng/ml in pubertal animals. When compared to pubertal animals, a two-fold increase in LH levels paralleled changes in serum LH during the three developmental stages. Response of serum gonadotrophins and T levels to a challenge dose of LHRH (2.5 micrograms; i.v.) was variable in the different age groups. The present data suggest: an asynchronous rise of FSH and LH during the pubertal period and a temporal correlation between the testicular size and FSH concentrations; the challenge dose of LHRH, which induces a significant rise in serum LH and T levels, fails to elicit an FSH response in all the three age groups; and the pubertal as compared to adult monkeys release significantly larger quantities of LH in response to exogenous LHRH.  相似文献   

19.
Two experiments were conducted with prepuberal gilts at 60, 120 and 160 days of age to a) determine the effect of 6-methoxybenzoxazolinone 6-MBOA) on reproductive plasma hormone concentrations and organ development, and b) determine how plasma follicle-stimulating hormone (FSH) and luteinizing hormone (LH) concentrations before and after injection of gonadotropin-releasing hormone (GnRH) or 6-MBOA varied in relation to ovarian development. In Exp. 1, 12 gilts were used in a 4×4 Latin square design. Four gilts/age group were injected once with: 1) vehicle, 2.5% propylene glycol in 50% ethanol, 2) 2 μg of GnRH/kg body weight (BW), 3) 0.2 mg of 6-MBOA/kg BW, and 4) 2 mg of 6-MBOA/kg BW on four successive days in random order. Blood was collected via indwelling vena cava catheters. Injection of GnRH into gilts increased plasma FSH and LH at each age compared with vehicle (P<0.05). Hormone profiles for FSH and LH differed among age groups (P<0.01), but area under curves did not differ significantly among age groups. Injection of 6-MBOA did not significantly affect plasma FSH and LH. Plasma FSH and LH before the GnRH injection or on days when GnRH was not injected were greater at 60 than at 120 and 160 days (FSH, 128 vs 54 and 42 ng/ml; LH, 0.38 vs 0.16 and 0.13 ng/ml for 60, 120 and 160 days, respectively (P<0.05). In Exp. 2, vehicle, 0.2 or 2 mg of 6-MBOA/kg BW were injected once daily for 7 days in 19 gilts. Injections of 6-MBOA had no detectable effects on gonadotropin secretion, ovarian development or uterine weight. Between 60 and 120 days of age, vesicular follicles developed, ovarian weight increased 20-fold, and uterine weight increased 10-fold (P<0.05); basal concentrations of plasma FSH and LH decreased three- and twofold, respectively.  相似文献   

20.
The aim of this study was to determine if there is an age related reduction in the sensitivity of the negative feedback action of 17β-estradiol (estradiol) on luteinizing hormone (LH) secretion in the prepubertal gilt. Ovariectomized gilts at 90 (n=12), 150 (n=11) or 210 (n=12) days of age received estradiol benzoate (EB) osmotic pump implants 6/group and the remaining animals received vehicle control (C) implants except for 150-day C (n=5) on Day 0. On Day 10 blood samples were collected every 15 min for 8h and serum LH and estradiol concentrations were measured. Serum estradiol concentrations averaged 5 ± 1, 5 ± 1 and 7 ± 2 pg/ml for the 90-, 150- and 210-day-old gilts implanted with estradiol, respectively, whereas, serum estradiol concentrations was undetectable in C gilts. Mean serum LH concentrations, basal LH concentrations and serum LH pulse amplitude were less in EB-treated gilts at all ages compared to control animals. In contrast, LH pulse frequency initially was less in EB-treated gilts but subsequently increased (P<0.04) with age (from 0.8 ± 0.2 at 90 days to 5.2 ± 0.2/8h at 210 days), and at 210 days of age the pulse frequency was similar to C gilts. These results demonstrate an age related reduction in the sensitivity to the negative feedback action of estradiol on LH secretion and support the idea that the gilt conforms to the gonadostat hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号