首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Gáborčík  N. 《Photosynthetica》2003,41(2):285-287
In a field experiment the chlorophyll (a+b) (SPAD readings) and nitrogen contents of three grass species (Festuca arundinacea Schreb., Lolium perenne L., and Lolium multiflorum Lam.) and three intergeneric hybrids of Festuca pratensis Huds. × Lolium multiflorum Lam. and Festuca arundinacea Schreb. × Lolium multiflorum Lam. were measured. Close relationships were found between SPAD readings and nitrogen leaf content (r 2 = 0.873** 0.491** and 0.938**) for the 1st, 2nd, and 3rd cut, respectively. SPAD readings and N contents were closely correlated (r = 0.836**) confirming that SPAD measurements could be used in grass selection and/or breeding for high N concentration in herbage. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Seed protein electrophoresis of four chromosomes races ofFestuca arundinacea, F. mairei and their progenitors showed variation in banding patterns. High protein similarities betweenF. arundinacea, F. mairei, F. scariosa, andF. pratensis indicate close phylogenetic relationships of these species. The ancestry ofF. arundinacea cytotypes could be narrowed to three diploid species:F. scariosa, F. pratensis, andF. rubra or to their close relatives.  相似文献   

3.
Artificial infection of grasses with endophytes   总被引:16,自引:0,他引:16  
The endophytic fungi Acremonium loliae and a Gliocladium-like sp. were isolated from Lolium perenne; A. coenophialum and a Phialophora-like sp. from Festuca arundinacea; and Epichloe typhina from F. rubra. All five fungi infected endophyte-free seedlings of the host grasses and F. arundinacea after artificial inoculation. All fungi except A. coenophialum were able to infect L. perenne. The inoculation technique involved placing endophyte mycelium into the coleoptile tissue of sterile seedlings growing on water agar in Petri dishes. Infection of mature plants with endophytes was not achieved. The presence of some endophytes in grasses can be beneficial to plant growth and persistence but deleterious to the health of animals which graze them. The desirability of infecting cultivars of grasses with endophytes is discussed.  相似文献   

4.
Twelve microsatellite markers were isolated from Lolium multiflorum. Allelic variability and cross‐species amplification were assessed on 16 individuals of each of the three grassland species L. multiflorum, Lolium perenne and Festuca pratensis. Cross‐species amplification success was 100% for L. perenne and 83% for F. pratensis. The number of alleles detected ranged from one to 14 with an average of 3.4. While three microsatellite loci were polymorphic in all three species, one marker produced species‐specific alleles in all three species. These microsatellite markers provide a valuable tool for population genetic studies within and among species of the Festuca–Lolium complex.  相似文献   

5.
 A mutant allele at the nuclear locus sid confers indefinite greenness on senescing leaves of the pasture grass Festuca pratensis. Via the bridging species Lolium multiflorum and a programme of backcrossing and selfing, the mutant allele (designated sid y ) was introgressed into Lolium temulentum Ceres. The latter is a fast-growing, annual, inbreeding model grass with many advantages over the slower, perennial, genetically heterogeneous outbreeder F. pratensis. Analyses of photosynthetic pigments, total leaf proteins and individual plastid polypeptide components in senescing attached and detached leaves of yy, yY and YY plants confirmed that the stay-green phenotype of yy F. pratensis had been successfully introduced into the L. temulentum background. Received: 21 September 1998 / Accepted: 19 November 1998  相似文献   

6.
7.
The effects of changes in solar UV-B on the growth and pigmentation of six grass species from cold-temperate grasslands (Lolium perenne, Lolium multiflorum, Festuca arundinacea, Festuca rubra, Phleum pratense and Dactylis glomerata) in spring and summer were studied. The grasses were grown in greenhouses with different foils, resulting in three treatments: no UV-B, 80% of ambient and 90% of ambient UV-BBE.(biologically effective UV-B). The results indicated important effects of ambient UV-B levels on grass, but the different species reacted in very different ways. Both morphology and biomass production were influenced by UV-B in some species. However, changes in biomass production did not necessarily occur within the same species as changes in morphology. The grasses were more sensitive in summer. Overall, only F. rubra was positively influenced by UV-B under all circumstances. The biomass of D. glomerata and L. perenne was reduced by UV-B in spring and summer. Morphological changes included reduced height and increased tillering. The sensitivity of the different species was partially explained by their ability to reduce their specific leaf area in response to UV-B. Only the more sensitive species showed increased production of protective pigments. Overall, there were important differences between the effect of a low level of UV-B, and the further increase in UV-B, indicating that several mechanisms are operating at different light levels.  相似文献   

8.
Summary Seed and transplanted adult plants from populations of Festuca rubra, collected from inland, salt-marsh and sand-dune sites were grown on culture solution with added sodium chloride. The growth of the populations of the three habitats was reduced differentially by salt. The salt marsh ecotype Festuca rubra ssp. litoralis was only slightly affected and the inland ecotype F. rubra ssp. rubra was severely retarded at 60 mM NaCl. The dune ecotype F. rubra ssp. arenaria had an intermediate tolerance. The tolerant ecotypes accumulated less sodium chloride as compared to the sensitive ecotype, suggesting that salt tolerance is caused in part by salt exclusion.In addition, the dune ecotype F.r. arenaria appeared to be more drought tolerant than the salt marsh ecotype. Abscission of salt-saturated leaves does not function as an adaptation to salinity in Festuca rubra.All three ecotypes accumulated proline with increased salinity. The response was most pronounced in the drought tolerant F.r. arenaria, indicating that proline accumulation is a response to osmotic stress rather than to ion-specific effects of salinity. The observed differences in salt tolerance may be explained by differential sensitivity to toxic effects of sodium chloride.The occurrence on a beach plain of closely adjacent populations of F.r. arenaria and F.r. litoralis, differing markedly in salt tolerance, is briefly discussed.  相似文献   

9.
Neotyphodium endophytes are vertically transmitted fungal symbionts of grasses. Being pest-repelling and growth-promoting agents for their hosts, and also potential mycotoxin producers, their detection in plants is important. Observation of chemically cleared flowers of infected grasses (Festuca arundinacea, F. pratensis, Lolium perenne, and L. multiflorum) using differential interference contrast microscopy revealed the existence of endophytes within immature ovaries of host plants. This observation method provides an accurate and easy way to detect and distinguish Neotyphodium endophytes in flowering host grasses and to investigate the seed transmission process, which is critical to their life cycle, and the practical use of infected plants.  相似文献   

10.
Genomic in situ hybridization (GISH) was used to identify Festuca chromatin in mitotic chromosomes of Lolium multiflorum (Lm) × Festuca pratensis (Fp) hybrids and hybrid derivatives. In two inverse autoallotriploids LmLmFp and LmFpFp, in situ hybridization was able to discriminate between the Lolium and Festuca chromosomes. In a third triploid hybrid produced by crossing an amphiploid of L. multiflorum × F. pratensis (2n=4x=28) with L. multiflorum (2n=2x=14), the technique identified chromosomes with interspecific recombination. Also, in an introgressed line of L. multiflorum which was homozygous for the recessive sid (senescence induced degradation) allele from F. pratensis, a pair of chromosome segments carrying the sid gene could be identified, indicating the suitability of GISH in showing the presence and location of introgressed genes. By screening backcross progeny for the presence of critical alien segments and the absence of other segments the reconstitution of the genome of the recipient species can be accelerated.  相似文献   

11.
The oviposition preferences of Oscinella frit, O. vastator, O. nitidissima, O. albiseta andO. nigerrima for differenct Gramineae were investigated in the laboratory. O. frit, laid most eggs on oats, Lolium multiflorum and Festuca rubra, relatively few eggs were laid on barley and virtually none on Dactylis glomerata None of the other Osinella species oviposted on cereals. Of the other species, O. vastator appeared to be the most polyphagous and the preferred hosts were L. multiflorum, Lolium perenne and Festuca pratensis; few eggs were laid on either F. rubra, Agrostis tenuis or Poa pratensis. The host ranges of the remaining species were much more limited. Although a few eggs were laid by O. nitidissima on Lolium, the preferred host was A. tenuis. Oscinella albiseta oviposited only on D. glomerata whilst nearly all the eggs laid by O. nigerrima were deposited on shoots of Arrhenatherum elatius. The distribution of eggs by O. frit on L. multiflorum and A. tenuis was different from that on oats; on grasses most eggs were laid inside withered leaf sheaths whereas on oats most were deposited inside the coleoptile. The oviposition sites of O. nitidissima, O. nigerrima and O. albiseta on their respective host grasses were similar to those of O. frit on grasses. O. frit laid most eggs on grasses which were at the five-leaf stage and tailoring.  相似文献   

12.
Genes for winter hardiness and frost tolerance were introgressed from Festuca arundinacea into winter-sensitive Lolium multiflorum. Two partly fertile, pentaploid (2n = 5x = 35) F(1) hybrids F. arundinacea (2n = 6x = 42) x L. multiflorum (2n = 4x = 28) were generated and backcrossed twice onto L. multiflorum (2x). The backcross 1 (BC(1)) and backcross 2 (BC(2)) plants were preselected for high vigor and good fertility, and subsequently, a total of 83 BC(2) plants were selected for winter hardiness after 2 Polish winters and by simulated freezing tests. Genomic in situ hybridization (GISH) was performed on 6 winter-hardy plants selected after the first winter and shown to be significantly (P < 0.05) more frost tolerant than the L. multiflorum control. Among the analyzed BC(2) winter survivors, only diploid (2n = 2x = 14) plants were found. Five plants carried 13 intact L. multiflorum chromosomes and 1 L. multiflorum chromosome with a single introgressed F. arundinacea terminal chromosome segment. The sixth BC(2) winter survivor appeared to be Lolium without any Festuca introgression capable of detection by GISH. A combined GISH and fluorescence in situ hybridization analysis with rDNA probes of the most winter-hardy (after 2 winters) and frost-tolerant BC(2) plant revealed the location of an F. arundinacea introgression on the nonsatellite arm of L. multiflorum chromosome 2, the same chromosome location reported previously as a site for frost tolerance genes in the diploid and winter-hardy species Festuca pratensis.  相似文献   

13.
The effect of living plants on root decomposition of four grass species   总被引:3,自引:0,他引:3  
We tested whether living plant roots of Holcus lanatus and Festuca ovina can affect the decomposition rate of dead roots of Holcus lanatus, Festuca rubra, Anthoxanthum odoratum and Festuca ovina. Moreover, we investigated whether this effect is dependent on the decomposing root species or the nitrogen supply during the growth of the roots. The selected perennial grass species are typical of grassland habitats in a range from high to low nitrogen availability: H. lanatus, F. rubra, A. odoratum and F. ovina. Seedlings of these species were homogeneously labelled with 14CO2 for eight weeks. Plants were grown on soil at two nitrogen levels: one without additional nitrogen and one with nitrogen addition (14 g N m−2).
At the start of the decomposition experiment 14C labelled roots were separated from soil and incubated in litterbags (mesh width 1 mm) in fresh soil. These 14C labelled roots were left to decompose for 19 weeks in an open greenhouse in soil planted with H. lanatus or F. ovina and in unplanted soil. After the incubation period, the decomposition of the 14C labelled roots of the four species was measured. The mass and 14C losses from the dead roots were calculated and the living plant biomass and C, N and P contents of the living plants were measured.
Living plant roots of F. ovina had positive effects on the decomposition rate of F. ovina root litter, but dead A. odoratum roots from the N fertilized treatment decomposed slower in the presence of living F. ovina plants. It seems likely that living plants like F. ovina exude carbon compounds that stimulate the growth of soil microbes and thereby increase dead root decomposition and mineralization. Root decomposition rates differed among the species. We found no evidence to support our hypothesis that dead roots of high fertility species (i.e. H. lanatus and F. rubra) decompose faster than dead roots of low fertility species (i.e. A. odoratum and F. ovina). In unplanted soil, the mass loss and total 14C loss from A. odoratum dead roots were higher than those from H. lanatus, F. rubra and F. ovina dead roots. Dead roots of F. ovina lost less mass and total 14C than dead roots of H. lanatus.  相似文献   

14.
Agrobacterium tumefaciens strain LBA4404 carrying plasmid pTOK233 encoding the hygromycin resistance (hph) and beta-glucuronidase (uidA) genes has been used to transform two agronomic grass species: tall fescue (Festuca arundinacea) and Italian ryegrass (Lolium multiflorum). Embryogenic cell suspension colonies or young embryogenic calli were co-cultured with Agrobacterium in the presence of acetosyringone. Colonies were grown under hygromycin selection with cefotaxime and surviving colonies plated on embryogenesis media. Eight Lolium (six independent lines) and two Festuca plants (independent lines) were regenerated and established in soil. All plants were hygromycin-resistant, but histochemical determination of GUS activity showed that only one Festuca plant and one Lolium plant expressed GUS. Three GUS-negative transgenic L. multiflorum and the two F. arundinacea plants were vernalised and allowed to flower. All three Lolium plants were male- and female-fertile, but the Festuca plants failed to produce seed. Progeny analysis of L. multiflorum showed a 24-68% inheritance of the hph and uidA genes in the three lines with no significant difference between paternal and maternal gene transmission. However, significant differences were noted between the paternal and maternal expression of hygromycin resistance.  相似文献   

15.
Plants ofLolium perenneandFestuca rubrawere grown in sand culturereceiving all nutrients as a complete nutrient solution containing1.5 mMNH4NO3, and subjected to one of three defoliation treatments:undefoliated, defoliated on one occasion, or defoliated weekly.15Nlabelling was used to determine the rate of N uptake, allowingthe amount of N remobilized from storage for the growth of thetwo youngest leaves (subsequently referred to as ‘newleaves’) growing over a 14 d period after defoliationto be calculated. The total plant N uptake by both species wasreduced, compared with undefoliated plants, by both a singleand repeated defoliation, although neither caused complete inhibitionof uptake. Regularly defoliatedL. perennehad a greater reductionin root mass, concomitant with a greater increase in N uptakeper g root than did regularly defoliatedF. rubra. In both species,the amount of N derived from uptake recovered in the new leaveswas unaffected by the frequency of defoliation. BothL. perenneandF.rubramobilized nitrogen to the new leaves after a single defoliation,mobilization being sufficient to supply 50 and 41%, respectively,of the total nitrogen requirement. In regularly defoliated plants,no significant nitrogen was mobilized to the new leaves inL.perenne, and only a small amount was mobilized inF. rubra. Plantsachieved greater leaf regrowth when only defoliated once. Weconclude that increasing the frequency of defoliation of bothL.perenneandF. rubrahad little effect on the uptake of nitrogenby roots which was subsequently supplied to new leaves, butdepleted their capacity for nitrogen remobilization, resultingin a reduction in the rate of growth of new leaves. Lolium perenne; Festuca rubra; defoliation frequency; mobilization; root uptake; nitrogen  相似文献   

16.
Summary A set of species-specific repetitive DNA sequences was isolated from Lolium multiflorum and Festuca arundinacea. The degree of their species specificity as well as possible homologies among them were determined by dot-blot hybridization analysis. In order to understand the genomic organization of representative Lolium and Festuca-specific repetitive DNA sequences, we performed Southern blot hybridization and in situ hybridization to metaphase chromosomes.Southern blot hybridization analysis of eight different repetitive DNA sequences of L. multiflorum and one of F. arundinacea indicated either tandem and clustered arrangements of partially dispersed localization in their respective genomes. Some of these sequences, e.g. LMB3, showed a similar genomic organization in F. arundinacea and F. pratensis, but a slightly different organization and degree of redundancy in L. multiflorum. Clones sequences varied in size between 100 bp and 1.2 kb. Estimated copy number in the corresponding haploid genomes varied between 300 and 2×104. Sequence analysis of the highly species-specific sequences from plasmids pLMH2 and pLMB4 (L. multiflorum specific) and from pFAH1 (F. arundinacea specific) revealed some internal repeats without higher order. No homologies between the sequences or to other repetitive sequences were observed. In situ hybridization with these latter sequences to metaphase chromosomes from L. multiflorum, F. arundinacea and from symmetric sexual Festulolium hybrid revealed their relatively even distribution in the corresponding genomes. The in situ hybridization thus also allowed a clearcut simple identification of parental chromosomes in the Festulolium hybrid.The potential use of these species-specific clones as hybridization probes in quantitative dot-blot analysis of the genomic make-up of Festulolium (sexual and somatic) hybrids is also demonstrated.Abbreviations bp Base pair (s) - CMA chromomycin A3 - DAPI 4,6-diamidino-2-phenylindole - IPTG isopropyl -D-thio-galactopyranoside - kb kilobase pair(s) - NBT nitroblue tetrazolium chloride - X-gal 5-bromo-4-chloro-3-inonyl -D-galactopyranoside  相似文献   

17.
Simple-sequence repeats (SSRs) comprising three tetranucleotide repeat sequences with two-base ’anchors’, namely 5′-(AGAC)4GC, 5′-AC(GACA)4 and 5′-(GACA)4GT, were used in PCR reactions as primers to develop inter-SSR DNA fingerprints of the outbreeding grass species Lolium multiflorum, L. perenne, Festuca pratensis and F. arundinacea. Each species was represented by DNA samples from 3 to 6 varieties. In all four species distinctive species-specific DNA profiles were produced that were common across a number of varieties despite their diverse origin. While the fingerprints of the two ryegrasses, L. multiflorum and L. perenne, were the most similar, a number of inter-SSR DNA markers were generated that enabled them to be distinguished from each other. Some slight variations were found between varieties, which provided putative variety-specific markers for cultivar identification. In addition, variations in the DNA profiles of the genotypes of L. multiflorum and F. pratensis were examined, and the results showed that variety-specific fingerprints are integrated patterns made up from the profiles of individual genotypes. Amongst the primers used, AC(GACA)4 generated the best distinction between Lolium and Festuca individuals and provides an effective new tool for genome identification. A number of species-discriminating sequences, ranging in size between 550 bp and 1,600 bp, were cloned: three clones for F. pratensis, one clone for L. multiflorum and one clone for F. arundinacea. A F. pratensis fragment pFp 78H582 was sequenced. Southern hybridization confirmed the presence of this fragment in F. arundinacea (which contains one genome of F. pratensis), but no homology was found with L. multiflorum. However, a F. arundinacea clone amplified with (GACA)4GT, pFa 104H1350, was found to be unique to the F. arundinacea genome. Received: 23 June 1999 / Accepted: 27 August 1999  相似文献   

18.
On Italian ryegrass (Lolium multiflorum cv. S 22), the eriophyid mite Abacarus hystrix usually fed on the bulliform epidermal cells at the base of the grooves on the adaxial leaf surface. Scanning electron micrographs illustrate (1) the external morphology of the mouthparts of the mites, (2) how, prior to feeding, they remove cuticular leaf wax with their rostra and (3) feeding punctures in epidermal cells made by the styliform chelicerae. Of eleven graminaceous species tested, A. hystrix only settled on Festuca pratensis, L. perenne and L. multiflorum. On L. multiflorum, the mites preferred the youngest leaves and on mature leaves, preferred the youngest part.  相似文献   

19.
Procedures for the transfer of genes for drought resistance from Festuca glaucescens (2n=4x=28) into Lolium multiflorum (2n=2x=14) are described. Following the initial hybridisation of a synthetic autotetraploid of L. multiflorum (2n=4x=28) with F. glaucescens, the F1 hybrid was backcrossed twice onto diploid L. multiflorum (2n=2x=14) to produce a diploid Lolium genotype with a single F. glaucescens introgression located distally on the nucleolar organiser region arm of chromosome 3. The transmission of F. glaucescens-derived amplified fragment length polymorphisms and a sequence-tagged-site (STS) marker was monitored throughout the breeding programme. Those genotypes of a mapping population of backcross 3 that survived combined severe drought and heat stress all contained the F. glaucescens-derived markers. The STS marker provided a prototype for a PCR-based system for high-throughput screening during cultivar development for the presence of the F. glaucescens-derived genes for drought resistance. The frequency of intergeneric recombination between L. multiflorum and F. glaucescens is described. During the initial stages of the breeding programme, preferential intraspecific chromosome pairing between Lolium homologues and Festuca homoeologues dominated with low frequencies of intergeneric chromosome associations. However, these increased in the backcross 1 due to the absence of opportunities for intraspecific chromosome pairing between homoeologous Festuca chromosomes following the loss of half of the Festuca chromosomes. Once transferred to Lolium, F. glaucescens sequences recombined with Lolium at high frequencies, thereby enabling the loss of potentially deleterious gene combinations that might reduce the forage quality of Lolium.  相似文献   

20.
The chance backcrossing to hexaploidFestuca rubra of a natural pentaploid hybridFestuca rubra ·Vulpia fasciculata to produce a hexaploid plant is described. The hexaploid derivative, unlike the pentaploid hybrid, shows a reasonable degree of fertility and is morphologically very close to normalFestuca rubra. Its existence provides a mechanism for the continued introgression ofVulpia fasciculata intoFestuca rubra, so increasing the variability of the latter. It also shows that pairing betweenFestuca rubra andVulpia fasciculata chromosomes must have taken place either in the pentaploid hybrid or in its hexaploid derivative. A possibly similar pattern of introgression involvingVulpia bromoides is also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号