首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 609 毫秒
1.
Ribonuclease T2, nuclease S1, and snake venom phosphodiesterase were used as a structural probe for investigation of the interaction between Escherichia coli tRNAfMet and methionyl-tRNA synthetase, and the cleavage sites were analyzed by a rapid sequencing gel electrophoresis of 5'-32P-labeled tRNA. Both endonucleases cleaved the D-loop of synthetase-bound tRNA much more extensively than that of the free tRNA. Positions of A14, G15, A22, and G23 in the D-loop and C35 in the anticodon of the synthetase-bound tRNA were more susceptible to RNase T2. The synthetase-bound tRNA was predominantly cleaved by nuclease S1 at position of G15, G19, G20, and G23 in the D-loop and G2 in the acceptor stem. In contrast, the synthetase-bound tRNA was more resistant to the 3'-exonuclease, snake venom phosphodiesterase, than was the free tRNA molecule. These results suggest conformational change of the tRNA by the synthetase binding which weakened tertiary interaction between the D-loop and T psi C-loop/extra-loop. Production of acid-soluble radioactivity was also examined in the limited digestion of 5'-32P-labeled tRNA or 3'-14C-labeled methionyl-tRNA. The synthetase enhanced the release of acid-soluble oligonucleotides from the 5'-end of the tRNA but suppressed that from the 3'-end of the molecule. These results are consistent with that obtained by gel electrophoresis.  相似文献   

2.
3.
The endoribonuclease RNase P processes tRNA-like structures that are assembled out of two separate strands. In these bimolecular constructs, one of the strands is cleaved by the enzyme, and the other one is called the external guide sequence (EGS). A number of EGS with different mutations and deletions were tested for the ability to induce cleavage with human RNase P. Different domains of the original tRNAtyr-like structure were deleted or modified. The anticodon stem and loop and the variable loop could be deleted without a detrimental effect on recognition by RNase P. Modifications in the lengths of T stem and aminoacyl acceptor stem led to a decrease in the relative amount of cleavage, whereas modifications of the D stem were more permissible. Single nucleotide deletions in the T loop reduced cleavage to different extents, depending on the position. Values for the Kd of complex formation of bimolecular constructs with annealing arms of varying lengths ranged from 0.2 nM to 28 nM. A cleavage rate of 1 min(-1) was measured for both the bimolecular target-EGS complex and tRNA precursor.  相似文献   

4.
Y Yuan  S Altman 《The EMBO journal》1995,14(1):159-168
RNase P from HeLa cells can efficiently cleave tRNA precursor molecules in vitro but cannot cleave potential substrates from which the D, anticodon and variable loops and stems of the tRNA moiety have all been removed. However, molecules from which the latter subdomains have been removed individually do serve as substrates. We show here that molecules that contain only a 5' leader sequence, the acceptor stem and the T stem and loop of the tRNA domain, and a bulge as small as one nucleotide downstream from nucleotide 7 in the tRNA sequence at the junction of the two stems, can serve as substrates for human RNase P. The identity of the nucleotide in the bulge is important in determining both the efficiency of the cleavage and the conformation of the substrate and/or the enzyme-substrate complex. We also show that the human enzyme locates the appropriate site for cleavage of its substrates in part by 'measuring' the length of the helices in the acceptor and T stems in both model and natural substrates.  相似文献   

5.
H Pelka  L H Schulman 《Biochemistry》1986,25(15):4450-4456
The accessibility of nucleotides in Escherichia coli tRNAfMet to chemical and enzymatic probes in the presence and absence of methionyl-tRNA synthetase has been investigated. Dimethyl sulfate was used to probe the reactivity of cytosine and guanosine residues. The N-3 position of the wobble anticodon base, C34, was strongly protected from methylation in the tRNA-synthetase complex. A synthetase-induced conformational change in the anticodon loop was suggested by the enhanced reactivity of C32 in the presence of enzyme. Cytosine residues in the dihydrouridine loop and in the 3'-terminal CCA sequence showed little or no change in reactivity. Methylation of the N-7 position of guanosine residues G42, G52, and G70 was partially inhibited by the synthetase. Nuclease digestion of tRNAfMet with alpha-sarcin in the presence of 1-2 mM Mg2+ resulted in cleavage mainly at C71 in the acceptor stem and was strongly inhibited by synthetase. Other nuclease digestion experiments using the single strand specific nucleases RNase A and RNase T1 revealed weak protection of nucleotides in the D loop and strong protection of nucleotides in the anticodon on complex formation. The present data, together with previous structure-function studies on this system, indicate strong binding of methionyl-tRNA synthetase to the anticodon of tRNAfMet, leading to a change in the conformation of the anticodon loop and stem. We propose that this, in turn, produces more distant, and possibly relatively subtle, conformational changes in other parts of the tRNA structure that ultimately lead to proper orientation of the 3' terminus of the tRNA with respect to the active site of the enzyme.  相似文献   

6.
The use of 19F nuclear magnetic resonance (n.m.r.) spectroscopy as a probe of anticodon structure has been extended by investigating the effects of tetranucleotide binding to 5-fluorouracil-substituted Escherichia coli tRNA(Val)1 (anticodon FAC). 19F n.m.r. spectra were obtained in the absence and presence of different concentrations of oligonucleotides having the sequence GpUpApX (X = A,G,C,U), which contain the valine codon GpUpA. Structural changes in the tRNA were monitored via the 5-fluorouracil residues located at positions 33 and 34 in the anticodon loop, as well as in all other loops and stems of the molecule. Binding of GpUpApA, which is complementary to the anticodon and the 5'-adjacent FUra 33, shifts two resonances in the 19F spectrum. One, peak H (3.90 p.p.m.), is also shifted by GpUpA and was previously assigned to FUra 34 at the wobble position of the anticodon. The effects of GpUpApA differ from those of GpUpA in that the tetranucleotide induces the downfield shift of a second resonance, peak F (4.5 p.p.m.), in the 19F spectrum of 19F-labeled tRNA(Val)1. Evidence that the codon-containing oligonucleotides bind to the anticodon was obtained from shifts in the methyl proton spectrum of the 6-methyladenosine residue adjacent to the anticodon and from cleavage of the tRNA at the anticodon by RNase H after binding dGpTpApA, a deoxy analog of the ribonucleotide codon. The association constant for the binding of GpUpApA to fluorinated tRNA(Val)1, obtained by Scatchard analysis of the n.m.r. results, is in good agreement with values obtained by other methods. On the basis of these results, we assign peak F in the 19F n.m.r. spectrum of 19F-labeled tRNA(Val)1 to FUra 33. This assignment and the previous assignment of peak H to FUra 34 are supported by the observation that the intensities of peaks F and H in the 19F spectrum of fluorinated tRNA(Val)1 are specifically decreased after partial hydrolysis with nucleass S1 under conditions leading to cleavage in the anticodon loop. The downfield shift of peak F occurs only with adenosine in the 3'-position of the tetranucleotide; binding of GpUpApG, GpUpApC, or GpUpApU results only in the upfield shift of peak H. The possibility is discussed that this base-specific interaction between the 3'-terminal adenosine and the 5-fluorouracil residue at position 33 involves a 5'-stacked conformation of the anticodon loop. Evidence also is presented for a temperature-dependent conformational change in the anticodon loop below the melting temperature of the tRNA.  相似文献   

7.
Alkylation in beef tRNATrp of phosphodiester bonds by ethylnitrosourea and of N-7 in guanosines and N-3 in cytidines by dimethyl sulfate and carbethoxylation of N-7 in adenosines by diethyl pyrocarbonate were investigated under various conditions. This enabled us to probe the accessibility of tRNA functional groups and to investigate the structure of tRNATrp in solution as well as its interactions with tryptophanyl-tRNA synthetase. The phosphate reactivity towards ethylnitrosourea of unfolded tRNA was compared to that of native tRNA. The pattern of phosphate alkylation of tRNATrp is very similar to that found with other tRNAs studied before using the same approach with protected phosphates mainly located in the D and T psi arms. Base modification experiments showed a striking similarity in the reactivity of conserved bases known to be involved in secondary and tertiary interactions. Differences are found with yeast tRNAPhe since beef tRNATrp showed a more stable D stem and a less stable T psi stem. When alkylation by ethylnitrosourea was studied with the tRNATrp X tryptophanyl-tRNA synthetase complex we found that phosphates located at the 5' side of the anticodon stem and in the anticodon loop were strongly protected against the reagent. The alkylation at the N-3 position of the two cytidines in the CCA anticodon was clearly diminished in the synthetase X tRNA complex as compared with the modification in free tRNATrp; in contrast the two cytidines of the terminal CCA in the acceptor stem are not protected by the synthetase. The involvement of the anticodon region of tRNATrp in the recognition process with tryptophanyl-tRNA synthetase was confirmed in nuclease S1 mapping experiments.  相似文献   

8.
Substrate structural requirements of Schizosaccharomyces pombe RNase P   总被引:1,自引:0,他引:1  
D Drainas  S Zimmerly  I Willis  D S?ll 《FEBS letters》1989,251(1-2):84-88
RNase P from Schizosaccharomyces pombe has been purified over 2000-fold. The apparent Km for two S. pombe tRNA precursors derived from the supS1 and sup3-e tRNA(Ser) genes is 20 nM; the apparent Vmax is 2.5 nM/min (supS1) and 1.1 nM/min (sup3-e). Processing studies with precursors of other mutants show that the structures of the acceptor stem and anticodon/intron loop of tRNA are crucial for S. pombe RNase P action.  相似文献   

9.
Secondary and tertiary structures of four yeast tRNA precursors that contain introns have been elucidated using limited digestion with a variety of single-strand- and double-strand-specific nucleases. The pre-tRNAs, representing the variety of intron sizes and potential structures, were: pre-tRNALeuCAA, pre-tRNALeuUAG, pre-tRNAIleUAU, and pre-tRNAPro-4UGG. Conventional tRNA cloverleaf structure is maintained in these precursors except that the anticodon loop is interrupted by the intron. The intron contains a sequence which is complementary to a portion of the anticodon loop and allows the formation of a double helix often extending the anticodon stem. The 5' and 3' splicing cleavage sites are located at either end of this helix and are single-stranded. The intron is the most sensitive region to nuclease cleavage, suggesting that it is on the surface of the molecule and available for interaction with the splicing endonuclease. Absence of Mg2+ or spermidine renders the dihydrouridine and T psi C loops of these precursors highly sensitive to nuclease digestion. These ionic effects mimic those observed for tRNAPhe and suggest that the tRNA portion of these precursors has native tRNA structure. We propose consensus secondary and tertiary structures which may be of significance to eventual understanding of the mechanism of yeast tRNA splicing.  相似文献   

10.
End-maturation reactions, in which the 5' end leader and 3' end trailer of precursor tRNA are removed by RNase P and 3'-tRNase, respectively, are early, essential steps in eukaryotic precursor tRNA processing. End-processing enzymes may be expected to contact the acceptor stem of tRNA due to its proximity to both cleavage sites. We constructed matrices of pair-wise substitutions in mid-acceptor stem at nt 3/70 and 4/69 of Drosophila tRNA(His) and analyzed their ability to be processed by Drosophila RNase P and 3'-tRNase. In accord with our earlier study of D/T loop processing matrices, we find that tRNA end processing enzymes respond to sequence changes differently. More processing defects were observed with 3'-tRNase than with RNase P, and substitutions at 4/69 reduced processing more than those at 3/70. We evaluated tRNA folding using structure probing nucleases and investigated the contribution of K(M) and V(Max) to the processing efficiency of selected variants. In one substitution (C3A), mis-folding correlates with processing defects. In another (C69A), a disruption of structure appears to be transmitted laterally to both ends of the acceptor stem. Poor processing of C69A by RNase P is due entirely to a reduction in V(Max), but for 3'-tRNase, it is due to an increase in K(M).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号