首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recordings were made in the chick cochlear nucleus from neurons that are sensitive to very low frequency sound. The tuning, discharge rate response and phase-locking properties of these units are described in detail. The principal conclusions are: 1. Low frequency (LF) units respond to sound frequencies between 10-800 Hz. Best thresholds average 60 dB SPL, and are occasionally as low as 40 dB SPL. While behavioral thresholds in this frequency range are not available for the domestic chick, these values are in good agreement with the pigeon behavioral audiogram (Kreithen and Quine 1979). 2. About 60% of the unit population displays tuning curves resembling low-pass filter functions with corner frequencies between 50-250 Hz. The remaining units have broad band-pass tuning curves. Best frequencies range from 50-300 Hz. 3. Spontaneous discharge rate was analyzed quantitatively for LF units recorded from nucleus angularis. The distribution of spontaneous rates for LF units is similar to that seen from higher CF units (300-5000 Hz) found in the same nucleus. However, the spontaneous firing of LF units is considerably more regular than that of their higher CF counterparts. 4. Low frequency units with low spontaneous rates (SR's less than 40 spikes/s) show large driven rate increases and usually saturate by discharging once or twice per stimulus cycle. Higher SR units often show no driven rate increases. 5. All LF units show strong phase-locking at all excitatory stimulus frequencies. Vector strengths as high as 0.98 have been observed at moderate sound levels. 6. The preferred phase of discharge (relative to the sound stimulus) increases with stimulus frequency in a nearly linear manner. This is consistent with the LF units being stimulated by a traveling wave. The slope of these phase-frequency relationships provides an estimate of traveling wave delay. These delays average 7.2 ms, longer than those seen for higher CF auditory brainstem units. These observations suggest that the peripheral site of low frequency sensitivity is the very distal region of the basilar papilla, an area whose morphology differs significantly from the rest of the chick basilar papilla. 7. LF units are described whose response to sound is inhibitory at frequencies above 50 Hz.  相似文献   

2.
 Type II units in the dorsal cochlear nucleus (DCN) are characterized by vigorous but nonmonotonic responses to best frequency tones as a function of sound pressure level, and relatively weak responses to noise. A model of DCN neural circuitry was used to explore two hypothetical mechanisms by which neurons may be endowed with type II unit response properties. Both mechanisms assume that type II units receive excitatory input from auditory nerve (AN) fibers and inhibitory input from an unspecified class of cochlear nucleus interneurons that also receive excitatory AN input. The first mechanism, a lateral inhibition (LI) model, supposes that type II units receive inhibitory input from a number of narrowly tuned interneurons whose best frequencies (BFs) flank the BF of the type II unit. Tonal stimuli near BF result in only weak inhibitory input, but broadband stimuli recruit enough lateral inhibitors to greatly weaken the type II unit response. The second mechanism, a wideband inhibition (WBI) model, supposes that type II units receive inhibitory input from interneurons that are broadly tuned so that they respond more vigorously to broadband stimuli than to tones. Physiological and anatomical evidence points to the possible existence of such a class of neurons in the cochlear nucleus. The model extends an earlier computer model of an iso-frequency DCN patch to multiple frequency slices and adds a population of interneurons to provide the inhibition to model type II units (called I2-cells). The results show that both mechanisms accurately simulate responses of type II units to tones and noise. An experimental paradigm for distinguishing the two mechanisms is proposed. Received: 30 December 1996/Accepted in revised form: 13 March 1997  相似文献   

3.
Periodic envelope or amplitude modulations (AM) with periodicities up to several thousand Hertz are characteristic for many natural sounds. Throughout the auditory pathway, signal periodicity is evident in neuronal discharges phase-locked to the envelope. In contrast to lower levels of the auditory pathway, cortical neurons do not phase-lock to periodicities above about 100 Hz. Therefore, we investigated alternative coding strategies for high envelope periodicities at the cortical level. Neuronal responses in the primary auditory cortex (AI) of gerbils to tones and AM were analysed. Two groups of stimuli were tested: (1) AM with a carrier frequency set to the unit's best frequency evoked phase-locked responses which were confined to low modulation frequencies (fms) up to about 100 Hz, and (2) AM with a spectrum completely outside the unit's frequency-response range evoked completely different responses that never showed phase-locking but a rate-tuning to high fms (50 to about 3000 Hz). In contrast to the phase-locked responses, the best fms determined from these latter responses appeared to be topographically distributed, reflecting a periodotopic organization in the AI. Implications of these results for the cortical representation of the perceptual qualities rhythm, roughness and pitch are discussed. Accepted: 25 July 1997  相似文献   

4.
Stellate cells in the cat antero-ventral cochlear nucleus (AVCN) maintain a robust rate-place representation of vowel spectra over a wide range of stimulus levels. This rate-place representation resembles that of low threshold, high spontaneous rate (SR) auditory nerve fibers (ANFs)at low stimulus levels, and that of high threshold, lowmedium SR ANFsat high stimulus levels. One hypothesis accounting for this phenomenon is that AVCN stellate cells selectively process inputs from different SR population of ANFs in a level-dependent fashion. In this paper, we investigate a neural mechanism that can support selective processing of ANF inputs by stellate cells. We study a physiologically detailed compartmental model of stellate cells. The model reproduces PST histograms and rate-versus-level functions measured in real cells. These results indicate that simple and plausible distribution patterns of excitatory and inhibitory inputs within the stellate cell dendritic tree can support level dependent selective processing. Factors affecting selective processing are identified. This study thus represents a first step towards the development of a computational model of the AVCN stellate cell receptive field.  相似文献   

5.
The steering responses of three species of field crickets, Teleogryllus oceanicus, T. commodus, and Gryllus bimaculatus, were characterized during tethered flight using single tone-pulses (rather than model calling song) presented at carrier frequencies from 3-100 kHz. This range of frequencies encompasses the natural songs of crickets (4-20 kHz, Fig. 1) as well as the echolocation cries of insectivorous bats (12-100 kHz). The single-pulse stimulus paradigm was necessary to assess the aversive nature of high carrier frequencies without introducing complications due to the attractive properties of repeated pulse stimuli such as model calling songs. Unlike the natural calling song, single tone-pulses were not attractive and did not elicit positive phonotactic steering even when presented at the calling song carrier frequency (Figs. 2, 3, and 9). In addition to temporal pattern, phonotactic steering was sensitive to carrier frequency as well as sound intensity. Three discrete flight steering behaviors positive phonotaxis, negative phonotaxis and evasion, were elicited by appropriate combinations of frequency, temporal pattern and sound intensity (Fig. 12). Positive phonotactic steering required a model calling song temporal pattern, was tuned to 5 kHz and was restricted to frequencies below 9 kHz. Negative phonotactic steering, similar to the 'early warning' bat-avoidance behavior of moths, was produced by low intensity (55 dB SPL) tone-pulses at frequencies between 12 and 100 kHz (Figs. 2, 3, and 9). In contrast to model calling song, single tone-pulses of high intensity 5-10 kHz elicited negative phonotactic steering; low intensity ultrasound (20-100 kHz) produced only negative phonotactic steering, regardless of pulse repetition pattern. 'Evasive', side-to-side steering, similar to the 'last-chance' bat-evasion behavior of moths was produced in response to high intensity (greater than 90 dB) ultrasound (20-100 kHz). Since the demonstration of negative phonotactic steering did not require the use of a calling song temporal pattern, avoidance of ultrasound cannot be the result of systematic errors in localizing an inherently attractive stimulus when presented at high carrier frequencies. Unlike attraction to model calling song, the ultrasound-mediated steering responses were of short latency (25-35 ms) and were produced in an open loop manner (Fig. 4), both properties of escape behaviors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
 Responses of mechanosensory lateral line units to constant-amplitude hydrodynamic stimuli and to sinusoidally amplitude-modulated water movements were recorded from the goldfish (Carassius auratus) torus semicircularis. Responses were classified by the number of spikes evoked in the unit's dynamic range and by the degree of phase locking to the carrier- and amplitude-modulation frequency of the stimulus. Most midbrain units showed phasic responses to constant-amplitude hydrodynamic stimuli. For different units peri-stimulus time histograms varied widely. Based on iso-displacement curves, midbrain units prefered either low frequencies (≤33 Hz), mid frequencies (50–100 Hz), or high frequencies (≥200 Hz). The distribution of the coefficient of synchronization to constant-amplitude stimuli showed that most units were only weakly phase locked. Midbrain units of the goldfish responded to amplitude-modulated water motions in a phasic/tonic or tonic fashion. Units highly phase locked to the amplitude modulation frequency, provided that modulation depth was at least 36%. Units tuned to one particular amplitude modulation frequency were not found. Accepted: 10 July 1999  相似文献   

7.
本文以声压级(SP)的dB值为单位,用不同频率(从音频到超声)的声刺激,对大鼠听觉一级神经元325根单一纤维的活动进行了观察。结果表明:每一纤维都有自己的最佳频率和相应的最低阈值。测得最佳频率的最低值为0.58kHz,最高值为62.6kHz; 最低阈值为6dBSPL,其相应频率为27.49kHz;最敏感的频率范围在20—50kHz。频率-阈值曲线在比最佳频率高的一侧斜度陡峭,低的一侧倾斜缓慢。频率-阈值曲线的锐度若以Q值表示,它对最佳频率分布的回归曲线由最佳频率的低频向高频方向逐渐升高,且Q10,Q20,Q30,Q40,Q50,dB的回归曲线具有相似的倾斜度。绝大多数纤维都有自发放电。给最佳频率持续音作用时,随刺激强度的增强,放电速率增加,但到阈上30dB左右皆达饱和。由各频率的最低阈值绘成的听反应阈曲线与行为测听所得的听力曲线颇为近似。  相似文献   

8.
Due to its extended low-frequency hearing, the Mongolian gerbil (Meriones unguiculatus) has become a well-established animal model for human auditory processing. Here, two experiments are presented which quantify the gerbil’s sensitivity to amplitude modulation (AM) and carrier periodicity (CP) in broad-band stimuli. Two additional experiments investigate a possible interaction of the two types of periodicity. The results show that overall sensitivity to AM and CP is considerably less than in humans (by at least 10 dB). The gerbil’s amplitude-modulation sensitivity is almost independent of modulation frequency up to a modulation frequency of 1 kHz. Above, amplitude-modulation sensitivity deteriorates dramatically. On the basis of individual animals, carrier-periodicity detection may improve with increasing fundamental frequency up to about 500 Hz or may be independent of fundamental frequency. Amplitude-modulation thresholds are consistent with the hypothesis that intensity difference limens in the gerbil may be considerably worse than in humans, leading to the relative insensitivity for low modulation frequencies. Unlike in humans, inner-ear filtering appears not to limit amplitude-modulation sensitivity in the gerbil. Carrier-periodicity sensitivity changes with fundamental frequency similar to humans. Unlike in humans, there is no systematic interaction between AM and CP in the gerbil. This points to a relatively independent processing of the perceptual cues associated with AM and CP.  相似文献   

9.
Envelope following responses were measured in two bottlenose dolphins in response to sinusoidal amplitude modulated tones with carrier frequencies from 20 to 60 kHz and modulation rates from 100 to 5,000 Hz. One subject had elevated hearing thresholds at higher frequencies, with threshold differences between subjects varying from ±4 dB at 20 and 30 kHz to +40 dB at 50 and 60 kHz. At each carrier frequency, evoked response amplitudes and phase angles were plotted with respect to modulation frequency to construct modulation rate transfer functions. Results showed that both subjects could follow the stimulus envelope components up to at least 2,000 Hz, regardless of carrier frequency. There were no substantial differences in modulation rate transfer functions for the two subjects suggesting that reductions in hearing sensitivity did not result in reduced temporal processing ability. In contrast to earlier studies, phase data showed group delays of approximately 3.5 ms across the tested frequency range, implying generation site(s) within the brainstem rather than the periphery at modulation rates from 100 to 1,600 Hz. This discrepancy is believed to be the result of undersampling of the modulation rate during previous phase measurements.  相似文献   

10.
Neural coding in the chick cochlear nucleus   总被引:5,自引:0,他引:5  
Physiological recordings were made from single units in the two divisions of the chick cochlear nucleus-nucleus angularis (NA) and nucleus magnocellularis (NM). Sound evoked responses were obtained in an effort to quantify functional differences between the two nuclei. In particular, it was of interest to determine if nucleus angularis and magnocellularis code for separate features of sound stimuli, such as temporal and intensity information. The principal findings are: 1. Spontaneous activity patterns in the two nuclei are very different. Neurons in nucleus angularis tend to have low spontaneous discharge rates while magnocellular units have high levels of spontaneous firing. 2. Frequency tuning curves recorded in both nuclei are similar in form, although the best thresholds of NA units are about 10 dB more sensitive than their NM counterparts across the entire frequency range. A wide spread of neural thresholds is evident in both NA and NM. 3. Large driven increases in discharge rate are seen in both NA and NM. Rate intensity functions from NM units are all monotonic, while a substantial percentage (22%) of NA units respond to increased sound level in a nonmonotonic fashion. 4. Most NA units with characteristic frequencies (CF) above 1000 Hz respond to sound stimuli at CF as 'choppers', while units with CF's below 1000 Hz are 'primary-like'. Several 'onset' units are also seen in NA. In contrast, all NM units show 'primary-like' response. 5. Units in both nuclei with CF's below 1000 Hz show strong neural phase-locking to stimuli at their CF. Above 1000 Hz, few NA units are phase-locked, while phase-locking in NM extends to 2000 Hz. 6. These results are discussed with reference to the hypothesis that NM initiates a neural pathway which codes temporal information while NA is involved primarily with intensity coding, similar in principle to the segregation of function seen in the cochlear nucleus of the barn owl (Sullivan and Konishi 1984).  相似文献   

11.
Investigation of unit responses of the cerebellar cortex (lobules VI–VII of the vermis) to acoustic stimulation showed that the great majority of neurons responded by a discharge of one spike or a group of spikes with a latent period of 10–40 msec and with a low fluctuation value. Neurons identified as Purkinje cells responded to sound either by inhibition of spontaneous activity or by a "climbing fiber response" with a latent period of 40–60 msec and with a high fluctuation value. In 4 of 80 neurons a prolonged (lasting about 1 sec or more), variable response with a latent period of 225–580 msec was observed. The minimal thresholds of unit responses to acoustic stimuli were distributed within the range from –7 to 77 dB, with a mode from 20 to 50 dB. All the characteristics of the cerebellar unit responses studied were independent of the intensity, duration, and frequency of the sound, like neurons of short-latency type in the inferior colliculi. In certain properties — firing pattern, latent period, and threshold of response — the cerebellar neurons resemble neurons of higher levels of the auditory system: the medial geniculate body and auditory cortex.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 3–12, January–February, 1973.  相似文献   

12.
Evidence from human psychophysical and animal electrophysiological studies suggests that sensitivity to interaural time delay (ITD) in the modulating envelope of a high-frequency carrier can be enhanced using half-wave rectified stimuli. Recent evidence has shown potential benefits of equivalent electrical stimuli to deaf individuals with bilateral cochlear implants (CIs). In the current study we assessed the effects of envelope shape on ITD sensitivity in the primary auditory cortex of normal-hearing ferrets, and profoundly-deaf animals with bilateral CIs. In normal-hearing animals, cortical sensitivity to ITDs (±1 ms in 0.1-ms steps) was assessed in response to dichotically-presented i) sinusoidal amplitude-modulated (SAM) and ii) half-wave rectified (HWR) tones (100-ms duration; 70 dB SPL) presented at the best-frequency of the unit over a range of modulation frequencies. In separate experiments, adult ferrets were deafened with neomycin administration and bilaterally-implanted with intra-cochlear electrode arrays. Electrically-evoked auditory brainstem responses (EABRs) were recorded in response to bipolar electrical stimulation of the apical pair of electrodes with singe biphasic current pulses (40 µs per phase) over a range of current levels to measure hearing thresholds. Subsequently, we recorded cortical sensitivity to ITDs (±800 µs in 80-µs steps) within the envelope of SAM and HWR biphasic-pulse trains (40 µs per phase; 6000 pulses per second, 100-ms duration) over a range of modulation frequencies. In normal-hearing animals, nearly a third of cortical neurons were sensitive to envelope-ITDs in response to SAM tones. In deaf animals with bilateral CI, the proportion of ITD-sensitive cortical neurons was approximately a fifth in response to SAM pulse trains. In normal-hearing and deaf animals with bilateral CI the proportion of ITD sensitive units and neural sensitivity to ITDs increased in response to HWR, compared with SAM stimuli. Consequently, novel stimulation strategies based on envelope enhancement may prove beneficial to individuals with bilateral cochlear implants.  相似文献   

13.
Spike discharges of medullary units ofRana ridibunda in response to tones of optimal frequency for the neuron, with sinusoidal amplitude modulation, was studied. Reproduction of sound modulation in unit activity was assessed by the use of phase histograms of responses corresponding to the period of modulation. Amplitude modulation was reproduced in the firing pattern of neurons of the dorsal nucleus over a wide range of modulation frequencies and carrier levels. Accentuation of small changes of amplitude for modulation frequencies of 70–150 Hz was observed in many neurons of the superior olives. The phase of the response was a linear function of modulation frequency both in the dorsal nucleus and in the superior olives. The greatest enhancement of amplitude changes corresponded to low modulation indices.Academician N. N. Andreev Acoustics Institute, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 390–396, May–June, 1985.  相似文献   

14.
Summary Single neuron responses to sinusoidally amplitude modulated (SAM) signals were studied in the inferior colliculus of the horseshoe bat,Rhinolophus rouxi.57% of the neurons responded to SAM stimuli with periodical discharges synchronized to the modulation cycle. The proportion of cells driven by amplitude modulated signals was independent of the best frequency of the neurons. Best modulation frequencies were at or below 100 Hz in about 70% of the neurons. Synchronized activity could be elicited by modulation frequencies up to 400 Hz.Best SAM responses were observed at stimulus intensities 10 dB above threshold. Generally the BMF of a neuron did not change with intensity. The BMF decreased with decreasing modulation depth of the amplitude modulation.A trend for a topographical organization of neurons according to best modulation frequencies was detected. The results did not reveal any significant specialization of the bat's auditory system for coding of amplitude modulations as compared to other mammals.Abbreviations BF best frequency - BMF best modulation frequency - CF constant frequency - FM frequency modulation - IC inferior colliculus - SAM sinusoidal amplitude modulation - SFM sinusoidal frequency modulation  相似文献   

15.
Action potentials were recorded extracellularly from the receptor unit B2 of the metathoracic scolopale organ of Corixa punctata Ill. (Heteroptera, Corixidae). The background discharge rate is modulated by movement of the tympanal membrane, which under normal resting conditions is rhythmically pushed outward (strong excitation) and pulled inward (weak excitation).The receptor unit gives phasic-tonic responses to airborne sound. Threshold curves and intensity characteristics indicate that the sensitivity to sound depends on the position of the membrane at the time of stimulation. The thresholds to frequencies in the range 0.3–3.0 kHz measured with the membrane everted are as much as 20 dB lower than when it is inverted. In the frequency range where sensitivity is greatest (0.3–1.1 kHz), with membrane everted the threshold is ca. 74 dB RMS re 20 μPa.  相似文献   

16.
The present experiment investigated whether or not auditory responses of the middle and/or inner ear in guinea pigs to low frequency sound stimuli [ 60 Hz-2 kHz at 90-120 dB(SPL) ] exhibited the harmonic distortion phenomenon resulting from cochlear microphonics (CM). Measurement of CM leading in turn I by the differential electrode recording method involved measurement of 50 microV isopotential responses, output voltages and CM wave form distortion at each constant sound pressure. The results obtained were as follows: (1) On the 50 microV isopotential response curve and the output voltage curves, the changes at 60-90 Hz were different from those at higher frequencies. (2) At stimuli of 90 or 100 dB(SPL), CM wave form distortion appeared frequently at frequencies below 120 Hz, but were less pronounced above approximately 200 Hz. (3) When raised to 110 and 120 dB(SPL), almost all CM wave forms were distorted at all test frequencies between 60 and 500 Hz. (4) The patterns of CM wave form distortion at frequencies below approximately 120 Hz showed peak clipping and triangular wave distortions, while those at frequencies above approximately 200 Hz showed little of these distortions.  相似文献   

17.
Voltage responses were recorded from outer hair cells (OHCS) in the basal coil of the guinea-pig cochlea in response to tones at frequencies above the characteristic frequency (CF) presented together with a 100 Hz tone at 80 dB or 85 dB sound pressure level (SPL). The amplitude and polarity of voltage responses to a 100 Hz, 85 dB SPL tone were altered when presented together with tones at frequencies above CF according to the frequency and level of the high-frequency tone, OHC phasic (ac) (greater than 500 microV) but not tonic (dc) voltage responses were elicited by the high-frequency tone. Thus the responses of OHCS to low-frequency tones can be altered when presented together with a high-frequency tone without an apparent dc change in membrane potential. Recordings were made from an OHC during cochlear desensitization through exposure to an intense tone. The maximum voltage response to high-level low-frequency tones remained unchanged, although the OHC response to high-frequency tones became less sensitive to low-level stimuli and more linear as a function of level. It is suggested that desensitization is associated with a change in the mechanical properties of the cochlea, possibly associated with the OHCS themselves, and not with inactivation of the transducer channels. The amplitude of the OHC ac voltage response was measured at neural threshold, and the consequences of these measurements on hair cell electromotility are considered.  相似文献   

18.
The responses of 682 single-units in the inferior colliculus (IC) of 13 mustached bats (Pteronotus parnellii parnellii) were measured using pure tones (CF), frequency modulations (FM) and pairs of CF-FM signals mimicking the species' biosonar signal, which are stimuli known to be essential to the responses of CF/CF and FM-FM facilitation neurons in auditory cortex. Units were arbitrarily classified into 'reference frequency' (RF), 'FM2' and 'Non-echolocation' (NE) categories according to the relationship of their best frequencies (BF) to the biosonar signal frequencies. RF units have high Q10dB values and are tuned to the reference frequency of each bat, which ranged between 60.73 and 62.73 kHz. FM2 units had BF's between 50 and 60 kHz, while NE units had BF's outside the ranges of the RF and FM2 classes. PST histograms of the responses revealed discharge patterns such as 'onset', 'onset-bursting' (most common), 'on-off', 'tonic-on','pauser', and 'chopper'. Changes in discharge patterns usually resulted from changes in the frequency and/or intensity of the stimuli, most often involving a change from onset-bursting to on-off. Different patterns were also elicited by CF and FM stimuli. Frequency characteristics and thresholds to CF and FM stimuli were measured. RF neurons were very sharply tuned with Q10dB's ranging from 50-360. Most (92%) also responded to FM2 stimuli, but 78% were significantly more sensitive (greater than 5 dB) to CF stimuli, and only 3% had significantly lower thresholds to FM2. The best initial frequency for FM2 sweeps in RF units was 65.35 +/- 2.138 kHz (n = 118), well above the natural frequency of the 2nd harmonic. FM2 and NE units were indistinguishable from each other, but were quite different from RF units: 41% of these two classes had lower thresholds to CF, 49% were about equally sensitive, and 10% had lower thresholds to FM. For FM2 units, mean best initial frequency for FM was 60.94 kHz +/- 3.162 kHz (n = 114), which is closely matched to the 2nd harmonic in the biosonar signal. Very few units (5) responded only to FM signals, i.e., were FM-specialized. The characteristics of spike-count functions were determined in 587 units. The vast majority (79%) of RF units (n = 228) were nonmonotonic, and about 22% had upper-thresholds.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The temporal parameters of the perception of radially moving sound sources partly masked with broadband internalized noise at an intensity of 40, 46, or 52 dB above the hearing threshold have been studied. The threshold of sound duration necessary for identifying the direction of movement of the sound source (75% correct answers) increases from 135 ms in silence to 285 ms at all intensities of continuous noise studied. The minimum duration of the stimulus beginning with which a subsequent increase in duration does not increase the number of correct responses is the same (385 ms) under all conditions of stimulus presentation. Broadband noise of any intensity increases the time of response to stimuli in the range of durations studied. At a noise of 52 dB, which is close to the threshold of full masking, the reaction time is not increased significantly compared to its estimation at a noise of 46 dB. The minimum duration of the stimulus has proved to be the stablest temporal parameter of the perception of movement of a sound source. Changes in the temporal parameters of sound perception at noise levels close to the threshold of full masking are discussed.  相似文献   

20.
We studied the directionality of spike rate responses of auditory nerve fibers of the grassfrog, Rana temporaria, to pure tone stimuli. All auditory fibers showed spike rate directionality. The strongest directionality was seen at low frequencies (200 – 400 Hz), where the spike rate could change by up to nearly 200␣spikes s−1. with sound direction. At higher frequencies the directional spike rate changes were mostly below 100 spikes s−1. In equivalent dB SPL terms (calculated using the fibers' rate-intensity curves) the maximum directionalities were up to 15 dB at low frequencies and below 10 dB at higher frequencies. Two types of directional patterns were observed. At frequencies below 500 Hz relatively strong responses were evoked by stimuli from the ipsilateral (+90o) and contralateral (−90o) directions while the weakest responses were evoked by stimuli from frontal (0o or +30o) or posterior (−135o) directions. At frequencies above 800 Hz the strongest responses were evoked by stimuli from the ipsilateral direction while gradually weaker responses were seen as the sound direction shifted towards the contralateral side. At frequencies between 500 and 800 Hz both directional patterns were seen. The directionality was highly intensity dependent. No special adaptations for localization of conspecific calls were found. Accepted: 23 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号