首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The organ distributions of tin and selenium, and their excretion into urine and feces, were determined in mice. There were four groups; (A) control, (B) Sn (5 μmol/kg/d) ip injection, (C) Se (5 μmol/kg/d) sc injection, and (D) Sn plus Se (5 μmol/kg/d, each). Animals received injections once a day for 12 consecutive days. The results were the following (1) Simultaneous injection of Sn and Se enhanced accumulation of both elements in the body, i.e., in group B, 14.1% of the total injected amount of Sn was excreted into urine and feces; in group C, 46.2% of total injected Se was excreted into urine and feces; in group D, 10.9% of total Sn and 37.5% of total Se were found in excreta. (2) Large amounts of Sn were found in bone, liver, spleen, and kidney in group B. When Se was administered jointly with Sn, the concentrations of Sn in bone and liver were suppressed, whereas those in spleen and pancreas were increased. (3) The effects of Se-injections at this dose on concentrations of Se in organs were small. (4) In plasma, chemical reduction of selenite by stannous chloride was not observed.  相似文献   

2.
In order to elucidate the distribution of elements in organs from healthy Japanese, instrumental neutron activation analysis (INAA), based on the preliminary examination, was applied to quantitative determination of multielements in nine organs autopsied (brain, heart, kidney, liver, lung, muscle, pancreas, spleen, and thyroid). The following results were obtained: (1) The values obtained for each element could be considered to be representative as "normal values" and "ranges" in organs from healthy Japanese males; (2) the essential elements Br, Cl, Co, Cu, Fe, K, Mn, Na, Rb, Se, and Zn were not affected by external environmental factors or by racial difference; (3) renal and hepatic Cd levels were very high in several cases and the accumulation has still been in progress in the Japanese, whereas the contaminant elements are low in each organ except for lung.  相似文献   

3.
The concentrations of 19 trace element in hair samples from 1273 residents of Harbin (China), Medan (Indonesia), and Tokushima (Japan) were measured by inductively coupled plasma emission spectrometry. The mean concentrations of Ba, Ca, and Se were significantly higher in the Harbin hair samples when compared to those from Medan, but Al, B, Cu, Fe, Mn, Na, Pb, Ti, Zn, and K were significantly higher in Medan than in Harbin hair samples. The differences in the mean concentrations of As, Cr, Mg, P, Sn, and Sr between the Medan and Harbin lots were not significant. In the Tokushima hair samples, Na and K were significantly higher, but As, B, Ba, Ca, Cr, Mg, Mn, Pb, Sn, Sr, and Se were significantly lower than in the Harbin hair samples. The differences in the mean concentrations of Al, Cu, Fe, P, Ti, and Zn between Harbin and Tokushima were not significant. In the Medan hair samples, Al, As, B, Ba, Ca, Cr, Cu, Fe, Mg, Mn, Pb, Sn, Sr, Ti, and Zn were significantly higher, but P and Se were significantly lower than in Tokushima hair samples. Differences in mean concentrations of Na and K between Tokushima and Medan were not significant.  相似文献   

4.
Concentrations of As, Ca, Cd, Cl, Co, Cr, Cu, F, Fe, Hg, I, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sn, V, and Zn were determined in human whole milk samples from Guatemala, Hungary, Nigeria, Philippines, Sweden, and Zaire; in most of these countries, three groups of subjects representing different socioeconomic conditions were studied. Analytical quality control was a primary consideration throughout. The analytical techniques used were atomic absorption spectrophotometry, atomic emission spectrometry with an inductively coupled plasma, colorimetry, electrochemistry, using an ion-selective electrode and neutron activation analysis. The differences between median concentrations of Ca, Cl, Mg, K, Na, and P (minor elements) were lower than 20% among the six countries. Among trace elements, concentrations observed in Filipino milk for As, Cd, Co, Cr, Cu, F, Fe, Mn, Mo, Ni, Pb, Sb, Se, and V were higher than for milk samples from other countries. The remaining five countries showed a mixed picture of high and low values. In the case of at least some elements, such as, F, I, Hg, Mn, Pb, and Se, the environment appears to play a major role in determining their concentrations in human milk. The nutritional status of the mother, as reflected by her socioeconomic status, does not appear to influence significantly the breast milk concentrations of minor and trace elements. Significant differences exist between the actual daily intakes observed in this study and current dietary recommendations made by, for example, WHO and the US National Academy of Sciences. These differences are particularly large (an order of magnitude or more!) for Cr, F, Fe, Mn, and Mo; for other elements, such as, Ca, Cu, Mg, P, and Zn, they amount to at least a factor 2. In the opinion of the present authors, these findings point to the need for a possible reassessment of the dietary requirements of young infants with respect to minor and trace elements, particularly for the elements Ca, Cr, Cu, F, Fe, Mg, Mn, Mo, P, and Zn.  相似文献   

5.
In this study, we evaluated concentrations of twelve essential and non-essential elements (As, Cd, Co, Cu, Pb, Mg, Mn, Hg, Mo, Se, Ag, and Zn) in tissues of bowhead (Balaena mysticetus) and beluga (Delphinapterus leucas) whales from arctic Alaska (USA) and northwestern Canada. Tissue samples were collected between 1983 and 1997, mostly in 1995-97. The essential elements are reported to develop reference ranges for health status determination, and to help assess known or suspected interactions affecting toxicoses of cadmium (Cd) and mercury (Hg). In some tissues, Cd, Hg, and selenium (Se) were present at concentrations that have been associated with toxicoses in some domestic animals. Nevertheless, tissue levels of all elements were within ranges that have been reported previously in marine mammals. While mean Ag concentrations in beluga whale liver were relatively high (15.91 micrograms/g ww), Ag was not associated with hepatic Se levels or age, contrary to previous findings. Significant associations included: Cd with age, Zn, or Cu; Cu with age, Zn or Ag; and Hg with age, Se, Zn, or Cu. This study found hepatic Hg:Se molar ratios to be consistently lower than unity and different between species. Possible explanations for observed elemental correlations (i.e., interactions) and ancillary mechanisms of Cd and Hg detoxification are discussed.  相似文献   

6.
The NDDO semiempirical methods MNDO, AM1, and PM3 have been extended to all the remaining non-radioactive elements of the main group, excluding the noble gases. Most of the new elements are of Groups I and II. 44 sets of parameters are presented for the following methods and elements. MNDO: Na, Mg, K, Ca, Ga, As, Se, Rb, Sr, In, Sb, Te, Cs, Ba, Tl, and Bi; AM1: Li, Be, Na, Mg, K, Ca, Ga, As, Se, Rb, Sr, In, Sn, Sb, Te, Cs, Ba, Tl, Pb, and Bi; PM3: B, Na, K, Ca, Rb, Sr, Cs, and Ba. Average errors are presented for heats of formation, molecular geometries, etc.  相似文献   

7.
The concentrations of 26 major to trace elements in rat kidneys aging from 5 to 113 weeks old were determined. The rats investigated were the same rats used previously reported to have 29 elements in bones (femurs). The samples were decomposed by high purity nitric acid and hydrogen peroxide. Eight elements (Na, Mg, Si, P, K, Ca, Fe and Zn) were determined using inductively coupled plasma atomic emission spectrometry (ICP-AES) and 18 elements (Mn, Co, Ni, Cu, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Cs, Ba, Tl, Pb, Bi and U) were determined using inductively coupled plasma mass spectrometry (ICP-MS). The aging effects on the concentrations of these elements and mutual elemental relationships were investigated. Analysis of variance (ANOVA) for age variations indicated that the concentrations of P, K, Mn and Mo were almost constant across the age of rats (p > 0.3). The concentration of many elements such as Na, Mg, Ca, Fe, Co, Cu, Zn, As, Se, Cd, Sn, Sb, Tl, Pb and Bi, showed significant increasing trends (p < 0.01) with different patterns. Rubidium, Cs, Pb and Bi showed significant age variations but not monotonic trends. Silicon, Ni, Sr, Ba and U showed large concentration scatterings without any significant trends (p > 0.01). The metabolism of these elements may not be well established in the kidney. Many toxic elements such as As, Cd, Sn, Pb and Bi showed a narrow concentration range among age-matched rats. The kidney may have established metabolic mechanisms to confine or accumulate these toxic elements even though their concentrations are very low (e.g., 10 ng g?1 of Cd). These elements also closely coupled with Fe. A cluster analysis was performed using an elemental correlation matrix and indicated that these elements, including Fe, formed a cluster. However, another cluster analysis using “an aging effect eliminated” elemental correlation showed different clustering in which the Fe, Cd cluster disappeared.  相似文献   

8.
The concentrations of 22 major and trace elements in livers from rats aging from 5 to 113 weeks old were determined. The rats investigated were the same rats previously reported with respect to 29 elements in bones (femur) and 26 elements in kidneys. The samples were decomposed with high-purity nitric acid and hydrogen peroxide. Seven elements (Na, Mg, P, K, Ca, Fe and Zn) were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES), and 15 elements (Mn, Co, Cu, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Cs, Ba, Pb and Bi) were determined by inductively coupled plasma mass spectrometry (ICP-MS). Analysis of variance (ANOVA) for age variations indicated that the concentrations of many elements, such as Mg, P, K, Mn, Fe, Cu, Zn, Sr, Mo and Cd, were almost constant across the ages of the rats with the exception of 5 weeks old (p > 0.05). Arsenic, Pb and Bi showed significant increasing trends, while Na and Co showed decreasing trends (p < 0.01). Selenium showed a decreasing trend except at the initial stage of 5–9 weeks old. Calcium, Rb, Sn, Sb, Cs and Ba showed significant age-related variations, but their patterns were not monotonic. The liver clearly contrasts with the kidneys, in which many elements showed significant age-related variations with increasing trends. The concentration ranges of Mg, P, K, Mn, Cu, Zn, and Mo were controlled within 15% across all ages of rats. The homeostasis of the aforementioned elements may be well established in the liver. The toxic elements, such as Cd, Pb and Bi, showed a narrow concentration range among age-matched rats.  相似文献   

9.
The effects of adrenalectomy (ADY) and of replacement therapy using a mineralocorticoid, deoxycorticosterone (DOC) and a glucocorticoid, dexamethasone (DEX) on the tissue distribution of elements in the rat, were studied under semichronic conditions. The elements, Na, K, Ca, Mg, Fe, S, P, Rb, Sr, Mn, Cu, and Zn were determined in whole blood, plasma, brain liver, kidney, heart, skeletal muscle, spleen, thymus, and bone. Additionally Mo was determined in kidney and liver and Ba in bone. ADY modified concentrations of all elements tested. Small changes were observed for K, Mg, Ca, S, and P, whereas much larger changes were noted for Na, Rb, and Sr. Cu, Zn, and Fe were mainly modified in liver and kidney, organs involved in storage and/or elimination. The consequences of ADY were corrected fairly well by DEX for Mg, Mn, Ca, Cu, and Mo; by DOC for Na and K, and by the two corticoids for Zn, Fe, Sr, and Rb. This study revealed that corticoids, mainly glucocorticoids, play an important role in the plasma and tissue balance of elements. It is suggested that these results may have a pathological and clinical significance.  相似文献   

10.
Concentrations of the 18 elements, barium (Ba), beryllium (Be), bismuth (Bi), calcium (Ca), cadmium (Cd), cesium (Cs), copper (Cu), lanthanum (La), lithium (Li), magnesium (Mg), molybdenum (Mo), lead (Pb), rubidium (Rb), antimony (Sb), tin (Sn), strontium (Sr), thallium (Tl), and zinc (Zn), were determined in the synovial fluids of osteoarthritic knee joints and in the corresponding sera of 16 patients by inductively coupled plasma-mass spectrometry. Knee-joint effusions have lower elemental concentrations than their corresponding sera. For the essential elements Ca, Cu, Mg, and Zn and for the nonessential and toxic elements Ba, Be, Bi, La, and Sb, this difference was highly significant. Strong positive correlations between concentrations in effusions and sera for the essential elements Cu and Mg and for the nonessential elements Cs, Li, Rb, and Sr could be established. The grade of localized hyperperfusion of the knee region in the blood pool phase of 99mTc HDP bone scan indicating inflammation did not correlate with any elemental concentration determined. Deceased.  相似文献   

11.
The exposure of man to isolated toxic agent in the environment is rather a rare phenomenon. Therefore the study of a combined action of toxic substances is of increasing importance. The excretion and distribution of 74As (500 micrograms As.kg-1 b.wt.; Na74AsO2) and 75Se (525 micrograms Se.kg-1 b.wt.; Na275SeO3) was studied in rats after their separate and simultaneous i.v. injections. After simultaneous administration urinary as well as biliary excretion of 75Se and urinary excretion of 74As was increased in comparison with that in animals injected the radionuclides separately. Simultaneous administration of 74As and 75Se decreased concentration of 75Se in liver and increased concentration of 74As in kidney. In rats drinking water containing As (III) (0.66 mmol.l-1), Se(IV) (0.13 mmol.l-1) or combination As(III) + Se(IV) (at the same concentrations) for 7 or 28 days was studied the excretion and distribution of 74As and 75Se after their simultaneous i.v. injection (at the same concentrations and labelled compounds as mentioned above). The pretreatment with one element or with the combination of both elements significantly modified the distribution and excretion of subsequently administered 74As and 75Se.  相似文献   

12.
The interactions of toxic metals with essential metals may result in disturbances in the homeostasis of essential elements. However, there are few reports about toxic effect of arsenic (As) on the levels of essential trace elements in the central nervous system. To investigate whether subchronic exposure to As disturbs levels of main essential trace elements in the brain of mice and whether the gender difference in the response to As are altered, the concentrations of As, Iron (Fe), copper (Cu), selenium (Se), zinc (Zn) and Chromium (Cr) in the cerebrum and cerebellum of mice exposed to As subchronically were examined by inductively coupled plasma-mass spectrometry (ICP-MS). The gender difference in the changed levels of these essential trace elements was also statistically analyzed. The concentration of As was significantly higher in the cerebrum or cerebellum of mice exposed to As than that in control group (P < 0.05). It indicates that As can accumulate in brain of mice after subchronic exposure. The concentrations of Fe, Se and Cr in the cerebrum or cerebellum were significantly lower in mice exposed to As than those in control group (P < 0.05). On the contrary, the concentration of Cu in the cerebrum or cerebellum was significantly higher in mice exposed to As (P < 0.05). Our results indicate that subchronic exposure to As may decrease the levels of Fe, Se and Cr or increase the level of Cu in the brain of mice. Moreover, the significant gender difference was found relative to the effect of As on concentration of Se in cerebrum and concentrations of Cu and Se in cerebellum of mice. Therefore, more experiments are required to further understand mechanisms whereby As interacts with essential elements in brain and induces the gender difference.  相似文献   

13.
Acute myocardial infarction (AMI) is a leading cause of mortality and morbidity worldwide. Using a validated and efficient ICP-MS/MS-based workflow, a total of 30 metallomic features were profiled in a study comprising 101 AMI patients and 66 age-matched healthy controls. The metallomic features include 12 essential elements (Ca, Co, Cu, Fe, K, Mg, Mn, Na, P, S, Se, Zn), 8 non-essential/toxic elements (Al, As, Ba, Cd, Cr, Ni, Rb, Sr, U, V), and 10 clinically relevant element-pair product/ratios (Ca/Mg, Ca×P, Cu/Se, Cu/Zn, Fe/Cu, P/Mg, Na/K, Zn/Se). Preliminary linear regression with feature selection confirmed smoking status as a predominant determinant for the non-essential/toxic elements, and revealed potential routes of action. Univariate assessments with adjustments for covariates revealed insights into the ambivalent relationships of Cu, Fe, and P with AMI, while also confirming cardioprotective associations of Se. Also, beyond their roles as risk factors, Cu and Se may be involved in the response mechanism in AMI onset/intervention, as demonstrated via longitudinal data analysis with 2 additional time-points (1-/6-month follow-up). Finally, based on both univariate tests and multivariate classification modelling, potentially more sensitive markers measured as element-pair ratios were identified (e.g., Cu/Se, Fe/Cu). Overall, metallomics-based biomarkers may have utility for AMI prediction.  相似文献   

14.
Determination of trace elements in human hair   总被引:1,自引:0,他引:1  
The concentrations of 28 elements in hair of three populations of non-occupationally exposed adults in the US (n = 271) were determined. The 10th, 50th, and 90th percentiles, and geometric means for these data were obtained to define reference intervals for these elements. The effects of various hair treatments, age, and sex on concentrations of 17 selected elements in hair were determined for these populations. Age had little effect on elemental concentrations. Males tended to have higher Cd and Pb levels, but lower Mg and Ti levels than females. Males using dandruff shampoo had significantly higher concentrations of Na, Se, and Ti than those using only regular shampoo and/or conditioners. Ba, Ca, Cu, Mg, Na, and Sr were all elevated in females using permanents or color treatments, compared to those using only dandruff shampoo, regular shampoo, and/or conditioners.  相似文献   

15.
The concentrations of 12 elements (Ni, Ma, Cr, Cd, Pb, Cu, Fe, Zn, Mg, K, Na, Ca) were determined in cross-sections of human femur heads. The highest concentrations of these elements was found in the cortical bone, and the lowest concentrations occurred in the trabecular bone, with exception of the E cross-section, in which the lowest values were found in articular cartilage. The average concentrations of Na, Ca, K, and Mg were highest in cortical bone and lowest in articular cartilage. Pb was found in higher concentrations in articular cartilage and lowest in trabecular bone, with exception of cross-sections A and E. The Fe contents in the cortical parts were highest in cross-sections A, B, and D. Cu was highest in cross-sections B, C, and D of articular cartilage. These results show that the contents of the selected metals in the femur head varied considerably. As expected, the largest concentrations were found in the outmost part of cross-section E and the lowest in its innermost one, possibly related to mechanical stress.  相似文献   

16.
The aim of the present study is to evaluate the status of plasma essential trace elements magnesium (Mg), copper (Cu), zinc (Zn), iron (Fe) and selenium (Se) concentrations and their some related antioxidant enzyme activities, erythrocyte glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) activities in patients with Alzheimer’s disease (AD). Fifty patients with AD and fifty healthy control subjects were included in this study. Plasma Cu and Zn concentrations by atomic absorption spectrometry (AAS), plasma Mg and Fe concentrations by spectrophotometric methods and plasma Se concentrations by graphite furnace AAS were determined. Erythrocyte GPx, SOD and CAT activities were measured by spectrophotometric methods. Plasma Mg, Cu, Zn, Fe and Se levels and erythrocyte GPx, SOD and CAT activities were found to be significantly lower in patients with AD compared with controls. These results suggest that alterations in essential trace elements and their related enzymes may play a role in the etiopathogenesis of AD. Also, there is a defect in the antioxidant defense system, which may lead to oxidative damage in patients with AD. The changes in antioxidant enzyme activities may be secondary to the alterations in their cofactor concentrations.  相似文献   

17.
The distribution, accumulation, and cycling of N, P, K, Na, Ca, and Mg in terms of their concentration in the biomass was quite different from those in soil in Heishiding Nature Reserve (111°53′ E, 23°27′ N). The concentrations of N, Ca and P were higher in plant, and much lower in soil. The average content of the elements in different organs was in the order as: leaf>branch>bark>root>wood, although this was not true for all the elements. Trunk and leaf had the most and the least accumulation of the elements, respectively, and branch and root were comparable. In the forest, most of the elements (97 %) were concen- trated in the tree layer. The total amount of elements in the ecosystem was 3324.2 kg· ha-1 among which N amounted 1470.5, P 51.0, K 1097.7, Na 22.6, Ca 566.2, and Mg 116.2. Yearly absorption of the elements was 432.2 kg · ha-1 among which N amounted 207.1, P 6.5, K 144.9, Na 6.9, Ca 52.6, and Mg 14. 1; and element absorption among different organs accounted as 35.0 kg · ha-1 · a-1 in wood, 14.8, in bark, 66.1 in branch, 143.2 in leaf, 25.3 in root, and 147.7 in fine root (D<3 mm). Total return of the elements from litterfall, death and fallen trees was 311.8 kg · ha-1 · a-1, among which N accounted for 154.3, P 4.7, K 102.1, Na 6.2, Ca 34.5, and Mg 10.0. Return from different organs was: wood 10.2, bark 4.3, branch 17.0, leaf 123.0, root (not in- cluding fine root) 9.4, and fine root 147.7. Total retention was 120.4 kg · ha-1 · a-1 among which N accounted for 52.8, P 1.8, K 42.8, Na 0. 7, Ca 18. 1, and Mg 4.1; retention in different organs was: wood 24.8, bark 10.5, branch 49.1, leaf 20. 2, and root 15.9. Ca, Mg and P have higher cycling and utilization efficiencies.  相似文献   

18.
The concentrations of 55 elements in the millipede, Oxidus gracilis, soil and plant in the habitat were examined using inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). In all the millipedes, Ca concentration derived from calcium carbonate in the exoskeleton was the highest at average 94 μ/mg-weight. The other major elements were the following: Mg, K, Na, Zn, Fe, Al, Cu, Sr, Ba, Mn and Ti (> 1 ng/mg-body weight), whereas Se, Mo, Ag, Cd, Co, Li and Ce etc. were in trace levels. Interestingly, the various 15 elements such as Ca, Na, Zn, Al, Ba, Ga, Ag, Cd, Co and Y in environmental habitats were well reflected in the body of the millipede. Although the heavy metal contents, in the order of Cu>Pb>Cd, were similar to those of other invertebrates, Cu in the millipede was remarkably high concentration. Zn was maintained in a range of 72–394 ng/mg-weight as essential element in the body and no difference was found in the sexes. The C1 chondrite normalization pattern for lanthanoid series elements in the millipede, soil and plant indicated that the environmental habitats were well protected from pollution. These characteristics of internal elements and metal accumulation in the millipede or relation to their habitats would be useful information for the environmental pollution studies.  相似文献   

19.
Autopsy tissue samples from the brain front lobe, cerebellum, heart, kidney (cortex and medulla), liver, pancreas, spleen and ovary were analysed for AL, B, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, Sr and Zn in 30 (17 women and 13 men) subjects ranging in age from 17 to 96 years at Haukeland University Hospital in Norway. The tissues were selected from macroscopically normal organs and samples were handled according to guidelines recommended to avoid contamination in the pre-analytical phase. Concentration of the trace elements were determined by the inductively coupled plasma atomic emission spectrometry technique (ICP-AES). In most tissues the concentrations of the essential trace elements followed the order Fe> Zn> Cu> Mn> Se> Cr> Co except in the ovary where Se was higher than Mn. The liver was the major site of deposition for Co, Cu and Mn as well as the spleen for Co, brain front lobe for Cu and pancreas for Mn. Ba, Sr and Ni built up in the ovary foLLowed by the kidney. Older subjects accumulated Ba and Sr in most tissues, whereas Al accumulated in the kidney cortex and Cd in the brain cerebellum. Generally males had higher concentrations of trace elements in the different tissue sampLes than females with the exception of Mn in the brain front lobe and heart and Sr in the liver. ICP-AES is a useful method to assess the concentration and the profiLe of trace elements in human autopsy tissues.  相似文献   

20.
Geographical variations in element composition of bee products are poorly investigated though a lot of attempts are made to utilize the data in ecological monitoring. So the comparison of chemical element composition of bee and beekeeping products in different taxons of the biosphere may become valuable to test the efficiency of such approach. For this purpose content of 25 elements in bee body, bee bread, propolis and honey from Ribnitsa district of Moldavia (unpolluted area, control), Henty province of Mongolia (selenium deficient area) and Voskresensk district of Moscow region (mineral fertilizers production) were determined by means of the ICP-MS. Among 3 investigated regions Mongolia was characterized by the lowest Se levels and the highest accumulation of Al, Ca, Cd, Cu, Co, K, Mn, Mg, Na, Ni, P, Zn and V in bee bodies. The highest levels of Pb, Cr, Fe, Si, Sr and B, Se, Li, Sn were typical for Voskresensk and Moldavia bees accordingly. The highest correlation coefficients were registered between element concentrations in bee body and bee bread (r = +0.97–0.99, P < 0.0001), less significant – in bee body and propolis (r = +0.5–0.7; P < 0.001) and no correlation was demonstrated between element composition of bee body and honey. Propolis was characterized by significantly higher capacity to accumulate Pb, Cr, Sn and Al than bee body. Compared to bee body honey accumulated the lowest level of Mn and the highest of Si in Se-deficient Mongolia but the opposite phenomenon was demonstrated in Moldavia with moderately increased Se content in the environment. The results suppose that the most promising object for ecological monitoring is bee body. Element composition of propolis seems to reflect prolonged accumulation of elements, especially Pb, Al, Sn and Cr, by plant resin rather than dynamic temporal elements loading. Accumulation levels of elements in bee bread may be used on a par with bee body mineral content only in cases with equal honey content in bee bread. Honey utilization in monitoring of geochemical elements loading should be used with caution due to peculiarities of pollen/nectar elements distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号