首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
PurposeScanning proton therapy has dosimetric advantage over passive treatment, but has a large penumbra in low-energy region. This study investigates the penumbra reduction when multi-leaf collimators (MLCs) are used for line scanning proton beams and secondary neutron production from MLCs.MethodsScanning beam plans with and without MLC shaping were devised. Line scanning proton plan of 36 energy layers between 71.2 and 155.2 MeV was generated. The MLCs were shaped according to the cross-sectional target shape for each energy layer. The two-dimensional doses were measured through an ion-chamber array, depending on the presence of MLC field, and Monte Carlo (MC) simulations were performed. The plan, measurement, and MC data, with and without MLC, were compared at each depth. The secondary neutron dose was simulated with MC. Ambient neutron dose equivalents were computed for the line scanning with 10 × 10 × 5 cm3 volume and maximum proton energy of 150 MeV, with and without MLCs, at lateral distances of 25–200 cm from the isocenter. The neutron dose for a wobbling plan with 10 × 10 × 5 cm3 volume was also evaluated.ResultsThe lateral penumbra width using MLC was reduced by 23.2% on average, up to a maximum of 32.2%, over the four depths evaluated. The ambient neutron dose equivalent was 18.52% of that of the wobbling beam but was 353.1% larger than the scanning open field.ConclusionsMLC field shaping with line scanning reduced the lateral penumbra and should be effective in sparing normal tissue. However, it is important to investigate the increase in neutron dose.  相似文献   

2.
In this study, we verified volumetric modulated arc therapy (VMAT) plans in an Elekta Synergy system with an integrated Agility 160-leaf multileaf collimator (MLC) by comparing them with Monte Carlo (MC)-calculated dose distributions using the AAPM TG-119 structure sets. The head configuration of the linear accelerator with the integrated MLC was simulated with the EGSnrc/BEAMnrc code. Firstly, the dosimetric properties of the MLC were evaluated with the MC technique and film measurements. Next, VMAT plans were created with the Pinnacle3 treatment planning system (TPS) for four regions in the AAPM TG-119 structures. They were then verified by comparing them with MC-calculated dose distributions using dose volume histograms (DVHs) and three-dimensional (3D) gamma analysis. The MC simulations for the Agility MLC dosimetric properties were in acceptable agreement with measurements. TPS-VMAT plans using TG-119 structure sets agreed with MC dose distributions within 2% in the comparison of D95 in planning target volumes (PTVs) evaluated from DVHs. In contrast, higher dose regions such as D20, D10, and D5 in PTVs for TPS tended to be smaller than MC values. This tendency was particularly noticeable for mock head and neck with complicated structures. In 3D gamma analysis, the passing rates with 3%/3mm criteria in PTVs were ≥99%, except for mock head and neck (89.5%). All passing rates for organs at risk (OARs) were in acceptable agreement of >96%. It is useful to verify dose distributions of PTVs and OARs in TPS-VMAT plans by using MC dose calculations and 3D gamma analysis.  相似文献   

3.
PurposeTo perform a detailed evaluation of dose calculation accuracy and clinical feasibility of Mobius3D. Of particular importance, multileaf collimator (MLC) modeling accuracy in the Mobius3D dose calculation algorithm was investigated.MethodsMobius3D was fully commissioned by following the vendor-suggested procedures, including dosimetric leaf gap (DLG) optimization. The DLG optimization determined an optimal DLG correction factor which minimized the average difference between calculated and measured doses for 13 patient volumetric-modulated arc therapy (VMAT) plans. Two sets of step-and-shoot plans were created to examine MLC and off-axis open fields modeling accuracy of the Mobius3D dose calculation algorithm: MLC test set and off-axis open field test set. The test plans were delivered to MapCHECK for the MLC tests and an ionization chamber for the off-axis open field test, and these measured doses were compared to Mobius3D-calculated doses.ResultsThe mean difference between the calculated and measured doses across the 13 VMAT plans was 0.6% with an optimal DLG correction factor of 1.0. The mean percentage of pixels passing gamma from a 3%/1 mm gamma analysis for the MLC test set was 43.5% across the MLC tests. For the off-axis open field tests, the Mobius3D-calculated dose for 1.5 cm square field was −4.6% lower than the chamber-measured dose.ConclusionsIt was demonstrated that Mobius3D has dose calculation uncertainties for small fields and MLC tongue-and-groove design is not adequately taken into consideration in Mobius3D. Careful consideration of DLG correction factor, which affects the resulting dose distributions, is required when commissioning Mobius3D for patient-specific QA.  相似文献   

4.
PurposeDue to limited field size of Magnetic Resonance Linear Accelerators (MR-Linac), some treatments could require a dual-isocenter planning approach to achieve a complete target coverage and thus exploit the benefits of the online adaptation. This study evaluates the dosimetric accuracy of the dual-isocenter intensity modulated radiation therapy (IMRT) delivery technique for MR-Linac.Material and MethodsDual-isocenter multi leaf collimator (MLC) and couch accuracy tests have been performed to evaluate the delivery accuracy of the system. A mono-isocenter plan delivered in clinical practice has then been retrospectively re-planned with dual-isocenter technique. The dual-isocenter plan has been re-calculated and delivered on a 3-dimensional (3D) ArcCHECK phantom and 2-dimensional (2D) films to assess its dosimetric accuracy in terms of gamma analysis. Clinical and planning target volume (CTV and PTV respectively) coverage robustness was then investigated after the introduction of ± 2 mm and ± 5 mm positioning errors by shifting the couch.ResultsMLC and couch accuracy tests confirmed the system accuracy in delivering a dual-isocenter irradiation.2D/3D gamma analysis results occurred always to be above 95% if considered a gamma criteria 1%/2 mm and 1%/1 mm respectively for the 2D and 3D analysis.The mean variations for CTV D98% and PTV V95% were 0.2% and 1.1% respectively when positioning error was introduced separately in each direction, while the maximum observed variations were 0.9% (CTV) and 3.7% (PTV).ConclusionThe dosimetric accuracy of dual-isocenter irradiation has been verified for MR-Linac, achieving accurate and robust treatment strategy and improving dose conformality also in presence of targets whose extension exceeds the nominal maximum field size.  相似文献   

5.
ObjectiveTo investigate the dosimetric behaviour, influence on photon beam fluence and error detection capability of Delta4 Discover transmission detector.MethodsThe transmission detector (TRD) was characterized on a TrueBeam linear accelerator with 6 MV beams. Linearity, reproducibility and dose rate dependence were investigated. The effect on photon beam fluence was evaluated in terms of beam profiles, percentage depth dose, transmission factor and surface dose for different open field sizes. The transmission factor of the 10x10 cm2 field was entered in the TPS’s configuration and its correct use in the dose calculation was verified recalculating 17 clinical IMRT/VMAT plans. Surface dose was measured for 20 IMRT fields. The capability to detect different delivery errors was investigated evaluating dose gamma index, MLC gamma index and leaf position of 15 manually modified VMAT plans.ResultsTRD showed a linear dependence on MU. No dose rate dependence was observed. Short-term and long-term reproducibility were within 0.1% and 0.5%. The presence of the TRD did not significantly affect PDDs and profiles. The transmission factor of the 10x10 cm2 field size was 0.985 and 0.983, for FF and FFF beams respectively. The 17 recalculated plans met our clinical gamma-index passing rate, confirming the correct use of the transmission factor by the TPS. The surface dose differences for the open fields increase for shorter SSDs and greater field size. Differences in surface dose for the IMRT beams were less than 2%. Output variation ≥2%, collimator angle variations within 0.3°, gantry angle errors of 1°, jaw tracking and leaf position errors were detected.ConclusionsDelta4 Discover shows good linearity and reproducibility, is not dependent on dose rate and does not affect beam quality and dose profiles. It is also capable to detect dosimetric and geometric errors and therefore it is suitable for monitoring VMAT delivery.  相似文献   

6.
PurposeThe aim of this proof-of-concept study is to propose a simplified personalized kidney dosimetry procedure in 177Lu peptide receptor radionuclide therapy (PRRT) for neuroendocrine tumors and metastatic prostate cancer. It relies on a single quantitative SPECT/CT acquisition and multiple radiometric measurements executed with a collimated external probe, properly directed on kidneys.MethodsWe conducted a phantom study involving external count-rate measurements in an abdominal phantom setup filled with activity concentrations of 99mTc, reproducing patient-relevant organ effective half-lives occurring in 177Lu PRRT. GATE Monte Carlo (MC) simulations of the experiment, using 99mTc and 177Lu as sources, were performed. Furthermore, we tested this method via MC on a clinical case of 177Lu-DOTATATE PRRT with SPECT/CT images at three time points (2, 20 and 70 hrs), comparing a simplified kidney dosimetry, employing a single SPECT/CT and probe measurements at three time points, with the complete MC dosimetry.ResultsThe experimentally estimated kidney half-life with background subtraction applied was compatible within 3% with the expected value. The MC simulations of the phantom study, both with 99mTc and 177Lu, confirmed a similar level of accuracy. Concerning the clinical case, the simplified dosimetric method led to a kidney dose estimation compatible with the complete MC dosimetry within 6%, 12% and 2%, using respectively the SPECT/CT at 2, 20 and 70 hrs.ConclusionsThe proposed simplified procedure provided a satisfactory accuracy and would reduce the imaging required to derive the kidney absorbed dose to a unique quantitative SPECT/CT, with consequent benefits in terms of clinic workflows and patient comfort.  相似文献   

7.
PurposeTo conduct patient-specific geometric and dosimetric quality assurance (QA) for the Dynamic WaveArc (DWA) using logfiles and ArcCHECK (Sun Nuclear Inc., Melbourne, FL, USA).MethodsTwenty DWA plans, 10 for pituitary adenoma and 10 for prostate cancer, were created using RayStation version 4.7 (RaySearch Laboratories, Stockholm, Sweden). Root mean square errors (RMSEs) between the actual and planned values in the logfiles were evaluated. Next, the dose distributions were reconstructed based on the logfiles. The differences between dose-volumetric parameters in the reconstructed plans and those in the original plans were calculated. Finally, dose distributions were assessed using ArcCHECK. In addition, the reconstructed dose distributions were compared with planned ones.ResultsThe means of RMSEs for the gantry, O-ring, MLC position, and MU for all plans were 0.2°, 0.1°, 0.1 mm, and 0.4 MU, respectively. Absolute means of the change in PTV D99% were 0.4 ± 0.4% and 0.1 ± 0.1% points between the original and reconstructed plans for pituitary adenoma and prostate cancer, respectively. The mean of the gamma passing rate (3%/3 mm) between the measured and planned dose distributions was 97.7%. In addition, that between the reconstructed and planned dose distributions was 99.6%.ConclusionsWe have demonstrated that the geometric accuracy and gamma passing rates were within AAPM 119 and 142 criteria during DWA. Dose differences in the dose-volumetric parameters using the logfile-based dose reconstruction method were also clinically acceptable in DWA.  相似文献   

8.
The purpose of this study was a dosimetric validation of the Vero4DRT for brain stereotactic radiotherapy (SRT) with extremely small fields calculated by the treatment planning system (TPS) iPlan (Ver.4.5.1; algorithm XVMC). Measured and calculated data (e.g. percentage depth dose [PDD], dose profile, and point dose) were compared for small square fields of 30 × 30, 20 × 20, 10 × 10 and 5 × 5 mm2 using ionization chambers of 0.01 or 0.04 cm3 and a diamond detector. Dose verifications were performed using an ionization chamber and radiochromic film (EBT3; the equivalent field sizes used were 8.2, 8.7, 8.9, 9.5, and 12.9 mm2) for five brain SRT cases irradiated with dynamic conformal arcs.The PDDs and dose profiles for the measured and calculated data were in good agreement for fields larger than or equal to 10 × 10 mm2 when an appropriate detector was chosen. The dose differences for point doses in fields of 30 × 30, 20 × 20, 10 × 10 and 5 × 5 mm2 were +0.48%, +0.56%, −0.52%, and +11.2% respectively. In the dose verifications for the brain SRT plans, the mean dose difference between the calculated and measured doses were −0.35% (range, −0.94% to +0.47%), with the average pass rates for the gamma index under the 3%/2 mm criterion being 96.71%, 93.37%, and 97.58% for coronal, sagittal, and axial planes respectively.The Vero4DRT system provides accurate delivery of radiation dose for small fields larger than or equal to 10 × 10 mm2.  相似文献   

9.
PurposeThe aim of the presented study was to complement existing literature on benchmarking proton dose by comparing dose calculations with experimental measurements in heterogeneous phantom. Points of interest inside and outside the target were considered to quantify the magnitude of calculation uncertainties in current and previous proton therapy practice that might especially have an impact on the dose in organs at risk (OARs).MethodsThe RayStation treatment planning system (RaySearch Laboratories), offering two dose calculation algorithms for pencil beam scanning in proton therapy, i.e., Pencil Beam (PB) and Monte Carlo (MC), was utilized. Treatment plans for a target located behind the interface of the heterogeneous tissues were generated. Dose measurements within and behind the target were performed in a water phantom with embedded slabs of various tissue equivalent materials and 24 PinPoint ionization chambers (PTW). In total 12 test configurations encompassing two different target depths, oblique beam incidence of 30 degrees and range shifter, were considered.ResultsPB and MC calculated doses agreed equally well with the measurements for all test geometries within the target, including the range shifter (mean dose differences ± 3%). Outside the target, the maximum dose difference of 9% (19%) was observed for MC (PB) for the oblique beam incidence and inserted range shifter.ConclusionThe accuracy of MC dose algorithm was superior compared to the PB algorithm, especially outside the target volumes. MC based dose calculation should therefore be preferred in treatment scenarios with heterogeneities, especially to reduce clinically relevant uncertainties for OARs.  相似文献   

10.
Background and purposeTo compare the accuracy of the Block Matching deformable registration (DIR) against rigid image registration (RIR) for head-and-neck multi-modal images CT to cone-beam CT (CBCT) registration.Material and methodsPlanning-CT and weekly CBCT of 10 patients were used for this study. Several volumes, including medullary canal (MC), thyroid cartilage (TC), hyoid bone (HB) and submandibular gland (SMG) were transposed from CT to CBCT images using either DIR or RIR. Transposed volumes were compared with the manual delineation of these volumes on every CBCT. The parameters of similarity used for analysis were: Dice Similarity Index (DSI), 95%-Hausdorff Distance (95%-HD) and difference of volumes (cc).ResultsWith DIR, the major mean difference of volumes was −1.4 cc for MC, revealing limited under-segmentation. DIR limited variability of DSI and 95%-HD. It significantly improved DSI for TC and HB and 95%-HD for all structures but SMG. With DIR, mean 95%-HD (mm) was 3.01 ± 0.80, 5.33 ± 2.51, 4.99 ± 1.69, 3.07 ± 1.31 for MC, TC, HB and SMG, respectively. With RIR, it was 3.92 ± 1.86, 6.94 ± 3.98, 6.44 ± 3.37 and 3.41 ± 2.25, respectively.ConclusionBlock Matching is a valid algorithm for deformable multi-modal CT to CBCT registration. Values of 95%-HD are useful for ongoing development of its application to the cumulative dose calculation.  相似文献   

11.
PurposeDynamic treatment planning algorithms use a dosimetric leaf separation (DLS) parameter to model the multi-leaf collimator (MLC) characteristics. Here, we quantify the dosimetric impact of an incorrect DLS parameter and investigate whether common pretreatment quality assurance (QA) methods can detect this effect.Methods16 treatment plans with intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) technique for multiple treatment sites were calculated with a correct and incorrect setting of the DLS, corresponding to a MLC gap difference of 0.5 mm. Pretreatment verification QA was performed with a bi-planar diode array phantom and the electronic portal imaging device (EPID). Measurements were compared to the correct and incorrect planned doses using gamma evaluation with both global (G) and local (L) normalization. Correlation, specificity and sensitivity between the dose volume histogram (DVH) points for the planning target volume (PTV) and the gamma passing rates were calculated.ResultsThe change in PTV and organs at risk DVH parameters were 0.4–4.1%. Good correlation (>0.83) between the PTVmean dose deviation and measured gamma passing rates was observed. Optimal gamma settings with 3%L/3 mm (per beam and composite plan) and 3%G/2 mm (composite plan) for the diode array phantom and 2%G/2 mm (composite plan) for the EPID system were found. Global normalization and per beam ROC analysis of the diode array phantom showed an area under the curve <0.6.ConclusionsA DLS error can worsen pretreatment QA using gamma analysis with reasonable credibility for the composite plan. A low detectability was demonstrated for a 3%G/3 mm per beam gamma setting.  相似文献   

12.
AimThe aim of this study is to verify the Prowess Panther jaws-only intensity modulated radiation therapy (JO-IMRT) treatment planning (TP) by comparing the TP dose distributions for head-and-neck (H&N) cancer with the ones simulated by Monte Carlo (MC).BackgroundTo date, dose distributions planned using JO-IMRT for H&N patients were found superior to the corresponding three-dimensional conformal radiotherapy (3D-CRT) plans. Dosimetry of the JO-IMRT plans were also experimentally verified using an ionization chamber, MapCHECK 2, and Octavius 4D and good agreements were shown.Materials and methodsDose distributions of 15 JO-IMRT plans of nasopharyngeal patients were recalculated using the EGSnrc Monte Carlo code. The clinical photon beams were simulated using the BEAMnrc. The absorbed dose to patients treated by fixed-field IMRT was computed using the DOSXYZnrc. The simulated dose distributions were then compared with the ones calculated by the Collapsed Cone Convolution (CCC) algorithm on the TPS, using the relative dose error comparison and the gamma index using global methods implemented in PTW-VeriSoft with 3%/3 mm, 2%/2 mm, 1%/1 mm criteria.ResultsThere is a good agreement between the MC and TPS dose. The average gamma passing rates were 93.3 ± 3.1%, 92.8 ± 3.2%, 92.4 ± 3.4% based on the 3%/3 mm, 2%/2 mm, 1%/1 mm criteria, respectively.ConclusionsAccording to the results, it is concluded that the CCC algorithm was adequate for most of the IMRT H&N cases where the target was not immediately adjacent to the critical structures.  相似文献   

13.
IntroductionTo commission the Monte Carlo (MC) algorithm based model of CyberKnife robotic stereotactic system (CK) and evaluate the feasibility of patient specific QA using the ArcCHECK cylindrical 3D-array (AC) with Multiplug inserts (MP).ResultsFour configurations were used for simple beam setup and two for patient QA, replacing water equivalent inserts by lung. For twelve collimators (5–60 mm) in simple setup, mean (SD) differences between MC and RayTracing algorithm (RT) of the number of points failing the 3%/1 mm gamma criteria were 1(1), 1(3), 1(2) and 1(2) for the four MP configurations. Tracking fiducials were placed within AC for patient QA. Single lung insert setup resulted in mean gamma-index 2%/2 mm of 90.5% (range [74.3–95.9]) and 82.3% ([66.8–94.5]) for MC and RT respectively, while 93.5% ([86.8–98.2]) and 86.2% ([68.7–95.4]) in presence of largest inhomogeneities, showing significant differences (p < 0.05).DiscussionAfter evaluating the potential effects, 1.12 g/cc PMMA and 0.09 g/cc lung material assignment showed the best results. Overall, MC-based model showed superior results compared to RT for simple and patient specific testing, using a 2%/2 mm criteria. Results are comparable with other reported commissionings for flattening filter free (FFF) delivery. Further improvement of MC calculation might be challenging as Multiplan has limited material library.ConclusionsThe AC with Multiplug allowed for comprehensive commissioning of CyberKnife MC algorithm and is useful for patient specific QA for stereotactic body radiation therapy. MC calculation accuracy might be limited due to Multiplan’s insufficient material library; still results are comparable with other reported commissioning measurements using FFF beams.  相似文献   

14.
PurposeMonte Carlo (MC) simulations are highly desirable for dose treatment planning and evaluation in radiation oncology. This is true also in emerging nuclear medicine applications such as internal radiotherapy with radionuclides. The purpose of this study is the validation of irtGPUMCD, a GPU-based MC code for dose calculations in internal radiotherapy.MethodsThe female and male phantoms of the International Commission on Radiological Protection (ICRP 110) were used as benchmarking geometries for this study focused on 177Lu and including 99mTc and 131I. Dose calculations were also conducted for a real patient. For phantoms, twelve anatomical structures were considered as target/source organs. The S-values were evaluated with irtGPUMCD simulations (108 photons), with gamma branching ratios of ICRP 107 publication. The 177Lu electrons S-values were calculated for source organs only, based on local deposition of dose in irtGPUMCD. The S-value relative difference between irtGPUMCD and IDAC-DOSE were evaluated for all targets/sources considered. A DVHs comparison with GATE was conducted. An exponential track length estimator was introduced in irtGPUMCD to increase computational efficiency.ResultsThe relative S-value differences between irtGPUMCD and IDAC-DOSE were <5% while this comparison with GATE was <1%. The DVHs dosimetric indices comparison between GATE and irtGPUMCD for the patient led to an excellent agreement (<2%). The time required for the simulation of 108 photons was 1.5 min for the female phantom, and one minute for the real patient (<1% uncertainty). These results are promising and let envision the use of irtGPUMCD for internal dosimetry in clinical applications.  相似文献   

15.
摘要 目的:研究兔前交叉韧带(ACL)损伤后膝关节本体感觉、残端血运及膝关节腔尿激酶型纤溶酶原激活物(u-PA)的变化情况。方法:选取80只新西兰兔进行研究,将其以随机数字表法分作模型组及空白对照组各40只。模型组建立单侧ACL损伤模型,空白对照组仅切开关节。比较两组术前及术后2周、4周、8周时膝关节本体感觉、残端血运及膝关节腔u-PA水平的差异。结果:模型组新西兰兔术后2周、4周、8周时的体感诱发电位(SEP)、肌电图(EMG)潜伏期均高于空白对照组,而SEP、EMG波幅均低于空白对照组(P<0.05)。模型组新西兰兔术后2周、4周、8周时的残端组织微血管密度分别为(2.04±0.24)n/mm2、(2.75±0.61)n/mm2、(1.60±0.33)n/mm2,均高于空白对照组的(1.34±0.24)n/mm2、(1.34±0.25)n/mm2、(1.35±0.26)n/mm2,差异均有统计学意义(P<0.05)。模型组新西兰兔术后2周、4周、8周时的膝关节液u-PA水平分别为(173.97±14.29)pg/mL、(188.37±15.82)pg/mL、(171.38±14.76)pg/mL,均高于空白对照组的(158.02±10.18)pg/mL、(157.68±10.20)pg/mL、(157.37±10.07)pg/mL,差异均有统计学意义(P<0.05)。结论:ACL损伤后会在不同程度上影响膝关节本体感觉、残端血运及膝关节腔u-PA含量,值得临床进一步研究。  相似文献   

16.
17.
PurposeThis study evaluated the plan quality of CyberKnife MLC-based treatment planning in comparison to the Iris collimator for abdominal and pelvic SBRT. Multiple dosimetric parameters were considered together with a global scoring index validated by clinical scoring.Methods and materialsIris and MLC plans were created for 28 liver, 15 pancreas and 13 prostate cases including a wide range of PTV sizes (24–643 cm3). Plans were compared in terms of coverage, conformity (nCI), dose gradient (R50%), homogeneity (HI), OAR doses, PTV gEUD, MU, treatment time both estimated by TPS (tTPS) and measured. A global plan quality score index was calculated for IRIS and MLC solutions and validated by a clinical score given independently by two observers.ResultsCompared to Iris, MLC achieved equivalent coverage and conformity without compromising OAR sparing and improving R50% (p < 0.001). MLC gEUD was slightly lower than Iris (p < 0.05) for abdominal cases. MLC reduced significantly MU (−15%) and tTPS (−22%). Time reduction was partially lost when measured. The global score index was significantly higher for MLC solutions which were selected in 73% and 64% of cases respectively by the first and second observer.ConclusionIris and MLC comparison was not straightforward when based on multiple dosimetric parameters. The use of a mathematical overall score index integrated with a clinical scoring was essential to confirm MLC plans advantages over Iris solutions.  相似文献   

18.
PurposeTo increase the superficial dose and reduce the brain dose for radiotherapy of scalp angiosarcoma, we propose a novel irradiation technique of tangential irradiation volumetric modulated arc therapy (TI-VMAT).MethodsTI-VMAT and the conventional VMAT treatment plans for thirteen scalp angiosarcoma patients were created with a prescribed dose of 70 Gy. Each treatment was normalized to cover 95% of the planning target volume (PTV) with its prescribed dose. To realize TI-VMAT, an avoidance structure (AS) function was applied. AS was defined as a contour subtracted PTV by a certain space from the brain contour. TI-VMAT treatment plans for six different spaces between PTV and AS were developed and compared with the conventional VMAT treatment plan with respect to the following dosimetric parameters: homogeneity index (HI) and conformity index (CI) of the PTV, mean brain dose, and brain volume irradiated with 20% (V20% [cc]), 40% (V40% [cc]), 60% (V60% [cc]), 80% (V80% [cc]), and 100% (V100% [cc]) of the prescribed dose.ResultsHI and CI were comparable between TI-VMAT and the conventional VMAT, the mean brain dose for TI-VMAT with AS defined by a space of 2.0 cm and jaw tracking was 14.27 Gy, which was significantly lower than that for the conventional VMAT (21.20 Gy). In addition, dosimetric parameters such as V20% [cc] were significantly suppressed compared to those for high doses.ConclusionOur proposed irradiation technique TI-VMAT shows the potential to reduce radiation doses in the brain with maintaining higher dose coverage on the PTV.  相似文献   

19.
AimTo study the sensitivity of three commercial dosimetric systems, Delta4, Multicube and Octavius4D, in detecting Volumetric Modulated Arc Therapy (VMAT) delivery errors.MethodsFourteen prostate and head and neck (H&N) VMAT plans were considered for this study. Three types of errors were introduced into the original plans: gantry angle independent and dependent MLC errors, and gantry angle dependent dose errors. The dose matrix measured by each detector system for the no-error and error introduced delivery were compared with the reference Treatment Planning System (TPS) calculated dose matrix for no-error plans using gamma (γ) analysis with 2%/2 mm tolerance criteria. The ability of the detector system in identifying the minimum error in each scenario was assessed by analysing the gamma pass rates of no error delivery and error delivery using a Wilcoxon signed-rank test. The relative sensitivity of the system was assessed by determining the slope of the gamma pass line for studied error magnitude in each error scenario.ResultsIn the gantry angle independent and dependent MLC error scenario the Delta4, Multicube and Octavius4D systems detected a minimum 2 mm error. In the gantry angle dependent dose error scenario all studied systems detected a minimum 3% and 2% error in prostate and H&N plans respectively. In the studied detector systems Multicube showed relatively less sensitivity to the errors in the majority of error scenarios.ConclusionThe studied systems identified the same magnitude of minimum errors in all considered error scenarios.  相似文献   

20.
PurposeThe aim of this study was to test the feasibility and dosimetric accuracy of a method that employs planning CT-to-MVCT deformable image registration (DIR) for calculation of the daily dose for head and neck (HN) patients treated with Helical Tomotherapy (HT).MethodsFor each patient, the planning kVCT (CTplan) was deformably registered to the MVCT acquired at the 15th therapy session (MV15) with a B-Spline Free Form algorithm using Mattes mutual information (open-source software 3D Slicer), resulting in a deformed CT (CTdef). On the same day as MVCT15, a kVCT was acquired with the patient in the same treatment position (CT15). The original HT plans were recalculated both on CTdef and CT15, and the corresponding dose distributions were compared; local dose differences <2% of the prescribed dose (DD2%) and 2D/3D gamma-index values (2%-2 mm) were assessed respectively with Mapcheck SNC Patient software (Sun Nuclear) and with 3D-Slicer.ResultsOn average, 87.9% ± 1.2% of voxels were found for DD2% (on average 27 slices available for each patient) and 94.6% ± 0.8% of points passed the 2D gamma analysis test while the 3D gamma test was satisfied in 94.8% ± 0.8% of body’s voxels.ConclusionsThis study represents the first demonstration of the dosimetric accuracy of kVCT-to-MVCT DIR for dose of the day computations. The suggested method is sufficiently fast and reliable to be used for daily delivered dose evaluations in clinical strategies for adaptive Tomotherapy of HN cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号