首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inter and intra-annual carbon isotope compositions (δ13C) of several annual growth rings of teak trees from two monsoonal regimes from India were studied and compared with the corresponding oxygen isotopic (δ18O) variations. In teak from both the regimes, amplitudes of intra-annual δ13C were ∼2-3 times lower than that observed in δ18O. Seasonal cycle with lower δ13C values at the middle and higher at ring boundaries was observed for teak from central India, dominated by the southwest monsoon. Positive correlations of intra-annual δ13C values with the corresponding δ18O values of the same rings and with relative humidity (RH) of the concurrent period suggest a dominant role of RH in controlling δ13C values of teak from central India. Intra-annual δ13C variations of teak from southern India, receiving both the southwest and northeast monsoons, revealed an initial decreasing trend followed by an increasing trend before culminating in depleted 13C values at the end of the growing season. No correlation was observed between intra-annual δ13C and δ18O variations of teak trees from southern India. Regional differences in the climatology of δ13C of atmospheric CO2 or the lengths of growing season could be likely reasons for differing intra-annual δ13C variations of teak from the two climatic regimes.  相似文献   

2.
《Dendrochronologia》2014,32(1):78-89
A main concern of dendroclimatic reconstruction is to distinguish in the tree ring proxy the influence of the climate variables of interest from other controlling factors. In order to investigate age, site and climate controls on tree ring width and cellulose δ18O, measurements have been performed in nearby groups of young (145 years old) and older (310–405 years old) oak trees in south-western France, covering the period 1860–2010.Within a given site, inter-tree deviations are small, pointing to a common climatic signal. Despite a similar inter-annual variability, the average level of cellulose δ18O in the young tree group is ∼0.8‰ higher than in the old trees. Such offsets might be caused by different soil properties and differences in the fraction of the source water used by trees from different depths. The δ18O of water in the top soil layer is directly related to the current growing season precipitation, while deeper water can have a lower and more constant δ18O. Local cave drip waters at 10 m depth indeed show a constant isotopic composition, which corresponds to pluri-annual mean precipitation.A 2‰ increasing trend is observed in cellulose δ18O of young trees in the first 30 years of growth, during a period when no trend is visible in older trees. This increase can be quantitatively explained by humidity gradients under the forest canopy, and a changing microclimate around the crown as trees grow higher.While relationships between tree ring width and climate appear complex, the isotopic composition of cellulose is strongly correlated with summer maximum temperature, relative humidity and evapotranspiration (r  0.70). Weaker correlations (r  0.40) are identified with precipitation δ18O from a 15-year long local record and from the REMOiso model output. These results imply that leaf water enrichment has a stronger control on the inter-annual variability of cellulose δ18O than the δ18O of precipitation.This study demonstrates the suitability of oak tree ring cellulose δ18O for reconstructing past summer climate variability in south-western France, provided that the sampling and pooling strategy accounts for the fact that trees from different sites and of different age can introduce non-climatic signals.  相似文献   

3.

Key message

Compared with annual tree-ring cellulose δ 18 O, intra-annual cellulose δ 18 O has potential to reconstruct precipitation with higher resolution and stronger signal intensity.

Abstract

Annual tree-ring cellulose oxygen isotope values (δ18O) of Fokienia hodginsii provide a promising proxy of monsoon-season precipitation in Southeast China. Measuring intra-annual cellulose δ18O values may reveal the seasonal variability of precipitation and the associated climate influences. Here, we examine intra-annual variation of cellulose δ18O values in Fokienia hodginsii and Cryptomeria fortune from Fujian Province, Southeast China. Both species exhibited considerable intra-annual variations in cellulose δ18O (range ~6 ‰) with a consistent pattern of enriched values near the annual ring boundary and depleted values in the central portion of the ring. Seasonal patterns in the tree-ring δ18O values generally followed changes in precipitation δ18O values. Compared with annual tree-ring cellulose δ18O, intra-annual cellulose δ18O has potential to reconstruct precipitation with higher resolution and stronger signal intensity. July tree-ring cellulose δ18O is significantly correlated (r = ?0.58, p < 0.05) with July precipitation, and June–August tree-ring cellulose δ18O and annual tree-ring cellulose δ18O, respectively, explain 52 and 41 % of the actual variance of April–August precipitation. In addition, May–October cellulose δ18O values during El Niño years are higher than in La Niña years, and April to October rainfall is lower in El Niño years than in La Niña years. Combining the significant correlations between inter-annual cellulose δ18O values and sea surface temperatures in the central tropical Pacific, our results support the hypothesis that El Niño–Southern Oscillation affects tree-ring cellulose δ18O in Southeast China by modulating seasonal precipitation.
  相似文献   

4.
The oxygen isotope ratios of tree ring cellulose have a great potential as proxy for the oxygen isotope ratios of source water, which is related to climate. However, source water isotopic signatures can be masked by plant physiological and biochemical processes during cellulose synthesis. To minimize biochemical effects in the recording of source water, we modified the cellulose molecule to phenylglucosazone, which only has oxygen attached to carbon 3–6 (OC3–6) of the cellulose glucose moieties, thus eliminating the oxygen attached to carbon 2 of the cellulose glucose moieties (OC-2). Here we developed a method to use small amounts of inter and intra-annual tree ring cellulose for phenylglucosazone synthesis. Using this new method we tested if the oxygen isotope ratios of source water reconstructed from tree ring phenylglucosazone (δ18OswPG) and the observed source water (δ18Oswobs) would have a better agreement than those reconstructed from the tree ring cellulose molecule. Annual tree ring samples were obtained from Pinus sylvestris (1997–2003) (Finland) and Picea abies (1971–1992) (Switzerland) and intra-annual tree ring samples were obtained from Pinus radiata (October 2004–March 2006) (New Zealand), each near a meteorological station where precipitation and relative humidity (RH) were measured periodically. The δ18O of tree ring cellulose and tree ring phenylglucosazone for each of the three species were then used to back calculate the δ18O of source water according to a previous published empirical equation. As expected, the δ18O of tree ring phenylglucosazone was superior than cellulose in the reconstruction of source water available to the plant. Deviation between δ18OswPG and δ18Oswobs was in part correlated with variation in atmospheric relative humidity (RH) which was not observed for the cellulose molecule. We conclude that this new method can be applicable to inter and intra-annual tree ring studies and that the use of the tree ring phenylglucosazone will significantly improve the quality of paleoclimate studies.  相似文献   

5.
Several previous studies have investigated the use of the stable hydrogen and oxygen isotope compositions in plant materials as indicators of palaeoclimate. However, accurate interpretation relies on a detailed understanding of both physiological and environmental drivers of the variations in isotopic enrichments that occur in leaf water and associated organic compounds. To progress this aim we measured δ18O and δ2H values in eucalypt leaf and stem water and δ18O values in leaf cellulose, along with the isotopic compositions of water vapour, across a north-eastern Australian aridity gradient. Here we compare observed leaf water enrichment, along with previously published enrichment data from a similar north Australian transect, to Craig–Gordon-modelled predictions of leaf water isotopic enrichment. Our investigation of model parameters shows that observed 18O enrichment across the aridity gradients is dominated by the relationship between atmospheric and internal leaf water vapour pressure while 2H enrichment is driven mainly by variation in the water vapour—source water isotopic disequilibrium. During exceptionally dry and hot conditions (RH < 21%, T > 37 °C) we observed strong deviations from Craig–Gordon predicted isotope enrichments caused by partial stomatal closure. The atmospheric–leaf vapour pressure relationship is also a strong predictor of the observed leaf cellulose δ18O values across one aridity gradient. Our finding supports a wider applicability of leaf cellulose δ18O composition as a climate proxy for atmospheric humidity conditions during the leaf growing season than previously documented.  相似文献   

6.
We measured the carbon and oxygen isotopic composition of stem cellulose of Pinus sylvestris, Picea abies, Fagus sylvatica and Fraxinus excelsior. Several sites along a transect of a small valley in Switzerland were selected which differ in soil moisture conditions. At every site, six trees per species were sampled, and a sample representing a mean value for the period from 1940 to 1990 was analysed. For all species, the mean site δ13C and δ18O of stem cellulose are related to the soil moisture availability, whereby higher isotope ratios are found at drier sites. This result is consistent with isotope fractionation models when assuming enhanced stomatal resistance (thus higher δ13C of incorporated carbon) and increased oxygen isotope enrichment in the leaf water (thus higher δ18O) at the dry sites. δ18 O-δ13C plots reveal a linear relationship between the carbon and oxygen isotopes in cellulose. To interpret this relationship we developed an equation which combines the above-mentioned fractionation models. An important new parameter is the degree to which the leaf water enrichment is reflected in the stem cellulose. In the combined model the slope of the δ18O-δ13C plot is related to the sensitivity of the pi/pa of a plant to changing relative humidity.  相似文献   

7.
Using both oxygen isotope ratios of leaf water (δ18OL) and cellulose (δ18OC) of Tillandsia usneoides in situ, this paper examined how short‐ and long‐term responses to environmental variation and model parameterization affected the reconstruction of the atmospheric water vapour (δ18Oa). During sample‐intensive field campaigns, predictions of δ18OL matched observations well using a non‐steady‐state model, but the model required data‐rich parameterization. Predictions from the more easily parameterized maximum enrichment model (δ18OL–M) matched observed δ18OL and observed δ18Oa when leaf water turnover was less than 3.5 d. Using the δ18OL–M model and weekly samples of δ18OL across two growing seasons in Florida, USA, reconstructed δ18Oa was ?12.6 ± 0.3‰. This is compared with δ18Oa of ?12.4 ± 0.2‰ resolved from the growing‐season‐weighted δ18OC. Both of these values were similar to δ18Oa in equilibrium with precipitation, ?12.9‰. δ18Oa was also reconstructed through a large‐scale transect with δ18OL and the growing‐season‐integrated δ18OC across the southeastern United States. There was considerable large‐scale variation, but there was regional, weather‐induced coherence in δ18Oa when using δ18OL. The reconstruction of δ18Oa with δ18OC generally supported the assumption of δ18Oa being in equilibrium with precipitation δ18O (δ18Oppt), but the pool of δ18Oppt with which δ18Oa was in equilibrium – growing season versus annual δ18Oppt – changed with latitude.  相似文献   

8.
In this study, we investigated water sources of three typical plant species, i.e., Ginkgo biloba (Ginkgo biloba L.), Green soybean (Glycine max (L) Merr.), and Mulberry tree (Morus alba L.) in a rainy season by using a dual stable isotope approach (δ18O and δ2H). Potential water sources were divided into direct or internal (i.e. soil water at different depths) and indirect or external water sources (i.e. precipitation, river water and groundwater). The results indicated that the surface soil water δ18O and δ2H is enriched probably due to evaporation. Ginkgo biloba and Green soybean prefer using soil water from the upper soil layer (0–60 cm) and precipitation, and the Mulberry tree mainly used deep soil water (120-150 cm) and groundwater. The different water use strategies of the three plant species are likely to be determined by their different root distribution at the above correspondent soil depths.  相似文献   

9.
Tree-ring width (TRW) chronologies have been widely and long-time used to reconstruct past climate variations in the Andes in South America. The use of tree-ring isotopic chronologies is still not widespread in this region although they have proved to be very efficient climate proxies. Araucaria araucana (Molina) K. Koch is a conifer tree species with some multi-century-old individuals that offers an excellent opportunity to measure stable carbon (δ13C) and oxygen (δ18O) isotopes in cellulose from long tree-ring records. Here, we explore whether current or stored carbohydrates are used for A. araucana radial growth and we assess the potential of a tree-ring isotopic record of to study past climate variability. Eleven A. araucana cores from a dry and high-elevation forest at the northern border of Patagonia, Argentina (38°55’S, 70°44’W) were selected for stable isotopes analyses. The strong correlation between the isotopic composition of the first and second parts of the same ring, but also the strong relationships between δ13C and δ18O records with climate parameters of the current growing season such as temperature, show that tree-rings are built mostly with carbohydrates produced during the current growing season with little or no supply from storage or reserves. This finding leads to reconsidering the interpretation of the legacy effect (i.e. ecological memory effects) based on the previously described strong negative correlation between A. araucana TRW chronologies and previous growing season temperature and suggests a dependence of radial tree growth on the level of development of organs. Regarding climate sensitivity, the A. araucana tree-ring δ13C chronology is strongly related to current summer temperature (r = 0.82, p < 0.001), vapour pressure deficit (VPD; r = 0.79, p < 0.001), precipitation (r = −0.53, p < 0.001) and SPEI2 (r = −0.73, p < 0.001). These strong relationships support the use of δ13C of A. araucana tree-ring cellulose to reconstruct past temperature variations at regional scale in relation with large-atmospheric drivers of climate variability such as the Southern Annular Mode. The A. araucana tree-ring δ18O chronology is also correlated with temperature (r = 0.42, p < 0.01) and VPD (r = 0.45, p < 0.01) of the winter preceding the growing season. This suggests that trees are using water from precipitation infiltrated in the soil during the previous recharge period (autumn-winter). The weak correlations of δ18O with current summer atmospheric conditions and the decoupling between δ18O and δ13C, may be due to a high rate of oxygen exchange between sugars and xylem water (Pex) during cellulose synthesis, which dampens evaporative isotopic fractionation.  相似文献   

10.
Few annually dated stable isotope records exist across Oceania. Stable carbon and oxygen isotope ratios have the potential to enhance climate reconstructions currently reliant on tree ring width chronologies. The purpose of this study is to explore the sources of variability in a stable oxygen isotope chronology derived from A. selaginoides from Mount Read, Tasmania. This high elevation site receives abundant rainfall throughout the year and is ∼130 km from the Global Network of Isotopes in Precipitation (GNIP) site at Cape Grim. We crossdated 10 new tree core samples against an existing ring width chronology (954–2011 CE) and analyzed the δ18O from the individual rings for the period 1960–2018. Using high resolution (0.25 degrees) climate data and ECMWF ERA5 reanalysis data, we disentangled the effects of local climate and source region on the isotopic signatures recorded in the annual rings. In addition, we used HYSPLIT backward trajectory analysis to characterize the source region of precipitation to Mount Read and whether the source region has influence over the δ18OTR series. Median δ18OTR (n = 10) is correlated with local temperature and vapor pressure deficit in the early growing season. In addition, spatial correlations reveal that median δ18OTR is positively correlated with temperature and negatively correlated with precipitation in the source region. However, measurements of δ18OTR exhibit high inter-tree variation, particularly between 1960 and 1990. Our results indicate that this δ18OTR proxy may provide additional information about past moisture conditions during the growing season, potentially contributing to more robust reconstructions of the Southern Hemisphere climate dynamics; however, additional sampling may be necessary to resolve inter-tree variation in δ18OTR.  相似文献   

11.
The present study aimed to explore the dendroclimatic potential of three conifer species, viz. Taxus cuspidata, Abies koreana, and Pinus koraiensis, in the subalpine zone in the Republic of Korea. The tree-ring δ18O chronologies were analyzed for the last 50 years and were found to be well correlated with one another (r = 0.70 – 0.87). In the correlation analyses with temperature in the growing season, the tree-ring δ18O data of Abies / Taxus / Pinus showed positive correlation coefficients significantly with April, June, and July / April and July / April. On the other hand, in the correlation analyses with precipitation, only the tree-ring δ18O data of Abies and Taxus showed negative correlation coefficients significantly with April and May, respectively. For the correlation analyses with relative humidity, only the tree-ring δ18O data of Abies and Taxus showed significant negative correlation coefficients with April, June, and July for Abies, and with June and July for Taxus. Based on the results, we developed an extended Taxus δ18O chronology back till 1864 CE (152 years). Spatial correlation analyses revealed that the Taxus δ18O was mainly influenced by precipitation in the upstream regions of western Japan rather than that in the study region. This result pointed out the importance of the upstream hydrological processes that govern δ18O in precipitation. In addition, the TC δ18O showed meaningful correlations with temperature over Korea including our study region. These results indicated that the tree-ring δ18O of southern Korea was controlled not only by local temperature, but also by the upstream moisture conditions of western Japan.  相似文献   

12.
One of the longest Southern Hemisphere tree ring chronologies that has potential to provide past climate reconstructions has been produced using New Zealand kauri (Agathis australis). Work to date on kauri has been limited to reconstructions from whole-ring width analysis. In this study, we present the first replicated stable oxygen isotopic composition of early season alpha-cellulose from calendar-dated kauri tree rings within the natural growth range of the species. We also use newly established kauri physiology information about stomatal conductance and a mechanistic model to place initial interpretations on kauri δ18O signatures.Kauri early season δ18O has a range from 26 to 34‰ (V-SMOW) for a site located at Lower Huia Dam in west Auckland, and the mean δ18O chronology from that site is significantly correlated (p < 0.05) to October-December vapor pressure, May-December relative humidity and other associated hydroclimatic variables. The observed statistical relationships are consistent with mechanistic δ18O simulations using the forward model of Barbour et al. (2004) that incorporates a leaf temperature energy balance model to calculate transpiration as forced with local meteorological variables and a range of physiological parameters. The correlation results and mechanistic model simulations suggest kauri δ18O early season wood has the potential to provide new quantitative past climate information for northern New Zealand, and also complement whole ring-width reconstructions of past regional climate variability – a component of which is previously established as sensitive to El Niño-Southern Oscillation activity. Additional work is required to determine whether the observed relationships are consistent across the growth range of kauri and what the optimum sample depth is before long isotope-based palaeoclimate reconstructions from modern and sub-fossil kauri sites are undertaken.  相似文献   

13.
Almost no δ18O data are available for leaf carbohydrates, leaving a gap in the understanding of the δ18O relationship between leaf water and cellulose. We measured δ18O values of bulk leaf water (δ18OLW) and individual leaf carbohydrates (e.g. fructose, glucose and sucrose) in grass and tree species and δ18O of leaf cellulose in grasses. The grasses were grown under two relative humidity (rH) conditions. Sucrose was generally 18O‐enriched compared with hexoses across all species with an apparent biosynthetic fractionation factor (εbio) of more than 27‰ relative to δ18OLW, which might be explained by isotopic leaf water and sucrose synthesis gradients. δ18OLW and δ18O values of carbohydrates and cellulose in grasses were strongly related, indicating that the leaf water signal in carbohydrates was transferred to cellulose (εbio = 25.1‰). Interestingly, damping factor pexpx, which reflects oxygen isotope exchange with less enriched water during cellulose synthesis, responded to rH conditions if modelled from δ18OLW but not if modelled directly from δ18O of individual carbohydrates. We conclude that δ18OLW is not always a good substitute for δ18O of synthesis water due to isotopic leaf water gradients. Thus, compound‐specific δ18O analyses of individual carbohydrates are helpful to better constrain (post‐)photosynthetic isotope fractionation processes in plants.  相似文献   

14.
Climate reconstructions using stable isotopes (δ18O and δ13C values) in tree rings are based on relationships between present climatic conditions and isotopic series. This widely used approach relies on the assumption that correlations between stable isotopes and climatic conditions are steady over time. In this paper, we evaluate the strength of the correlations between δ18O and δ13C series with several climatic parameters on fourteen black spruce trees coming from three different sites, in northeastern Canada. We applied a 21-year moving window on the r Pearson calculated between stable isotopes and March–May and June–August precipitation, June–August and April–June maximal temperatures. Our results indicate that despite the large distance and differences in stand conditions between the sites, the three sites responded in the same way over time. We show that because the climatic ambiance has changed during the 1980–1990 period due to a positive North Atlantic Oscillation index the δ13C values are not controlled anymore by spring precipitation or summer maximal temperature in the following two decades. As opposed to δ13C series, the relationship between summer maximal temperature and δ18O values was stable over time, and decreased only in the last decade. All these results attest of a “divergence problem” in the last decades which is most pronounced for δ13C series. We conclude that the spruce δ18O series appears to be the most appropriate indicator for reconstructing June–August maximal temperature in the studied area despite the divergence issue, given that the calibration–validation tests and reconstruction can exclude the divergent last decade.  相似文献   

15.
Studies in dendroisotope chemistry suggested that latewood cellulose contains better climatic records than whole-ring cellulose. However, this approach has never been tested on northeastern Canadian spruce trees. This study compares dendroisotopic series of cellulose from late and whole ring, and analyses their statistical relationships with hydro-climatic variables with the aim of selecting the best suited protocol for future hydro-climatic reconstruction in the downstream sector of Churchill River basin of Labrador, Canada. To this end, δ13C and δ18O series from latewood (LW) and whole ring (WR) α-cellulose of black spruce trees (Picea mariana [Mill.] B.S.P.) were produced for the 1940–2010 period. The results show strong correlations between LW and WR isotopic series suggesting that there are no important variation in the isotopic ratios during the growing year and that black spruce trees use photosynthates of the current growing season to form their earlywood. Moreover, LW and WR δ13C and δ18O show similar relationships with both maximum temperature (Tmax) and Churchill River discharge. Correlations are higher when combining δ13C and δ18O for LW and WR. Overall, those correlations support the indirect relationship between tree-ring isotopic series and river discharge, as they are integrators of several climatic variables and derived parameters (Tmax, relative humidity, evapotranspiration, etc.). The LW and WR isotopic series give similar statistical relationships with hydro-climatic variables, and the WR treatment is faster (separation easier compared to LW). Thus, for black spruce the use of combined isotopic series in WR can be favored over LW for hydro-climatic reconstruction in the study region.  相似文献   

16.
Sub-fossil wood is often affected by the decaying process that introduces uncertainties in the measurement of oxygen and carbon stable isotope composition in cellulose. Although the cellulose stable isotopes are widely used as climatic proxies, our understanding of processes controlling their behavior is very limited. We present here a comparative study of stable oxygen and carbon isotope ratios in tree ring cellulose in decayed and non-decayed wood samples of Swiss stone pine (Pinus cembra) trees. The intra-ring stable isotope variability (around the circumference of a single ring) was between 0.1 and 0.5‰ for δ18O values and between 0.5 and 1.6‰ for δ13C values for both decayed and non-decayed wood. Observed intra-tree δ18O variability is less than that reported in the literature (0.5–1.5‰), however, for δ13C it is larger than the reported values (0.7–1.2‰). The inter-tree variability for non-decayed wood ranges between 1.1 and 2.3‰ for δ18O values, and between 2 and 4.7‰ for δ13C values. The inter-tree differences for δ18O values are similar to those reported in the literature (1–2‰ for oxygen and 1–3‰ for carbon) but are larger for δ13C values. We have found that the differences for δ18O and δ13C values between decayed and non-decayed wood are smaller than the variation among different trees from the same site, suggesting that the decayed wood can be used for isotopic paleoclimate research.  相似文献   

17.
Non-climatic variations in the oxygen isotopic compositions of plants   总被引:4,自引:0,他引:4  
The 18O content of leaf water strongly influences the 18O contents of atmospheric CO2 and O2. The 18O signatures of these atmospheric gases, in turn, emerge as important indicators of large-scale gas exchange processes. Better understanding of the factors that influence the isotopic composition of leaf water is still required, however, for the quantitative utilization of these tracers. The 18O enrichment of leaf water relative to local meteoric water, is known to reflect climatic conditions. Less is known about the extent variations in the 18O content of leaf water are influenced by nonclimatic, species-specific characteristics. In a collection of 90 plant species from all continents grown under the same climatic conditions in the Jerusalem Botanical Garden we observed variations of about 9‰ in the δ18O values of stem water, δs, and of about 14‰ in the mid-day δ18O enrichment of bulk leaf water, δLW–δs. Differences between δ18O values predicted by a conventional evaporation model, δM, and δLW ranged between – 3.3‰ and + 11.8‰. The δ18O values of water in the chloroplasts (δch) in leaves of 10 selected plants were estimated from on-line CO2 discrimination measurements. Although much uncertainty is still involved in these estimates, the results indicated that δch can significantly deviate from δM in species with high leaf peclet number. The δ18O values of bulk leaf water significantly correlated with δ18O values of leaf cellulose (directly) and with instantaneous water use efficiency (A/E, inversely). Differences in isotopic characteristics among conventionally defined vegetation types were not significant, except for conifers that significantly differed from shrubs in δ18O and δ13C values of cellulose and in their peclet numbers, and from deciduous woodland species in their δ18O and δ13C values of cellulose. The results indicated that predictions of the δ18O values of leaf water (δLW, δM and δch) could be improved by considering plant species-specific characteristics.  相似文献   

18.
Tree-ring width of Larix gmelinii (Rupr.) Rupr., ratios of stable isotopes of C (δ13C) and O (δ18O) of whole wood and cellulose chronologies were obtained for the northern part of central Siberia (Tura, Russia) for the period 1864–2006. A strong decrease in the isotope ratios of O and C (after atmospheric δ13C corrections) and tree-ring width was observed for the period 1967–2005, while weather station data show a decrease in July precipitation, along with increasing July air temperature and vapor pressure deficit (VPD). Temperature at the end of May and the whole month of June mainly determines tree radial growth and marks the beginning of the vegetation period in this region. A positive correlation between tree-ring width and July precipitation was found for the calibration period 1929–2005. Positive significant correlations between C isotope chronologies and temperatures of June and July were found for whole wood and cellulose and negative relationships with July precipitation. These relationships are strengthened when the likely physiological response of trees to increased CO2 is taken into account (by applying a recently developed δ13C correction). For the O isotope ratios, positive relationships with annual temperature, VPD of July and a negative correlation with annual precipitation were observed. The δ18O in tree rings may reflect annual rather than summer temperatures, due to the late melting of the winter snow and its contribution to the tree water supply in summer. We observed a clear change in the isotope and climate trends after the 1960s, resulting in a drastic change in the relationship between C and O isotope ratios from a negative to a positive correlation. According to isotope fractionation models, this indicates reduced stomatal conductance at a relatively constant photosynthetic rate, as a response of trees to water deficit for the last half century in this permafrost region.  相似文献   

19.
Influence of precipitation seasonality on piñon pine cellulose δD values   总被引:1,自引:0,他引:1  
The influence of seasonal to interannual climate variations on cellulose hydrogen isotopic composition (δD) was assessed by analysing tree rings and needles of piñon pine (Pinus edulis and P. monophylla). Sites spanned a gradient of decreasing summer precipitation, from New Mexico to Arizona to Nevada. Tree rings were divided into earlywood, latewood and whole‐year increments, and annual cohorts of needles were collected. The study period (1989–96) included two La Niña events (1989, 1996) and a prolonged El Niño event (1991–95). Winter and spring moisture conditions were strongly related to October–March Southern Oscillation Index (SOI) in New Mexico and Arizona, with above‐average precipitation occurring in El Niño years. Wood δD values at these sites were correlated with winter and spring moisture conditions. Needle δD values were correlated with summer moisture conditions in New Mexico and with winter moisture and SOI in Arizona. Low cellulose δD values observed from 1991 to 1993 in both wood and needles occurred during wet El Niño years, whereas high δD values in needles were present during the dry, La Niña years of 1989 and 1996. North‐eastern Nevada does not receive precipitation anomalies related to ENSO, and thus cellulose δD values did not reflect the ENSO pattern observed at the other sites. Cellulose δD values were strongly, inversely correlated with relative humidity variations at all sites, as predicted by a mechanistic model. Contrary to predictions from the same model and observations from more mesic areas, time series of cellulose δD values were not directly correlated with interannual or seasonal variations in precipitation δD values or temperature at any of the sites. On a regional basis, however, mean δD values in needles and wood were correlated with mean annual temperature and δD values of precipitation. This suggests that temporal averaging may bias relationships between biological systems and climate.  相似文献   

20.
Stable isotopes in mollusc shells, together with variable growth rates and other geochemical properties, can register different environmental clues, including seawater temperature, salinity and primary productivity. However, the strict biological control over the construction of biominerals exerted by many calcifying organisms can constrain the use of these organisms for paleoenvironmental reconstructions. Biologically controlled calcification is responsible for the so called vital effects that cause a departure from isotopic equilibrium during shell formation, resulting in lower shell oxygen and carbon compared to the equilibrium value. We investigated shell oxygen and carbon isotopic composition of the bivalve Chamelea gallina in six sites along with a latitudinal gradient on the Adriatic Sea (NE Mediterranean Sea). Seawater δ18O and δ13CDIC varied from North to South, reflecting variations in seawater temperature, salinity, and chlorophyll concentration among sites. Shell δ18O and δ13C differed among sites and exhibited a wide range of values along with the ~400 km latitudinal gradient, away from isotopic equilibrium for both isotopes. These results hampered the utilization of this bivalve as a proxy for environmental reconstructions, in spite of C. gallina showing promise as a warm temperature proxy. Rigorous calibration studies with a precise insight of environment and shell growth are crucial prior to considering this bivalve as a reliable paleoclimatic archive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号