首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nitric oxide negatively modulates wound signaling in tomato plants   总被引:24,自引:0,他引:24       下载免费PDF全文
Synthesis of proteinase inhibitor I protein in response to wounding in leaves of excised tomato (Lycopersicon esculentum) plants was inhibited by NO donors sodium nitroprusside and S-nitroso-N-acetyl-penicillamine. The inhibition was reversed by supplying the plants with the NO scavenger 2-(4-carboxiphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. NO also blocked the hydrogen peroxide (H(2)O(2)) production and proteinase inhibitor synthesis that was induced by systemin, oligouronides, and jasmonic acid (JA). However, H(2)O(2) generated by glucose oxidase and glucose was not blocked by NO, nor was H(2)O(2)-induced proteinase inhibitor synthesis. Although the expression of proteinase inhibitor genes in response to JA was inhibited by NO, the expression of wound signaling-associated genes was not. The inhibition of wound-inducible H(2)O(2) generation and proteinase inhibitor gene expression by NO was not due to an increase in salicylic acid, which is known to inhibit the octadecanoid pathway. Instead, NO appears to be interacting directly with the signaling pathway downstream from JA synthesis, upstream of H(2)O(2) synthesis. The results suggest that NO may have a role in down-regulating the expression of wound-inducible defense genes during pathogenesis.  相似文献   

2.
G A Howe  C A Ryan 《Genetics》1999,153(3):1411-1421
In tomato plants, systemic induction of defense genes in response to herbivory or mechanical wounding is regulated by an 18-amino-acid peptide signal called systemin. Transgenic plants that overexpress prosystemin, the systemin precursor, from a 35S::prosystemin (35S::prosys) transgene exhibit constitutive expression of wound-inducible defense proteins including proteinase inhibitors and polyphenol oxidase. To study further the role of (pro)systemin in the wound response pathway, we isolated and characterized mutations that suppress 35S::prosys-mediated phenotypes. Ten recessive, extragenic suppressors were identified. Two of these define new alleles of def-1, a previously identified mutation that blocks both wound- and systemin-induced gene expression and renders plants susceptible to herbivory. The remaining mutants defined four loci designated Spr-1, Spr-2, Spr-3, and Spr-4 (for Suppressed in 35S::prosystemin-mediated responses). spr-3 and spr-4 mutants were not significantly affected in their response to either systemin or mechanical wounding. In contrast, spr-1 and spr-2 plants lacked systemic wound responses and were insensitive to systemin. These results confirm the function of (pro)systemin in the transduction of systemic wound signals and further establish that wounding, systemin, and 35S::prosys induce defensive gene expression through a common signaling pathway defined by at least three genes (Def-1, Spr-1, and Spr-2).  相似文献   

3.
4.
Wound- and systemin-inducible calmodulin gene expression in tomato leaves   总被引:10,自引:0,他引:10  
Using a calmodulin (CaM) cDNA as a probe in northern analyses, transgenic tomato plants that overexpress the prosystemin gene were found to express increased levels of CaM mRNA and protein in leaves compared to wild-type plants. These transgenic plants have been reported previously to express several wound-inducible defense-related genes in the absence of wounding. Calmodulin mRNA and protein levels were found to increase in leaves of young wild-type tomato plants after wounding, or treatment with systemin, methyl jasmonate, or linolenic acid. CaM mRNA appeared within 0.5 h after wounding or supplying young tomato plants with systemin, and peaked at 1 h. The timing of CaM gene expression is similar to the expression of the wound- or systemin-induced lipoxygenase and prosystemin genes, signal pathway genes whose expression have been reported to begin at 0.5–1 h after wounding and 1–2 h earlier than the genes coding for defensive proteinase inhibitor genes. The similarities in timing between the synthesis of CaM mRNA and the mRNAs for signal pathway components suggests that CaM gene expression may be associated with the signaling cascade that activates defensive genes in response to wounding.  相似文献   

5.
An 18-amino acid peptide in tomato leaves called systemin is a primary signal released at wound sites in response to herbivory that systemically signals the activation of defense genes throughout the plants. We report here the isolation of three hydroxyproline-rich glycopeptides from tomato leaves, of 20, 18, and 15 amino acids in length, that signal the activation of defense genes, similar to the activity of the systemin peptide. The three new peptides cause an alkalinization of suspension-cultured cells and induce the synthesis of defensive proteinase inhibitor proteins when supplied at fmol levels to young tomato plants through their cut stems. This suggests that they are part of the wound signaling of tomato plants that activates defense against herbivores and pathogens. Isolation of cDNAs coding for the tomato peptides revealed that they are all derived from the same pre-proprotein precursor that is systemically wound-inducible. The peptides are considered members of the functionally characterized systemin family of defense signals from plants that are synthesized both in wounded leaves and in distal, unwounded leaves in response to herbivory or other mechanical wounding. The precursor deduced from the cDNA exhibits a leader sequence, indicating that it is synthesized through the secretory pathway, where it is hydroxylated and glycosylated. The amino acid sequence of the precursor exhibited weak identity to the precursor of two hydroxyproline-rich defense signals recently found in tobacco, suggesting that the two pre-protein precursors have evolved from a common ancestral protein. The identification of hydroxyproline-rich glycoprotein systemins in tomato indicates that the initiation of wound signaling is more complex than previously thought and appears to involve multiple peptide signals.  相似文献   

6.
Phospholipase A (PLA) activity, as measured by the accumulation of (14)C-lysophosphatidylcholine in leaves of tomato plants, increased rapidly and systemically in response to wounding. The increase in PLA activity in the systemic unwounded leaves was biphasic in wild-type tomato plants, peaking at 15 min and again at 60 min, but the second peak of activity was absent in transgenic prosystemin antisense plants. Supplying young excised tomato plants with the polypeptide hormone systemin also caused (14)C-lysophosphatidylcholine to increase to levels similar to those induced by wounding, but the increase in activity persisted for >2 hr. Antagonists of systemin blocked both the release of (14)C-lysophosphatidylcholine and the accumulation of defense proteins in response to systemin. (14)C-lysophosphatidylcholine levels did not increase in response to jasmonic acid. Chemical acylation of the lysophosphatidylcholine produced by wounding, systemin, and oligosaccharide elicitors followed by enzymatic hydrolysis with lipases of known specificities demostrated that the lysophosphatidylcholine is generated by a PLA with specificity for the sn-2 position.  相似文献   

7.
Molecular biology of wound-inducible proteinase inhibitors in plants   总被引:4,自引:4,他引:0  
Abstract. The techniques of molecular biology are being employed to investigate at the gene level the systemically mediated, wound-induced accumulation of two defensive proteinase inhibitor proteins in plant leaves. These techniques have added a new dimension to biochemical and physiological studies already underway to understand the mechanism of induction by wounding. The acquisition of cDNAs from the RNAs coding for the two inhibitors facilitated studies of mRNA synthesis in leaves in response to wounding, and provided probes to obtain wound-inducible proteinase inhibitor genes from tomato ( Lycopersicon esculentum ) and potato (Solarium tuberosum) genomes. Successful transformations of tobacco plants with fused genes, containing the 5' and 3' regions of the inhibitor genes with the open reading frame of the chloramphenicol acelyltransferase ( cat ) gene, have provided a wound-inducible chloramphenicol acetyltransferase (CATase) activity with which to seek cis- and transacting elements that regulate wound-inducibility to help to understand the interaction of cytoplasmic and nuclear components of the intracellular communication systems that activate the proteinase inhibitor genes in response to wounding by insect pests.  相似文献   

8.
9.
Allene oxide synthase (AOS; hydroperoxide dehydratase; EC 4.2.1.92) catalyzes the first step in the biosynthesis of jasmonic acid from lipoxygenase-derived hydroperoxides of free fatty acids. Using the AOS cDNA from tomato (Lycopersicon esculentum), in which the role of jasmonic acid in wound-induced defense gene activation has been best described, we examined the kinetics of AOS induction in response to wounding and elicitors, in parallel with that of the wound-inducible PIN II (proteinase inhibitor II) gene. AOS was induced in leaves by wounding, systemin, 12-oxophytodienoic acid, and methyl jasmonate. The levels of AOS mRNA started declining by 4 h after induction, whereas the levels of PIN II mRNA continued to increase up to 20 h after induction. Salicylic acid inhibited AOS and PIN II expression, and the addition of 12-oxophytodienoic acid or methyl jasmonate did not prevent the inhibition of PIN II expression in the presence of salicylic acid. Ethylene induced the expression of AOS, but the presence of ethylene alone did not produce an optimal induction of PIN II. The addition of silver thiosulfate, an ethylene action inhibitor, prevented the wound-induced expression of both AOS and PIN II. Products of hydroperoxide lyase affected neither AOS nor PIN II, but induced expression of prosystemin. Based on these results, we propose an updated model for defense gene activation in tomato.  相似文献   

10.
Mechanical stress was one of stresses with whichplants often met. With the development of fruit andvegetable finish machining in food industry, artificialinjury also appeared. As response to other stresses,plants have evolved with some adaptive mechanismsto cope with wounding[1]. Jasmonic acid (JA) andmethyl jasmonate (MeJA), as important signal mole-cules in plant response to wounding, have attracted agreat deal of attention. The studies on some crops, suchas potato[2], rice[3], and tomato[…  相似文献   

11.
The wound response in tomato--role of jasmonic acid   总被引:27,自引:0,他引:27  
Plants respond to mechanical wounding or herbivore attack with a complex scenario of sequential, antagonistic or synergistic action of different signals leading to defense gene expression. Tomato plants were used as a model system since the peptide systemin and the lipid-derived jasmonic acid (JA) were recognized as essential signals in wound-induced gene expression. In this review recent data are discussed with emphasis on wound-signaling in tomato. The following aspects are covered: (i) systemin signaling, (ii) JA biosynthesis and action, (iii) orchestration of various signals such as JA, H2O2, NO, and salicylate, (iv) local and systemic response, and (v) amplification in wound signaling. The common occurrence of JA biosynthesis and systemin generation in the vascular bundles suggest JA as the systemic signal. Grafting experiments with JA-deficient, JA-insensitive and systemin-insensitive mutants strongly support this assumption.  相似文献   

12.
Hydroxyproline-rich glycopeptides (HypSys peptides) have been isolated recently from tobacco and tomato leaves that are powerful activators of protease inhibitor synthesis. The peptides are processed from polyprotein precursors, two from a single tobacco precursor and three from a single tomato precursor. The precursor genes are expressed in response to wounding and methyl jasmonate, similar to the expression of the systemin precursor prosystemin in tomato leaves. Here we investigate the relationships between systemin and the tomato HypSys peptides in regulating wound signaling in tomato plants. Analysis of transgenic tomato plants over-expressing sense and antisense constructs of the tomato HypSys precursor under the 35S CaMV promoter show that the transgenic plants regulate protease inhibitor gene expression in response to wounding in a manner similar to prosystemin. The evidence indicates that the expression of both the tomato HypSys precursor gene and the prosystemin gene in response to wounding are necessary for strong systemic signaling. The data supports a role for both genes in an amplification loop that up-regulates the octadecanoid pathway and the synthesis of jasmonates to effect strong systemic signaling of defense genes. This report provides the first demonstration of the involvement of two plant peptides derived from two unrelated genes in regulating long distance wound signaling in plants. The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors () is Clarence A. Ryan.  相似文献   

13.
The expression of chloramphenical acetyl transferase (CAT) protein driven by the wound-inducible promoter from the proteinase inhibitor II K (pin2) gene was examined in whole tobacco (Nicotiana tabacum L.) plants under field conditions. Mechanical wounding of the field-grown leaves caused an accumulation of CAT protein in these leaves which begins several hours after wounding and continues to accumulate for about 36 hours. When sections of leaves were assayed for accumulation of CAT protein following wounding, the CAT protein was found to accumulate in the apical portions of the leaves. When endogenous insects attacked the leaves of transgenic plants grown in the field, the plants responded by inducing CAT protein. The mesophyll cells of the leaf were the site of expression of the CAT protein rather than the mid-vein or major veins within the leaf blade, indicating that the wound-inducible pin2 promoter specifically directs the synthesis of novel genes in tissues preferentially consumed by larval insects.  相似文献   

14.
Proteinase inhibitors can be induced by wounding in shoots of tomato ( Lycopersicon esculentum [L.] Mill. cv. Moneymaker). These inhibitors are toxic to insects, but their ecological importance is not clear. Published work suggests that proteinase inhibitors may be wound-inducible in tomato only while the plants are young (less than 30 days). In the present investigation the influence of plant age on wound-inducible proteinase inhibitor was re-assessed using tomato plants grown in an outdoor polythene tunnel, with natural lighting and without supplementary heat. In contrast to previous findings, proteinase inhibitor was shown to be induced by wounding in plants of all ages. However, the systemic efficacy of wounds was much reduced in mature plants, possibly because such plants have outgrown the range of the wound-signalling system.  相似文献   

15.
Gross N  Wasternack C  Köck M 《Phytochemistry》2004,65(10):1343-1350
Tomato RNaseLE is induced by phosphate deficiency and wounding and may play a role in macromolecular recycling as well as wound healing. Here, we analyzed the role of jasmonate and systemin in the wound-induced RNaseLE activation. The rapid expression of RNaseLE upon wounding of leaves leading to maximal RNase activity within 10 h, appeared only locally. Jasmonic acid (JA) or its molecular mimic ethyl indanoyl isoleucine conjugate did not induce RNaseLE expression. Correspondingly, RNaseLE was expressed upon wounding of 35S::allene oxide cyclase antisense plants known to be JA deficient. RNaseLE was not expressed upon systemin treatment, but was locally expressed in the spr1 mutant which is affected in systemin perception. In tomato plants carrying a PromLE::uidA construct, GUS activity could be detected upon wounding, but not following treatment with JA or systemin. The data indicate a locally acting wound-inducible systemin- and JA-independent signaling pathway for RNaseLE expression.  相似文献   

16.
The constitutive and wound-inducible leucine aminopeptidases (LAP-N and LAP-A, respectively) of tomato encode 60-kDa proteins with 5-kDa presequences that resemble chloroplast-targeting peptides. Cell fractionation studies and immunoblot analyses of chloroplast and total proteins have suggested a dual location of the mature LAP-A proteins in the cytosol and the plastids. In this study, the subcellular localization of tomato LAPs was further investigated using in vitro chloroplast-targeting assays and immunocytochemical techniques at the light and TEM levels. In vitro-translated LAP-A1 and LAP-N preproteins were readily transported into pea chloroplasts and processed into mature proteins of 55 kDa indicating the presence of a functional chloroplast-targeting signal in the LAP-A1 and LAP-N protein precursors. In addition, a LAP polyclonal and a LAP-A-specific antisera were used to immunolocalize LAP proteins in leaves from healthy, wounded and methyl jasmonate (MeJA)-treated plants. Low levels of LAPs and/or LAP-like proteins were detected in leaves from unwounded plants. The LAP polyclonal antiserum, which detected LAP-A, LAP-N and LAP-like proteins, and the LAP-A specific antibodies, which detected only LAP-A, showed that LAP levels increased in leaf sections after wounding and MeJA treatments. LAP-A proteins were primarily detected within the chloroplasts of spongy and palisade mesophyll cells. The localization of LAP-A was distinct from the location of early wound-response proteins that are important in the biosynthesis of jasmonic acid or systemin and more similar to the late wound-response proteins with primary roles in defense. The importance of these findings relative to the potential roles of LAP-A in defense is discussed.  相似文献   

17.
The plant polypeptide signal systemin induces proteinase inhibitor synthesis in tomato leaves. We show here that systemin elicits a transient depolarization of the tomato mesophyll cell membrane. Furthermore it triggers a transient decrease in the external pH of the mesophyll tissue which is followed by a sustained pH increase. In the presence of fusicoccin (which has been shown to antagonize the synthesis of proteinase inhibitors) the depolarization and transient H+ efflux are attenuated whereas the slower phase of the sustained electroneutral H+ influx persists. These results suggest that systemin-induced changes in ion transport play a role in the early phases of systemin signal transduction.  相似文献   

18.
The sulfhydryl group reagent p-chloromecuribenzene sulfonic acid (PCMBS), an established inhibitor of active apoplastic phloem loading of sucrose in several plant species, is shown to be a powerful inhibitor of wound-induced and systemin-induced activation of proteinase inhibitor synthesis and accumulation in leaves of tomato plants (Lycopersicon esculentum cv Castlemart). PCMBS, supplied to young tomato plants through their cut stems, blocks accumulation of proteinase inhibitors in leaves in response to wounding. The application of systemin directly to fresh wounds enhances systemic accumulation of proteinase inhibitors to levels higher than wounding alone. Placed on fresh wounds, PCMBS severely inhibits systemic induction of proteinase inhibitors, in both the presence and absence of exogenous systemin. PCMBS inhibition can be reversed by cysteine, dithiothreitol, and glutathione. Radiolabeled systemin placed on fresh wounds is readily transported from the wounded leaves to upper leaves. However, in the presence of PCMBS, radiolabeled systemin is not transported away from wound sites. Induction of proteinase inhibitor I synthesis by oligouronides (degree of polymerization [almost equal to] 20), linolenic acid, or methyl jasmonate was not inhibited by PCMBS. The cumulative data support a possible role for sulfhydryl groups in mediating the translocation of systemin from wound sites to distal receptor sites in tomato plants and further support a role for systemin as a systemic wound signal.  相似文献   

19.
20.
W E Brown  K Takio  K Titani  C A Ryan 《Biochemistry》1985,24(9):2105-2108
The primary structure of the wound-inducible trypsin inhibitor from alfalfa (ATI) establishes it as a member of the Bowman-Birk proteinase inhibitor family. The time course of induction of ATI in alfalfa following wounding is similar to the induction of the nonhomologous proteinase inhibitors I and II in tomato and potato leaves, and, like inhibitors I and II, ATI is induced to accumulate in excised leaves supplied with the proteinase inhibitor inducing factor from tomato leaves. The similarity of the wound induction of ATI to that of inhibitors I and II indicates that wound-regulated systems are present in Solanaceae and Leguminosae plant families that possess a common fundamental recognition system regulating synthesis of proteinase inhibitors in response to pest attacks. ATI is the first Bowman-Birk inhibitor that has been found in leaves and is the only member of this family known to be regulated by wounding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号