首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although alternative reproductive tactics (ARTs) are common across a range of taxa, little is known about whether the different tactics have adapted to sperm competition risk. Chinook salmon, Oncorhynchus tshawytscha, have two ARTs: large males that participate in dominance‐based hierarchies for access to spawning females, known as hooknoses, and small males that attempt to sneak fertilizations during spawning events from peripheral positions, known as jacks. Jacks continually face sperm competition risk because they always spawn in the presence of another male, whereas hooknoses face relatively low sperm competition risk because other males are not always present during spawning events. Based on the sneak‐guard model of sperm competition this asymmetry in sperm competition risk predicts that jacks ought to invest significantly more into sperm‐related traits important for sperm competition success relative to hooknoses. In the present study we report on reproductive investment patterns, sperm characteristics, and seminal plasma physiology of males that exhibit ARTs in Chinook salmon. We found that jacks invest significantly more of their somatic tissue into gonads compared with hooknoses. Sperm velocity also varied significantly between the ARTs, with jacks having significantly faster sperm than hooknoses. No significant differences in seminal plasma physiology metrics related to sperm quality were detected between the ARTs. We interpret these sperm investment patterns in light of the sneak‐guard model of sperm competition that is based on differences in sperm competition risk and alternative investment possibilities among ARTs. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

2.
This study examined whether polyandrous female Chinook salmon Oncorhynchus tshawytscha obtain benefits compared with monandrous females through an increase in hatching success. Both of the alternative reproductive tactics present in male O. tshawytscha (large hooknoses and small, precocious jacks) were used, such that eggs were either fertilized by a single male (from each tactic) or multiple males (using two males from the same or different tactics). The results show that fertilized eggs from the polyandrous treatments had a significantly higher hatching success than those from the monandrous treatments. It is also shown that sperm speed was positively related with offspring hatching success. Finally, there were tactic‐specific effects on the benefits females received. The inclusion of jacks in any cross resulted in offspring with higher hatching success, with the cross that involved a male from each tactic providing offspring with the highest hatching success than any other cross. This study has important implications for the evolution of multiple mating and why it is so prevalent across taxa, while also providing knowledge on the evolution of mating systems, specifically those with alternative reproductive tactics.  相似文献   

3.
Post‐copulatory sexual selection processes, including sperm competition and cryptic female choice (CFC), can operate based on major histocompatibility (MH) genes. We investigated sperm competition between male alternative reproductive tactics [jack (sneaker) and hooknose (guard)] of Chinook salmon (Oncorhynchus tshawytscha). Using a full factorial design, we examined in vitro competitive fertilization success of paired jack and hooknose males at three time points after sperm activation (0, 15 and 60 s) to test for male competition, CFC and time effects on male fertilization success. We also examined egg‐mediated CFC at two MH genes by examining both the relationship between competitive fertilization success and MH divergence as well as inheritance patterns of MH alleles in resulting offspring. We found that jacks sired more offspring than hooknose males at 0 s post‐activation; however, jack fertilization success declined over time post‐activation, suggesting a trade‐off between sperm speed and longevity. Enhanced fertilization success of jacks (presumably via higher sperm quality) may serve to increase sneaker tactic competitiveness relative to dominant hooknose males. We also found evidence of egg‐mediated CFC (i.e. female × male interaction) influencing competitive fertilization success; however, CFC was not acting on the MH genes as we found no relationship between fertilization success and MH II β1 or MH I α1 divergence and we found no deviations from Mendelian inheritance of MH alleles in the offspring. Our study provides insight into evolutionary mechanisms influencing variation in male mating success within alternative reproductive tactics, thus underscoring different strategies that males can adopt to attain success.  相似文献   

4.
Disentangling the relative roles of males, females and their interactive effects on competitive fertilization success remains a challenge in sperm competition. In this study, we apply a novel experimental framework to an ideally suited externally fertilizing model system in order to delineate these roles. We focus on the chinook salmon, Oncorhynchus tshawytscha, a species in which ovarian fluid (OF) has been implicated as a potential arbiter of cryptic female choice for genetically compatible mates. We evaluated this predicted sexually selected function of OF using a series of factorial competitive fertilization trials. Our design involved a series of 10 factorial crosses, each involving two ‘focal’ rival males whose sperm competed against those from a single ‘standardized’ (non-focal) rival for a genetically uniform set of eggs in the presence of OF from two focal females. This design enabled us to attribute variation in competitive fertilization success among focal males, females (OF) and their interacting effects, while controlling for variation attributable to differences in the sperm competitive ability of rival males, and male-by-female genotypic interactions. Using this experimental framework, we found that variation in sperm competitiveness could be attributed exclusively to differences in the sperm competitive ability of focal males, a conclusion supported by subsequent analyses revealing that variation in sperm swimming velocity predicts paternity success. Together, these findings provide evidence that variation in paternity success can be attributed to intrinsic differences in the sperm competitive ability of rival males, and reveal that sperm swimming velocity is a key target of sexual selection.  相似文献   

5.
Success in sperm competition is of fundamental importance to males, yet little is known about what factors determine paternity. Theory predicts that males producing high sperm numbers have an advantage in sperm competition. Large spermatophore size (the sperm containing package) also correlates with paternity in some species, but the relative importance of spermatophore size and sperm numbers has remained unexplored. Males of the small white butterfly, Pieris rapae (Lepidoptera: Pieridae), produce large nutritious spermatophores on their first mating. On their second mating, spermatophores are only about half the size of the first, but with almost twice the sperm number. We manipulated male mating history to examine the effect of spermatophore size and sperm numbers on male fertilization success. Overall, paternity shows either first male or, more frequently, second male sperm precedence. Previously mated males have significantly higher fertilization success in competition with males mating for the first time, strongly suggesting that high sperm number is advantageous in sperm competition. Male size also affects paternity with relatively larger males having higher fertilization success. This may indicate that spermatophore size influences paternity, because in virgin males spermatophore size correlates with male size. The paternity of an individual male is also inversely correlated with the mass of his spermatophore remains dissected out of the female. This suggests that females may influence paternity by affecting the rate of spermatophore drainage. Although the possibility of female postcopulatory choice remains to be explored, these results clearly show that males maximize their fertilization success by increasing the number of sperm in their second mating.  相似文献   

6.
To capture how sexual selection shapes male reproductive success across different stages of reproduction in Tribolium castaneum (Coleoptera, Tenebrionidae), we combined sequential sperm defence (P1) and sperm offence (P2) trials with additional trials where both males were added simultaneously to the female. We found a positive correlation between the relative paternity share in simultaneous male–male competition trials and the P2 trial. This suggests that males preferred by females as sires achieve superior fertilization success during sperm competition in the second male position. In simultaneous male–male competition trials, where pre‐, peri‐ and postcopulatory sexual selection were all allowed to act, the relative paternity share of preferred males was more than 20% higher than in P2 sperm competition trials where precopulatory female choice was disabled. Additional behavioural observations revealed that mating with more attractive males resulted significantly more frequently in offspring production than mating with less attractive males. Thus, by comparing male fertilization success in trials where precopulatory choice was turned off with more inclusive estimates of fertilization success where pre‐ and pericopulatory choice could occur, we show that female mate choice may effectively inhibit sperm competition. Female mate choice and sperm competition (P2) are positively correlated, which is consistent with directional sexual selection in this species. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 67–75.  相似文献   

7.
Recent theoretical and empirical interest in postmating processes have generated a need for increasing our understanding of the sources of variance in fertilization success among males. Of particular importance is whether such postmating sexual selection merely reinforces the effects of premating sexual selection or whether other types of male traits are involved. In the current study, we document large intraspecific variation in last male sperm precedence in the water strider Gerris lateralis. Male relative paternity success was repeatable across replicate females, showing that males differ consistently in their ability to achieve fertilizations. By analyzing shape variation in male genital morphology, we were able to demonstrate that the shape of male intromittent genitalia was related to relative paternity success. This is the first direct experimental support for the suggestion that male genitalia evolve by postmating sexual selection. A detailed analysis revealed that different components of male genitalia had different effects, some affecting male ability to achieve sperm precedence and others affecting male ability to avoid sperm precedence by subsequent males. Further, the effects of the shape of the male genitalia on paternity success was in part dependent on female morphology, suggesting that selection on male genitalia will depend on the frequency distribution of female phenotypes. We failed to find any effects of other morphological traits, such as male body size or the degree of asymmetry in leg length, on fertilization success. Although males differed consistently in their copulatory behavior, copulation duration was the only behavioral trait that had any significant effect on paternity.  相似文献   

8.
In vitro paired-male sperm competition experiments in Atlantic salmon Salmo salar for a single female's eggs revealed that 2 s delays in sperm release caused significant reductions in paternity, with second males achieving only 30% fertilization success (against an expected 50%). This first-male fertilization precedence supports previous work suggesting that sperm competition follows the principles of a race in Atlantic salmon, and suggests that any timing asymmetry in sperm release within natural competitive spawnings could have significant consequences for male fertilization success.  相似文献   

9.
Postcopulatory sexual selection occurs when sperm from multiple males occupy a female’s reproductive tract at the same time and is expected to generate strong selection pressures on traits related to competitive fertilization success. However, knowledge of competitive fertilization success mechanisms and characters targeted by resulting selection is limited, partially due to the difficulty of discriminating among sperm from different males within the female reproductive tract. Here, we resolved mechanisms of competitive fertilization success in the promiscuous flour beetle Tribolium castaneum. Through creation of transgenic lines with fluorescent-tagged sperm heads, we followed the fate of focal male sperm in female reproductive tracts while tracking paternity across numerous rematings. Our results indicate that a given male’s sperm persist and fertilize eggs through at least seven rematings. Additionally, the proportion of a male’s sperm in the bursa (the site of spermatophore deposition), which is influenced by both timing of female’s ejecting excess sperm and male size, significantly predicted paternity share in the 24 h following a mating. Contrary to expectation, proportional representation of sperm within the female’s specialized sperm-storage organ did not significantly predict paternity, though spermathecal sperm may play a role in fertilization when females do not have access to mates for longer time periods. We address the adaptive significance of the identified reproductive mechanisms in the context of T. castaneum’s unique mating system and ecology.  相似文献   

10.
As inbreeding is costly, it has been suggested that polyandry may evolve as a means to reduce the negative fitness consequences of mating with genetically related males. While several studies provide support for this hypothesis, evidence of pure post-copulatory mechanisms capable of biasing paternity towards genetically unrelated males is still lacking; yet these are necessary to support inbreeding avoidance models of polyandry evolution. Here we showed, by artificially inseminating a group of female guppies with an equal number of sperm from related (full-sib) and unrelated males, that sperm competition success of the former was 10 per cent lower, on average, than that of the unrelated male. The paternity bias towards unrelated males was not due to differential embryo survival, as the size of the brood produced by control females, which were artificially inseminated with the sperm of a single male, was not influenced by their relatedness with the male. Finally, we collected ovarian fluid (OF) from virgin females. Using computer-assisted sperm analysis, we found that sperm velocity, a predictor of sperm competition success in the guppy, was significantly lower when measured in a solution containing the OF from a sister as compared with that from an unrelated female. Our results suggest that sperm-OF interaction mediates sperm competition bias towards unrelated mates and highlight the role of post-copulatory mechanisms in reducing the cost of mating with relatives in polyandrous females.  相似文献   

11.
This study examined whether dominant migratory males (adopting fighter tactics) of the masu salmon Oncorhynchus masou would more aggressively attack large mature male parr (adopting sneaker tactics) as large mature male parr are expected to have the potential to cause a greater decrease in fertilization success. The frequency of aggressive behaviour was not related to the body size of males, and it increased with the frequency of interactions with mature male parr. The fertilization success of mature male parr was much lower than migratory males, and no relationship was observed between fertilization success and aggressive behaviour. The low fertilization success of mature male parr, despite infrequent aggressive behaviour by migratory males, indicates that there might be little benefit for migratory males to attack mature male parr more aggressively according to their body size.  相似文献   

12.
The effects of inbreeding on sperm quantity and quality are among the most dramatic examples of inbreeding depression. The extent to which inbreeding depression results in decreased fertilization success of a male’s sperm, however, remains largely unknown. This task is made more difficult by the fact that other factors, such as cryptic female choice, male sperm allocation and mating order, can also drive patterns of paternity. Here, we use artificial insemination to eliminate these extraneous sources of variation and to measure the effects of inbreeding on the competitiveness of a male’s sperm. We simultaneously inseminated female guppies (Poecilia reticulata) with equal amounts of sperm from an outbred (f = 0) male and either a highly (f = 0.59) or a moderately inbred (f = 0.25) male. Highly inbred males sired significantly fewer offspring than outbred males, but share of paternity did not differ between moderately inbred and outbred males. These findings therefore confirm that severe inbreeding can impair the competitiveness of sperm, but suggest that in the focal population inbreeding at order of a brother–sister mating does not reduce a male’s sperm competitiveness.  相似文献   

13.
Postcopulatory sperm storage can serve a range of functions, including ensuring fertility, allowing delayed fertilization and facilitating sexual selection. Sperm storage is likely to be particularly important in wide‐ranging animals with low population densities, but its prevalence and importance in such taxa, and its role in promoting sexual selection, are poorly known. Here, we use a powerful microsatellite array and paternal genotype reconstruction to assess the prevalence of sperm storage and test sexual selection hypotheses of genetic biases to paternity in one such species, the critically endangered hawksbill turtle, Eretmochelys imbricata. In the majority of females (90.7%, N = 43), all offspring were sired by a single male. In the few cases of multiple paternity (9.3%), two males fertilized each female. Importantly, the identity and proportional fertilization success of males were consistent across all sequential nests laid by individual females over the breeding season (up to five nests over 75 days). No males were identified as having fertilized more than one female, suggesting that a large number of males are available to females. No evidence for biases to paternity based on heterozygosity or relatedness was found. These results indicate that female hawksbill turtles are predominantly monogamous within a season, store sperm for the duration of the nesting season and do not re‐mate between nests. Furthermore, females do not appear to be using sperm storage to facilitate sexual selection. Consequently, the primary value of storing sperm in marine turtles may be to uncouple mating and fertilization in time and avoid costly re‐mating.  相似文献   

14.
Competitive fertilization success can depend on the relative abilities of competing males to fertilize available ova, and on mechanisms of cryptic female choice that moderate paternity. Competitive fertilization success is thus an emergent property of competing male genotypes, female genotype and their interactions. Accurate estimates of intrinsic male effects on competitive fertilization success are therefore problematic. We used a cross‐classified nonbreeding design in which rival male family background was standardized to partition variation in competitive fertilization success among male and female family backgrounds in the field cricket Teleogryllus oceanicus. Male effects were close to zero, supporting previous quantitative genetic designs in which male competitors were assigned at random. In contrast, some 22% of the variance in competitive fertilization success was explained by female effects, suggesting that paternity in this species is influenced strongly by cryptic female choice.  相似文献   

15.
In a variety of taxa, males deploy alternative reproductive tactics to secure fertilizations. In many species, small “sneaker” males attempt to steal fertilizations while avoiding encounters with larger, more aggressive, dominant males. Sneaker males usually face a number of disadvantages, including reduced access to females and the higher likelihood that upon ejaculation, their sperm face competition from other males. Nevertheless, sneaker males represent an evolutionarily stable strategy under a wide range of conditions. Game theory suggests that sneaker males compensate for these disadvantages by investing disproportionately in spermatogenesis, by producing more sperm per unit body mass (the “fair raffle”) and/or by producing higher quality sperm (the “loaded raffle”). Here, we test these models by competing sperm from sneaker “jack” males against sperm from dominant “hooknose” males in Chinook salmon. Using two complementary approaches, we reject the fair raffle in favor of the loaded raffle and estimate that jack males were ~1.35 times as likely as hooknose males to fertilize eggs under controlled competitive conditions. Interestingly, the direction and magnitude of this skew in paternity shifted according to individual female egg donors, suggesting cryptic female choice could moderate the outcomes of sperm competition in this externally fertilizing species.  相似文献   

16.
Alternative mating tactics can generate asymmetry in the sperm competition risk between males within species. Theory predicts that adaptations to sperm competition should arise in males facing the greater risk. This prediction is met in the dung beetle Onthophagus binodis where minor males which sneak copulations have a greater expenditure on the ejaculate. In its congener Onthophagus taurus there is a reduced asymmetry in sperm competition risk such that both tactics have equal ejaculate expenditure. We used the irradiated male technique to test whether adaptations to sperm competition in minor males result in higher paternity. We found that for both species, on average, each of two males gained equal numbers of fertilizations, confirming the assumption that sperm compete in a raffle. There were no differences in the sperm competition success of major and minor males in O. taurus as predicted from their equal expenditure on their ejaculate. Contrary to expectations, there were also no differences in fertilization success between the male tactics in O. binodis. Thus, in O. binodis minor males must expend more on their ejaculate in order to obtain the same fertilization gains as major males.  相似文献   

17.
In 1997 the Cle Elum Supplementation Research Facility was established to enhance spring Chinook salmon returning to the upper Yakima River, Washington State. This effort increased spring Chinook abundance, yet conditions at the hatchery also significantly elevated the occurrence of jacks and yearling precocious males. The potential genetic effect that a large influx of early maturing males might have on the upper Yakima River spring Chinook population was examined in an artificial stream. Seven independent groups of fish were placed into the stream from 2001 through 2005. Males with four different life history strategies, large anadromous, jacks, yearling precocious, and sub-yearling precocious were used. Their breeding success or ability to produce offspring was estimated by performing DNA-based pedigree assessments. Large anadromous males spawned with the most females and produced the greatest number of offspring per mate. Jacks and yearling precocious males spawned with more females than sub-yearling precocious males. However, jacks, yearling and sub-yearling precocious males obtained similar numbers of fry per mate. In the test groups, large anadromous males produced 89%, jacks 3%, yearling precocious 7%, and sub-yearling precocious 1% of the fry. These percentages remained stable even though the proportion of large anadromous males in the test groups ranged from 48% to 88% and tertiary sex ratios varied from 1.4 to 2.4 males per female. Our data suggest that large anadromous males generate most of the fry in natural settings when half or more of the males present on a spawning ground use this life history strategy.  相似文献   

18.
Contests between males fighting over limited resources often determine the reproductive success of the contestants. It is possible that the outcomes of such contests are affected by traits that also contribute to the likelihood of males achieving paternity when sperm from multiple males compete to fertilize the ova of a single female; however, this relationship has been poorly characterized. In dung and carrion roller beetles, contests among males for the possession of a food ball – a vital resource for nesting – are frequent in nature. However, females that roll and nest with a male often store the sperm of previous mates, forcing males to engage in sperm competition. We analyzed the relationship between wins and losses in contests between food ball owner males and subsequent paternity success in the carrion roller beetle Canthon cyanellus using both naïve (virgin) and experienced (previously mated) males. Owner males that initiated contests were more likely to win, and contest durations were longer between experienced owner males than between naïve owners. The paternity of the winner owner males nesting with a female that had previously mated with another male was higher than for loser owner males, and the paternity of experienced owners also tended to be higher than for virgin owners. Our results indicate that winning and being an experienced male are associated with greater success at fighting and sperm competition than losing and being a naïve male.  相似文献   

19.
In gregarious species with copulation and internal fertilization, male-male competition and female cryptic choice may affect reproductive success of both sexes. We carried out a molecular analysis to study paternity and sperm use by females in the protandrous marine brooding gastropod Crepidula coquimbensis. In the field, a single female inhabits an empty hosting shell with up to six males. This gregarious behavior may promote intra-brood multiple paternity if females can store sperm from several consecutive copulations with the surrounding males. To study female sperm usage, the males sharing shelters with five different adult females were collected and preserved for paternity analysis. Females were transported alive to the laboratory and isolated for six months. After that, an additional male was offered to each of the five study females. Once the females had laid capsules, a total of 528 embryos from the five females were assigned paternity based on five microsatellite loci. Paternity analysis showed that every male sharing the empty hosting shell of a female as well as the additional male were assigned fatherhood of embryos laid by this specific female. Females can thus use sperms from multiple males including sperms stored for at least six months. In addition, in four out of the five offspring arrays, a similar contribution of each male to the brood was observed, a pattern associated with the close relationship between the number of fathers observed and the effective paternity index calculated. These results contrast with those of paternity analyses carried out in another species of the same genus, C. fornicata which is characterized by a stacking behavior in which the closest male to the female achieves the highest reproductive success. Male reproductive success may be largely influenced by the aggregation pattern and male mating opportunities in the Crepidula complex, a hypothesis to be examined further by studying other species exhibiting different grouping behavior.  相似文献   

20.
A mismatch in synchrony between male and female gamete release in external fertilizers can result in reduced or failed fertilization, sperm competition, and reduced paternity. In Arctic charr (Salvelinus alpinus), males can adopt either a guard or sneak tactic resulting in both pre‐ and postcopulatory competition between males with alternative reproduction tactics. Here, spawning behavior of free‐living Arctic charr was video‐recorded, and their reproductive behavior was analyzed. From evaluating 157 spawning events, we observed that females mainly spawned with a guarding male and that the female and the guarding male synchronized timing of gamete release under sperm competition. Although sneakers spawned with higher synchrony than the guarding male in single‐male spawning events, the average sneaker released his milt less synchronized with the female than the guarding male under sperm competition. Approximately 50% of the recorded spawning events occurred under sperm competition, where each event included an average of 2.7 males. Additionally, sneakers were more exposed to sperm competition than guarding males. An influx of males, in close proximity to the female, occurred during the behavioral sequences leading up to egg release, but this influx seemed not dependent on egg release, suggesting that something else than gonadal product attracts sneaker males to the spawning female. Just before and during the actual release of gametes, the spawning couple vibrates their bodies in close contact and it seems likely that this vibrational communication between the spawning couple, which results in a larger amplitude sound wave than seen under regular courting, reveals time of gamete release to sneaker males. Thus, vibrational communication may enable synchrony between the guarding male and the female, and this might be traded against the cost of higher detectability from surrounding sneaker males, eavesdropping in close proximity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号