首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
High pollinator specificity and the potential for simple genetic changes to affect pollinator attraction make sexually deceptive orchids an ideal system for the study of ecological speciation, in which change of flower odour is likely important. This study surveys reproductive barriers and differences in floral phenotypes in a group of four closely related, coflowering sympatric Ophrys species and uses a genotyping‐by‐sequencing (GBS) approach to obtain information on the proportion of the genome that is differentiated between species. Ophrys species were found to effectively lack postpollination barriers, but are strongly isolated by their different pollinators (floral isolation) and, to a smaller extent, by shifts in flowering time (temporal isolation). Although flower morphology and perhaps labellum coloration may contribute to floral isolation, reproductive barriers may largely be due to differences in flower odour chemistry. GBS revealed shared polymorphism throughout the Ophrys genome, with very little population structure between species. Genome scans for FST outliers identified few markers that are highly differentiated between species and repeatable in several populations. These genome scans also revealed highly differentiated polymorphisms in genes with putative involvement in floral odour production, including a previously identified candidate gene thought to be involved in the biosynthesis of pseudo‐pheromones by the orchid flowers. Taken together, these data suggest that ecological speciation associated with different pollinators in sexually deceptive orchids has a genic rather than a genomic basis, placing these species at an early phase of genomic divergence within the ‘speciation continuum’.  相似文献   

2.
Plant–pollinator interactions are believed to play a major role in the evolution of floral traits. Flower colour and flower size are important for attracting pollinators, directly influencing reproduction, and thus expected to be under pollinator‐mediated selection. Pollinator‐mediated selection is also proposed to play a role in maintaining flower colour polymorphism within populations. However, pigment concentrations, and thus flower colour, are also under selective pressures independent of pollinators. We quantified phenotypic pollinator‐mediated selection on flower colour and size in two colour polymorphic Iris species. Using female fitness, we estimated phenotypic selection on flower colour and size, and tested for pollinator‐mediated selection by comparing selection gradients between flowers open to natural pollination and supplementary pollinated flowers. In both species, we found evidence for pollen limitation, which set the base for pollinator‐mediated selection. In the colour dimorphic Iris lutescens, while pigment concentration and flower size were found to be under selection, this was independent of pollinators. For the polymorphic Iris pumila, pigment concentration is under selective pressure by pollinators, but only for one colour morph. Our results suggest that pollinators are not the main agents of selection on floral traits in these irises, as opposed to the accepted paradigm on floral evolution. This study provides an opposing example to the largely‐accepted theory that pollinators are the major agent of selection on floral traits.  相似文献   

3.
Pollinator‐mediated selection toward larger and abundant flowers is common in naturally pollen‐limited populations. However, floral antagonists may counteract this effect, maintaining smaller‐ and few‐flowered individuals within populations. We quantified pollinator and antagonist visit rates and determined a multiplicative female fitness component from attacked and non‐attacked flowers of the Brazilian hummingbird‐pollinated shrub Collaea cipoensis to determine the selective effects of pollinators and floral antagonists on flower size and number. We predicted that floral antagonists reduce the female fitness component and thus exert negative selective pressures on flower size and number, counteracting the positive effects of pollinators. Pollinators, mainly hummingbirds, comprised 4% of total floral visitation, whereas antagonist ants and bees accounted for 90% of visitation. Nectar‐robbers involved about 99% of floral antagonist visit rates, whereas florivores comprised the remaining 1%. Larger and abundant flowers increased both pollinator and antagonist visit rates and the female fitness component significantly decreased in flowers attacked by nectar‐robbers and florivores in comparison to non‐attacked flowers. We detected that pollinators favored larger‐ and many‐flowered individuals, whereas floral antagonists exerted negative selection on flower size and number. This study confirms that floral antagonists reduce female plant fitness and this pattern directly exerts negative selective pressures on flower size and number, counteracting pollinator‐mediated selection on floral attractiveness traits.  相似文献   

4.
Local adaptation to different pollinators is considered one of the possible initial stages of ecological speciation as reproductive isolation is a by‐product of the divergence in pollination systems. However, pollinator‐mediated divergent selection will not necessarily result in complete reproductive isolation, because incipient speciation is often overcome by gene flow. We investigated the potential of pollinator shift in the sexually deceptive orchids Ophrys sphegodes and Ophrys exaltata and compared the levels of floral isolation vs. genetic distance among populations with contrasting predominant pollinators. We analysed floral hydrocarbons as a proxy for floral divergence between populations. Floral adoption of pollinators and their fidelity was tested using pollinator choice experiments. Interpopulation gene flow and population differentiation levels were estimated using AFLP markers. The Tyrrhenian O. sphegodes population preferentially attracted the pollinator bee Andrena bimaculata, whereas the Adriatic O. sphegodes population exclusively attracted A. nigroaenea. Significant differences in scent component proportions were identified in O. sphegodes populations that attracted different preferred pollinators. High interpopulation gene flow was detected, but populations were genetically structured at species level. The high interpopulation gene flow levels independent of preferred pollinators suggest that local adaptation to different pollinators has not (yet) generated detectable genome‐wide separation. Alternatively, despite extensive gene flow, few genes underlying floral isolation remain differentiated as a consequence of divergent selection. Different pollination ecotypes in O. sphegodes might represent a local selective response imposed by temporal variation in a geographical mosaic of pollinators as a consequence of the frequent disturbance regimes typical of Ophrys habitats.  相似文献   

5.
Decoupling between floral and leaf traits is expected in plants with specialized pollination systems to assure a precise flower–pollinator fit, irrespective of leaf variation associated with environmental heterogeneity (functional modularity). Nonetheless, developmental interactions among floral traits also decouple flowers from leaves regardless of selection pressures (developmental modularity). We tested functional modularity in the hummingbird‐pollinated flowers of the Ameroglossum pernambucense complex while controlling for developmental modularity. Using two functional traits responsible for flower–pollinator fit [floral tube length (TL) and anther–nectary distance (AN)], one floral trait not linked to pollination [sepal length (SL), control for developmental modularity] and one leaf trait [leaf length (LL)], we found evidence of flower functional modularity. Covariation between TL and AN was ca. two‐fold higher than the covariation of either of these traits with sepal and leaf lengths, and variations in TL and AN, important for a precise flower–pollinator fit, were smaller than SL and LL variations. Furthermore, we show that previously reported among‐population variation of flowers associated with local pollinator phenotypes was independent from SL and LL variations. These results suggest that TL and AN are functionally linked to fit pollinators and sufficiently decoupled from developmentally related floral traits (SL) and vegetative traits (LL). These results support previous evidences of population differentiation due to local adaptation in the A. pernambucense complex and shed light on the role of flower–leaf decoupling for local adaptation in species distributed across biotic and abiotic heterogeneous landscapes.  相似文献   

6.
  • Orchids are a classic angiosperm model for understanding biotic pollination. We studied orchid species within two species‐rich herbaceous communities that are known to have either hymenopteran or dipteran insects as the dominant pollinators, in order to understand how flower colour relates to pollinator visual systems.
  • We analysed features of the floral reflectance spectra that are significant to pollinator visual systems and used models of dipteran and hymenopteran colour vision to characterise the chromatic signals used by fly‐pollinated and bee‐pollinated orchid species.
  • In contrast to bee‐pollinated flowers, fly‐pollinated flowers had distinctive points of rapid reflectance change at long wavelengths and a complete absence of such spectral features at short wavelengths. Fly‐pollinated flowers also had significantly more restricted loci than bee‐pollinated flowers in colour space models of fly and bee vision alike.
  • Globally, bee‐pollinated flowers are known to have distinctive, consistent colour signals. Our findings of different signals for fly pollination is consistent with pollinator‐mediated selection on orchid species that results from the distinctive features of fly visual systems.
  相似文献   

7.
  • Pollination success of highly specialised flowers is susceptible to fluctuations of the pollinator fauna. Mediterranean Aristolochia rotunda has deceptive trap flowers exhibiting a highly specialised pollination system. The sole pollinators are kleptoparasitic flies in search of food. This study investigates these pollinators on a spatio‐temporal scale and the impact of weather conditions on their availability. Two potential strategies of the plants to cope with pollinator limitation, i.e. autonomous selfing and an increased floral life span, were tested.
  • A total of 6156 flowers were investigated for entrapped pollinators in 10 Croatian populations. Availability of the main pollinator was correlated to meteorological data. Artificial pollination experiments were conducted and the floral life span was recorded in two populations according to pollinator availability.
  • Trachysiphonella ruficeps (Chloropidae) was identified as dominant pollinator, along with less abundant species of Chloropidae, Ceratopogonidae and Milichiidae. Pollinator compositions varied among populations. Weather conditions 15–30 days before pollination had a significant effect on availability of the main pollinator. Flowers were not autonomously selfing, and the floral life span exhibited considerable plasticity depending on pollinator availability.
  • A. rotunda flowers rely on insect pollen vectors. Plants are specialised on a guild of kleptoparasitic flies, rather than on a single species. Pollinator variability may result in differing selection pressures among populations. The availability/abundance of pollinators depends on weather conditions during their larval development. Flowers show a prolonged trapping flower stage that likely increases outcrossing success during periods of pollinator limitation.
  相似文献   

8.
Most studies on pollinator‐mediated selection have been performed in generalized rather than specialized pollination systems. This situation has impeded evaluation of the extent to which selection acts on attraction or specialized key floral traits involved in the plant‐pollinator phenotypic interphase. We studied pollinator‐mediated selection in four populations of Nierembergia linariifolia, a self‐incompatible and oil‐secreting plant pollinated exclusively by oil‐collecting bees. We evaluated whether floral traits experience variable selection among populations and whether attraction and fit traits are heterogeneously selected across populations. Populations differed in every flower trait and selection was consistently observed for corolla size and flower shape, two traits involved in the first steps of the pollination process. However, we found no selection acting on mechanical‐fit traits. The observation that selection occurred upon attraction rather than mechanical‐fit traits, suggests that plants are not currently evolving fine‐tuned morphological adaptations to local pollinators and that phenotypic matching is not necessarily an expected outcome in this specialized pollination system.  相似文献   

9.
By mimicking shape and female mating pheromones, flowers of sexually deceptive orchids attract sexually excited males which pollinate them while trying to copulate. Although many studies have demonstrated the crucial importance of odour signals in these systems, most flowers pollinated by pseudocopulation resemble, at least superficially, an insect body and these visual cues may be important to cheat pollinators. In this 2‐year study, we show that the shape of the labellum of Geoblasta pennicillata is a target of pollinator‐mediated natural selection. Contrary to our expectations, plants with a labellum shape more similar to female wasps were not favoured. The strength and pattern of phenotypic selection varied between study years and sexual functions. Although selection through female success was probably associated to the fine‐tuning of the mechanical fit between flower form and male wasp, shape was the target of natural selection through male success in both study years indicating that male wasps use this trait when choosing flowers. The imperfect mimicry and patterns of selection observed indicated that an exact imitation is not needed to attract and deceive the pollinators and they suggested a receiver perceptual bias towards uncommon phenotypes.  相似文献   

10.
  • Long‐lived flowers increase pollen transfer rates, but these entail high water and carbon maintenance costs. The retention of pollinated and reward‐free old flowers enhances pollinator visitation to young receptive flowers by increasing floral display size. This mechanism is associated with acropetal inflorescences or changes in flower colour and openness, but the retention of unchanging solitary flowers remains overlooked.
  • We examined pollination‐dependent variation in floral longevity and determined stigmatic receptivity, pollen viability and pollen removal rates among flower ages in Kielmeyera regalis, a Neotropical savanna shrub. We also evaluated the effects of floral display size on pollinator visitation rates. Lastly, we determined whether old flowers are unvisited and exclusively increase pollinator attraction to young flowers through flower removal experiments.
  • Regardless of pollination treatment, flowers lasted fully open with no detectable physical changes for 3 days. Over time, stigmas remained receptive but >95% of pollen was removed. Pollinator visitation significantly increased with floral display size and intermediate percentages (15–30%) of newly opened flowers. Accordingly, the retention of reward‐free and unvisited old flowers increased young flower–pollinator interaction.
  • Our results reveal the importance of a prolonged floral longevity in increasing pollinator attraction toward newly opened receptive flowers without changes in flower colour and form. We conclude that the retention of pollinated, reward‐free and unvisited colour‐unchanged old flowers in K. regalis is a strategy that counteracts the water use costs associated with the maintenance of large flowers with increased mate opportunities in a pollen‐limited scenario.
  相似文献   

11.
Some pollination systems, such as buzz‐pollination, are associated with floral morphologies that require a close physical interaction between floral sexual organs and insect visitors. In these systems, a pollinator's size relative to the flower may be an important feature determining whether the visitor touches both male and female sexual organs and thus transfers pollen between plants efficiently. To date, few studies have addressed whether in fact the “fit” between flower and pollinator influences pollen transfer, particularly among buzz‐pollinated species. Here we use Solanum rostratum, a buzz‐pollinated plant with dimorphic anthers and mirror‐image flowers, to investigate whether the morphological fit between the pollinator's body and floral morphology influences pollen deposition. We hypothesized that when the size of the pollinator matches the separation between the sexual organs in a flower, more pollen should be transferred to the stigma than when the visitor is either too small or too big relative to the flower. To test this hypothesis, we exposed flowers of S. rostratum with varying levels of separation between sexual organs, to bumblebees (Bombus terrestris) of different sizes. We recorded the number of visits received, pollen deposition, and fruit and seed production. We found higher pollen deposition when bees were the same size or bigger than the separation between anther and stigma within a flower. We found a similar, but not statistically significant pattern for fruit set. In contrast, seed set was more likely to occur when the size of the flower exceeded the size of the bee, suggesting that other postpollination processes may be important in translating pollen receipt to seed set. Our results suggest that the fit between flower and pollinator significantly influences pollen deposition in this buzz‐pollinated species. We speculate that in buzz‐pollinated species where floral morphology and pollinators interact closely, variation in the visitor's size may determine whether it acts mainly as a pollinator or as a pollen thief (i.e., removing pollen rewards but contributing little to pollen deposition and fertilization).  相似文献   

12.
Pollination systems differ in pollen transfer efficiency, a variable that may influence the evolution of flower number. Here we apply a comparative approach to examine the link between pollen transfer efficiency and the evolution of inflorescence size in food and sexually deceptive orchids. We examined pollination performance in nine food‐deceptive, and eight sexually deceptive orchids by recording pollen removal and deposition in the field. We calculated correlations between reproductive success and flower number (as a proxy for resources allocated during reproductive process), and directional selection differentials were estimated on flower number for four species. Results indicate that sexually deceptive species experience decreased pollen loss compared to food‐deceptive species. Despite producing fewer flowers, sexually deceptive species attained levels of overall pollination success (through male and female function) similar to food‐deceptive species. Furthermore, a positive correlation between flower number and pollination success was observed in food‐deceptive species, but this correlation was not detected in sexually deceptive species. Directional selection differentials for flower number were significantly higher in food compared to sexually deceptive species. We suggest that pollination systems with more efficient pollen transfer and no correlation between pollination success and number of flowers produced, such as sexual deception, may allow the production of inflorescences with fewer flowers that permit the plant to allocate fewer resources to floral displays and, at the same time, limit transpiration. This strategy can be particularly important for ecological success in Mediterranean water‐deprived habitats, and might explain the high frequency of sexually deceptive species in these specialised ecosystems.  相似文献   

13.
Pollination biology studies of the endangered orchid Cypripedium japonicum were conducted in its natural habitat using pollinator observation and hand‐pollination experiments. The observed fruit set was as follows: artificial outcross‐pollinated, 100%; artificial self‐pollinated, 100%; pollinator‐excluded, 0%; and emasculated flowers, 0%. These results show that this species, although self‐compatible, is neither autogamous nor agamospermous. The fruit set for open‐pollinated flowers was 14.9%, which suggests that the study population was subject to pollinator limitation. The nectarless flowers of C. japonicum were exclusively visited and pollinated by the queens of two bumblebee species (Bombus ardens and B. diversus diversus). It is probable that the nectarless flowers of C. japonicum attract pollinators through a generalized food deceptive system.  相似文献   

14.
  • Sexually deceptive orchid species from the Mediterranean genus Ophrys usually interact with one or a few pollinator species by means of specific floral scents. In this study, we investigated the respective role of pollinator‐mediated selection and phylogenetic constraints in the evolution of floral scents in the section Pseudophrys.
  • We built a phylogenetic tree of 19 Pseudophrys species based on three nuclear loci; we gathered a dataset on their pollination interactions from the literature and from our own field data; and we extracted and analysed their floral scents using solid phase microextraction and gas chromatography‐mass spectrometry. We then quantified the phylogenetic signal carried by floral scents and investigated the link between plant–pollinator interactions and floral scent composition using phylogenetic comparative methods.
  • We confirmed the monophyly of the section Pseudophrys and demonstrated the existence of three main clades within this section. We found that floral scent composition is affected by both phylogenetic relationships among Ophrys species and pollination interactions, with some compounds (especially fatty acid esters) carrying a significant phylogenetic signal and some (especially alkenes and alkadienes) generating dissimilarities between closely related Pseudophrys pollinated by different insects.
  • Our results show that in the section Pseudophrys, floral scents are shaped both by pollinator‐mediated selection and by phylogenetic constraints, but that the relative importance of these two evolutionary forces differ among compound classes, probably reflecting distinct selective pressures imposed upon behaviourally active and non‐active compounds.
  相似文献   

15.
We investigated patterns of flower‐size variation along altitudinal gradients in the bee‐pollinated perennial Campanula rotundifolia (Campanulaceae) by examining 22 Norwegian populations at altitudes between 240 and 1100 m a.s.l. We explored potential mechanisms for the underlying pattern by quantifying pollinator–faunal composition, pollinator‐visitation rates and pollen limitation of seed set in subsets of the study populations. Despite a decrease in plant size, several measures of flower size increased with elevation. Bumble bees were the main pollinators at both alpine and lowland sites in the study area. However, species composition of the pollinator fauna differed, and pollinators were larger in higher‐elevation than in lower‐elevation sites. Pollinator visitation rates were lower at higher‐elevations than at lower elevations. Pollen limitation of seed set did not vary significantly with altitude. Our results are consistent with differences in bumble‐bee size and visitation rates as causal mechanisms for the relatively larger flowers at higher elevations, in three non‐mutually exclusive ways: 1) Larger flowers reflect selection for increased attractiveness where pollinators are rare. 2) Larger and fewer flowers represent a risk avoidance strategy where the probability of pollination is low on any given day. 3) Flower size variation reflects selection to improve the fit of pollinators with fertile structures by matching flower size to pollinator size across sites.  相似文献   

16.
Diversity of flower traits is often proposed as the outcome of selection exerted by pollinators. Positive directional pollinator‐mediated selection on floral size has been widely shown to reduce phenotypic variance. However, the underlying mechanism of maintaining within‐population floral color polymorphism is poorly understood. Divergent selection, mediated by different pollinators or by both mutualists and antagonists, may create and maintain such polymorphism, but it has rarely been shown to result from differential behavior of one pollinator. We tested whether different behaviors of the same pollinators in morning and evening are associated with dimorphic floral trait in Linum pubescens, a Mediterranean annual plant that exhibits variable within‐population frequencies of dark‐ and light‐colored flower tubes. Usia bicolor bee‐flies, the major pollinators of L. pubescens, are mostly feeding in the flower in the morning, while in the evening they are mostly visiting the flowers for mating. In 2 years of studying L. pubescens in a single large population in the Carmel, Israel, we found in one year that dark‐centered flowers received significantly higher fraction of visits in the morning. Fitness was positively affected by number of visits, but no fitness differences were found between tube‐color morphs, suggesting that both morphs have similar pollination success. Using mediation analysis, we found that flower size was under positive directional pollinator‐mediated selection in both years, but pollinator behavior did not explain entirely this selection, which was possibly mediated also by other agents, such as florivores or a‐biotic stresses. While most pollinator‐mediated selection studies show that flower size signals food reward, in L. pubescens, it may also signal for mating place, which may drive positive selection. While flower size found to be under pollinator‐mediated selection in L. pubescens, differential behavior of the pollinators in morning and evening did not seem to explain flower color polymorphism.  相似文献   

17.
In order to explore the relationship between the pollinator and pollination syndromes, and to evaluate the possibility of predicting likely pollinators based on pollination syndromes, the pollination biology of Paphiopedilum dianthum was examined. This species shares a close phylogenetic relationship, similar habit, and a recognizable syndrome of floral features (including helmet-shaped labellum, big dorsal sepal, and black warts or hairs on petals) with other brood-site deceptive Paphiopedilum species. According to the pollination syndrome concept, P. dianthum would be pollinated by hoverflies and attract pollinators with brood-site deception. Results were consistent with this prediction. Paphiopedilum dianthum was mainly pollinated by female hoverflies (Episyrphus balteatus), and these flies were indeed lured by the false brood-site on the orchid flower. It is suggested that the pollination syndrome may be correlated with pollination selective pressure, but not simply with pollinator species, and that accurate prediction requires consideration of all factors influencing floral characters, including habit and evolutionary history.  相似文献   

18.
The pollination biology of the nectarless orchid Pogonia minor was investigated in central Japan. The investigation revealed that the solitary flowers failed to attract pollinators, while high rates of fruit set were observed in the natural population. Comparable levels of fruit set were obtained in bagged, artificial self‐pollinated and artificial cross‐pollinated plants, indicating that the species is not pollinator‐limited for fruit set under natural conditions. Autonomous self‐pollination in P. minor resulted from a reduced rostellum, which allowed contact between the pollinia and the stigma. Self‐pollination is thought to be an adaptive response that provides reproductive assurance under conditions of pollinator limitation. Since pollen limitation is generally known to be frequent among deceptive orchids, strong pollen limitation is probably a driving force in the autonomous self‐pollination mechanism in the nectarless orchid P. minor.  相似文献   

19.
Divergent selection by pollinators can bring about strong reproductive isolation via changes at few genes of large effect. This has recently been demonstrated in sexually deceptive orchids, where studies (1) quantified the strength of reproductive isolation in the field; (2) identified genes that appear to be causal for reproductive isolation; and (3) demonstrated selection by analysis of natural variation in gene sequence and expression. In a group of closely related Ophrys orchids, specific floral scent components, namely n‐alkenes, are the key floral traits that control specific pollinator attraction by chemical mimicry of insect sex pheromones. The genetic basis of species‐specific differences in alkene production mainly lies in two biosynthetic genes encoding stearoyl–acyl carrier protein desaturases (SAD) that are associated with floral scent variation and reproductive isolation between closely related species, and evolve under pollinator‐mediated selection. However, the implications of this genetic architecture of key floral traits on the evolutionary processes of pollinator adaptation and speciation in this plant group remain unclear. Here, we expand on these recent findings to model scenarios of adaptive evolutionary change at SAD2 and SAD5, their effects on plant fitness (i.e., offspring number), and the dynamics of speciation. Our model suggests that the two‐locus architecture of reproductive isolation allows for rapid sympatric speciation by pollinator shift; however, the likelihood of such pollinator‐mediated speciation is asymmetric between the two orchid species O. sphegodes and O. exaltata due to different fitness effects of their predominant SAD2 and SAD5 alleles. Our study not only provides insight into pollinator adaptation and speciation mechanisms of sexually deceptive orchids but also demonstrates the power of applying a modeling approach to the study of pollinator‐driven ecological speciation.  相似文献   

20.
Contrasting flower color patterns that putatively attract or direct pollinators toward a reward are common among angiosperms. In the deceptive orchid Anacamptis morio, the lower petal, which makes up most of the floral display, has a light central patch with dark markings. Within populations, there is pronounced variation in petal brightness, patch size, amount of dark markings, and contrast between patch and petal margin. We tested whether pollinators mediate selection on these color traits and on morphology (plant height, number of flowers, corolla size, spur length), and whether selection is consistent with facilitated or negative frequency‐dependent pollination. Pollinators mediated strong selection for increased petal brightness (Δβpoll = 0.42) and contrast (Δβpoll = 0.51). Pollinators also tended to mediate stabilizing selection on brightness (Δγpoll = –0.27, n.s.) favoring the most common phenotype in the population. Selection for reduced petal brightness among hand‐pollinated plants indicated a fitness cost associated with brightness. The results demonstrate that flower color traits influence pollination success and seed production in A. morio, indicating that they affect attractiveness to pollinators, efficiency of pollen transfer, or both. The documented selection is consistent with facilitated pollination and selection for color convergence toward cooccurring rewarding species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号