首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 652 毫秒
1.
The effects of red and far-red light on the enhancement of in vitro nitrate reductase activity and on nitrate accumulation in etiolated excised maize leaves were examined. Illumination for 5 min with red light followed by a 4-h dark period caused a marked increase in nitrate reductase activity, whereas a 5-min illumination with far-red light had no effect on the enzyme activity. The effect of red light was completely reversed by a subsequent illumination with the same period of far-red light. Continuous far-red light also enhanced nitrate reductase activity. Both photoreversibility by red and far-red light and the operation of high intensity reaction under continuous far-red light indicated that the induction of nitrate reductase was mediated by phytochrome. Though nitrate accumulation was slightly enhanced by red and continuous far-red light treatments by 17% and 26% respectively, this is unlikely to account for the entire increase of nitrate reductase activity. The far-red light treatments given in water, to leaves preincubated in nitrate, enhanced nitrate reductase activity considerably over the dark control. The presence of a lag phase and inhibition of increase in enzyme activity under continuous far-red light-by tungstate and inhibitors of RNA synthesis and protein synthesis-rules out the possibility of activation of nitrate reductase and suggests de novo synthesis of the enzyme affected by phytochrome.  相似文献   

2.
U. Hecht  R. Oelmüller  S. Schmidt  H. Mohr 《Planta》1988,175(1):130-138
In mustard (Sinapis alba L.) cotyledons, NADH-dependent glutamate synthase (NADH-GOGAT, EC 1.4.1.14) is only detectable during early seedling development with a peak of enzyme activity occurring between 2 and 2.5 d after sowing. With the beginning of plastidogenesis at approximately 2 d after sowing, ferredoxindependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) appears while NADH-GOGAT drops to a very low level. The enzymes were separated by anion exchange chromatography. Both enzymes are stimulated by light operating through phytochrome. However, the extent of induction is much higher in the case of Fd-GOGAT than in the case of NADH-GOGAT. Moreover, NADH-GOGAT is inducible predominantly by red light pulses, while the light induction of Fd-GOGAT operates predominantly via the high irradiance response of phytochrome. The NADH-GOGAT level is strongly increased if mustard seedlings are grown in the presence of nitrate (15 mM KNO3,15 mM NH4NO3) while the Fd-GOGAT level is only slightly affected by these treatments. No effect on NADH-GOGAT level was observed by growing the seedlings in the presence of ammonium (15 mM NH4Cl) instead of water, whereas the level of Fd-GOGAT was considerably reduced when seedlings were grown in the presence of NH4Cl. Inducibility of NADH-GOGAT by treatment with red light pulses or by transferring water-grown seedlings to NO 3 - -containing medium follows a temporal pattern of competence. The very low Fd-GOGAT level in mustard seedlings grown under red light in the presence of the herbicide Norflurazon, which leads to photooxidative destruction of the plastids, indicates that the enzyme is located in the plastids. The NADH-GOGAT level is, in contrast, completely independent of plastid integrity which indicates that its location is cytosolic. It is concluded that NADH-GOGAT in the early seedling development is mainly concerned with metabolizing stored glutamine whereas Fd-GOGAT is involved in ammonium assimilation.Abbreviations and symbols c continuous - D darkness - Fd-GOGAT ferredoxin-dependent glutamate synthase (EC 1.4.7.1) - FR far-red light (3.5 W·m-2) - NADH-GOGAT NADH-dependent glutamate synthase (EC 1.4.1.14) - Pfr far-red absorbing form of phytochrome - Ptot total phytochrome - R red light (6.8 W· m-2) - RG9-light long wavelength FR (10 W·m-2, RG9<0.01) - () Pfr/Ptot=wavelength-dependent photoequilibrium of the phytochrome system  相似文献   

3.
We have investigated the regulation of ferredoxin–glutamate synthase (Fd-GOGAT) in leaves of barley (Hordeum vulgare L. cv. Maris Mink) at the mRNA, protein and enzyme activity levels. Studies of the changes in Fd-GOGAT during plant development showed that the activity in shoots increases rapidly after germination to reach a maximum (on a fresh-weight basis) at day 10 and then declines markedly to less than 50% of the maximal activity by day 30, this decline being correlated with an equivalent loss of Fd-GOGAT protein. Growing the plants in darkness reduced the maximum activity attained in the shoots, but did not affect the overall pattern of the changes or their timing. The activity of Fd-GOGAT increased two- to three-fold within 48 h when etiolated leaves were exposed to light, and Northern blots indicated that the induction occurred at the mRNA level. However, whilst a carbon source could at least partially substitute for light in the induction of nitrate reductase activity, no induction of Fd-GOGAT activity was seen when etiolated leaves were treated with either sucrose or glucose. Interestingly, the levels of Fd-GOGAT mRNA and activity remained high up to a period of 16 h or 72 h darkness, respectively. Compared with plants grown in N-free medium, light-grown plants supplied with nitrate had almost two-fold higher Fd-GOGAT activities and increased Fd-GOGAT mRNA levels, but nitrate had no effect on the abundance of the enzyme or its mRNA in etiolated plants, indicating that light is required for nitrate induction of barley Fd-GOGAT. Received: 23 April 1997 / Accepted: 28 May 1997  相似文献   

4.
Both NADH-dependent glutamate synthase (NADH-GOGAT, EC 1.4.1.14) and ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) activities were present in the endosperm, embryo, pedicel and pericarp of maize ( Zea mays L. var. W64A × A619) kernels. The endosperm contained the highest proportions of each activity on a per tissue basis. In the endosperm, NADH-GOGAT and Fd-GOGAT activities increased 12- and 2.5-fold, respectively, during early zein accumulation. NADH-GOGAT and Fd-GOGAT activities were expressed in the upper, middle and lower portions of the endosperm in a manner that paralleled but preceded zein accumulation. Maize endosperm NADH-GOGAT was purified 159-fold using ammonium sulfate fractionation, anion exchange chromatography and dye-ligand chromatography. Apparent Km values for glutamine, α-ketoglutarate and NADH were 850, 19 and 1 μM, respectively. The results are consistent with endosperm GOGAT functioning to redistribute nitrogen from glutamine, the predominant nitrogenous compound delivered to the endosperm, into other amino acids needed for storage protein synthesis.  相似文献   

5.
Nitrite reductase in the excised etiolated leaves of maize showedthe photoreversibility by red and far-red light. Five minutesof red light illumination lead to a 130% increase in the enzymeactivity which was reversed by far-red light. The kinetics ofnitrite reductase activity under continuous far-red light showeda lag phase of 1 hr. (Received January 17, 1981; Accepted February 20, 1981)  相似文献   

6.
Nicotinamide adenine dinucleotide phosphate (NADP)-dependent glyceraldehyde-3-phosphate dehydrogenase (GPDH) (EC 1.2.1.13), a chloroplast enzyme, had low activity in etioplasts of maize leaves. A light dependent increase of enzyme activity of 7-day-old etiolated seedlings showed a lag period of about 2.5 hours followed by a rapid increase in activity during the next 10 hours. The chlorophyll content followed a similar pattern of increasing concentration, but its formation was not directly related to NADP-GPDH formation. The specific activity of NADP-GPDH was lowest in the morphologically youngest tissue near the base of the lamina. The increase in NADP-GPDH was inhibited by cycloheximide but not by chloramphenicol. This indicates that at least some of the enzyme polypeptides are synthesized by 80S ribosomes in the cytoplasm, transported into chloroplasts and become active in chloroplasts. In etiolated maize shoots subjected to a combination of both 3-(p-chlorophenyl)-1,1-dimethylurea, monuron at 7 x 10(-5)m and far red light treatment for 15 hours, the NADP-GPDH activity increased 42% over the dark control compared to 70% increase for the light control. It is concluded that NADPH is not absolutely required for the activation of NADP-GPDH in maize leaves under physiological conditions.  相似文献   

7.
M. W. Elmlinger  H. Mohr 《Planta》1991,183(3):374-380
The appearance of NADH- and ferredoxin (Fd)-dependent glutamate synthases (GOGATs) was investigated in the major organs (roots, hypocotyl and cotyledonary whorl) of the Scots pine seedling. It was found that cytosolic NADH-GOGAT (EC 1.4.1.14) dropped to a low level during the experimental period (from 4 to 12 d after sowing) and was not significantly affected by light. On the other hand, plastidic Fd-GOGAT (EC 1.4.7.1) increased strongly in response to light. Whereas similar amounts of NADH-GOGAT were found in the different organs, Fd-GOGAT was mainly found in the cotyledons even in the presence of nitrate. Protein chromatography revealed only a single Fd-GOGAT peak. No isoforms were detected. Experiments to investigate regulation of the appearance of Fd-GOGAT in the cotyledonary whorl yielded the following results: (i) In darkness, neither nitrate (15 mM KNO3) nor ammonium (15 mM NH4Cl) had an effect on the appearance of Fd-GOGAT. In the light, nitrate stimulated Fd-GOGAT activity by 30% whereas ammonium had no effect. The major controlling factor is light. (ii) The action of long-term white light (100 W · m–2) could be replaced quantitatively by blue light (B, 10 W · m–2). Since the action of long-term far-red light was very weak, operation of the High Irradiance Reaction of phytochrome is excluded. On the other hand, light-pulse experiments with dark-grown seedlings showed the involvement of phytochrome. (iii) Red light, operating via phytochrome, could fully replace B, but only up to 10 d after sowing. Thereafter, there was an absolute requirement for B for a further increase in the enzyme level. It appears that the operation of phytochrome was replaced by the operation of cryptochrome (B/UV-A photoreceptor). (iv) However, dichromatic experiments (simultaneous treatment of the seedlings with two light beams to vary the level of the far-red-absorbing form of phytochrome (Pfr) in blue light) showed that B does not affect enzyme appearance if the Pfr level is low. It is concluded that B is required to maintain responsiveness of Fd-GOGAT synthesis to phytochrome (Pfr) beyond 10 d after sowing.Abbreviations and Symbols B blue light - c continuous - D darkness - Fd-GOGAT ferredoxin-dependent glutamate synthase (EC 1.4.7.1) - FR far-red light - HIR high-irradiance reaction of phytochrome - NADH-GOGAT nicotinamide-dinucleotide-dependent glutamate synthase (EC 1.4.1.14) - R red light - RG9 long-wavelength far-red light defined by the properties of the Schott glass filter (RG9<0.01) - Pfr/Ptot far-red-absorbing form of phytochrome/total phytochrome, wavelength-dependent photoequilibrium of the phytochrome system Research supported by Deutsche Forschungsgemeinschaft (SFB 46 und Schwerpunkt Physiologie der Bäume). We thank E. Fernbach for his help with the dichromatic experiments.  相似文献   

8.
Asparagine synthetase (EC 6.3.5.4) activity was increased 4- and 8-fold when maize ( Zea mays L.) seedlings were kept in darkness for 24 h and 7 days, respectively; this increase was abolished by cycloheximide. Irradiation of the dark adapted seedlings with a pulse of red light resulted in a 4-fold decrease of the enzyme activity within 48 h, which was raised again following a far-red light pulse. Co-action of light and benzyladenine, reported for the light-inducible enzymes, was proved to hold also for the light-repressible asparagine synthetase. The induction of asparagine synthetase activity in the dark is abolished by glucose, suggesting the possible involvement of the enzyme in the contrae of metabolic fluxes of –carbon and nitrogen through assimilatory pathways.  相似文献   

9.
10.
GLU1 encodes the major ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) in Arabidopsis thaliana (ecotype Columbia). With the aim of providing clues on the role of Fd-GOGAT, we analyzed the expression of Fd-GOGAT in tobacco (Nicotiana tabacum L. cv. Xanthi). The 5′ flanking element of GLU1 directed the expression of the uidA reporter gene in the palisade and spongy parenchyma of mesophyll, in the phloem cells of vascular tissue and in the roots of tobacco. White light, red light or sucrose induced GUS expression in the dark-grown seedlings in a pattern similar to the GLU1 mRNA accumulation in Arabidopsis. The levels of GLU2 mRNA encoding the second Fd-GOGAT and NADH-glutamate synthase (NADH-GOGAT, EC 1.4.1.14) were not affected by light. Both in the light and in darkness, 15NH4+ was incorporated into [5−15N]glutamine and [2−15N]glutamate by glutamine synthetase (GS, EC 6.3.1.2) and Fd-GOGAT in leaf disks of transgenic tobacco expressing antisense Fd-GOGAT mRNA and in wild-type tobacco. In the light, low level of Fd-glutamate synthase limited the [2−15N]glutamate synthesis in transgenic leaf disks. The efficient dark labeling of [2−15N]glutamate in the antisense transgenic tobacco leaves indicates that the remaining Fd-GOGAT (15–20% of the wild-type activity) was not the main limiting factor in the dark ammonium assimilation. The antisense tobacco under high CO2 contained glutamine, glutamate, asparagine and aspartate as the bulk of the nitrogen carriers in leaves (62.5%), roots (69.9%) and phloem exudates (53.2%). The levels of glutamate, asparagine and aspartate in the transgenic phloem exudates were similar to the wild-type levels while the glutamine level increased. The proportion of these amino acids remained unchanged in the roots of the transgenic plants. Expression of GLU1 in mesophyll cells implies that Fd-GOGAT assimilates photorespiratory and primary ammonium. GLU1 expression in vascular cells indicates that Fd-GOGAT provides amino acids for nitrogen translocation. The nucleotide sequence data of the GLU1 gene reported in the present study is available from GenBank with the following accession number: AY189525  相似文献   

11.
Several parameters of amino acid metabolism were studied in detached primary leaves of wheat (Triticum aestivum L. cv. Castell) during a 14 day incubation period in the dark. Protein loss was accompanied by a 5-fold increase in the total amount of free amino acids during the first 4 days of the incubation period with asparagine being the most important. Beyond this stage a pronounced intracellular accumulation of ammonium occured. A gradual decrease in the levels of free amino acids and ammonium at the later stages of senescence could in part be accounted for by leakage from the leaves. Additionally, some nitrogen was lost due to ammonia volatilization. The rapid decay of the glutamine synthetase (GS; EC 6.3.1.2)-glutamate synthase (Fd-GOGAT; EC 1.4.7.1) system and the fast decline of glutamate-pyruvate transaminase (GPT; EC 2.6.1.2) activity appear to be predominant features of senescence in the dark. Decreasing Fd-GOGAT activity was slightly compensated by a small and temporary increase in the activity of NADH-GOGAT (EC 1.4.1.14). Glutamateoxalocetate transaminase (GOT: EC 2.6.1.1) activity, although declining continuously, proved to be much more persistent. Changes in glutamate dehydrogenase (GDH; EC 1.4.1.3) activity closely resembled the profile of ammonium evolution in the leaves and NADP-isocitrate dehydrogenase (IDH; EC 1.1.1.42) activity revealed a temporary maximum during the period of rapid increase in GDH activity. Increased activity of GDH could also be induced by exogenous ammonium. Ammonium accumulation could, at least partly, be caused by increased asparaginase (EC 3.5.1.1) activity which accompanied the rapid conversion of asparagine to aspartic acid. Asparagine aminotransferase (EC 2.6.1.14) activity declined sharply from the beginning of the senescence period. Although the activity profile of glutaminase (EC 3.5.1.2) was similar to that of asparaginase, glutamine was of little importance quantitatively and an analogous relationship between glutamine and glutamic acid could not be detected.  相似文献   

12.
Glutamate (Glu) metabolism and amino acid translocation were investigated in the young and old leaves of tobacco (Nicotiana tabacum L. cv Xanthi) using [15N]ammonium and [2-15N]Glu tracers. Regardless of leaf age, [15N]ammonium assimilation occurred via glutamine synthetase (GS; EC 6.1.1.3) and Glu synthase (ferredoxin [Fd]-GOGAT; EC 1.4.7.1; NADH-GOGAT; EC 1.4.1.14), both in the light and darkness, and it did not depend on Glu dehydrogenase (GDH; EC 1.4.1.2). The [15N]ammonium and ammonium accumulation patterns support the role of GDH in the deamination of [2-15N]Glu to provide 2-oxoglutarate and [15N]ammonium. In the dark, excess [15N]ammonium was incorporated into asparagine that served as an additional detoxification molecule. The constant Glu levels in the phloem sap suggested that Glu was continuously synthesized and supplied into the phloem regardless of leaf age. Further study using transgenic tobacco lines, harboring the promoter of the GLU1 gene (encoding Arabidopsis [Arabidopsis thaliana] Fd-GOGAT) fused to a GUS reporter gene, revealed that the expression of Fd-GOGAT remained higher in young leaves compared to old leaves, and higher in the veins compared to the mesophyll. Confocal laser-scanning microscopy localized the Fd-GOGAT protein to the phloem companion cells-sieve element complex in the leaf veins. The results are consistent with a role of Fd-GOGAT in supplying Glu for the synthesis and transport of amino acids. Taken together, the data provide evidence that the GS-GOGAT pathway and GDH play distinct roles in the source-sink nitrogen cycle of tobacco leaves.  相似文献   

13.
14.
Diamine oxidase (DAO; EC 1.4.3.6) levels are strongly reduced in epicotyls of 3-day-old etiolated lentil (Lens culinaris Medicus) seedlings upon exposure to continuous red and blue light, as compared to etiolated controls. Far-red light inhibits DAO activity to a lesser extent. A less marked effect can also be obtained by short (5-10 min) daily exposures. Phytochrome involvement in this light-mediated response has been demonstrated by red/far-red reversibility experiments. These findings provide the first evidence that mechanisms underlying the photoregulation of DAO level in the Leguminosae are related to photomorphogenesis and are essentially unrelated to the photosynthetic capacity of the seedling.  相似文献   

15.
To further explore the function of NADH-dependent glutamate synthase (GOGAT), the tissue distribution of NADH-GOGAT protein and activity was investigated in rice (Oryza sativa L.) leaves. The distributions of ferredoxin (Fd)-dependent GOGAT, plastidic glutamine synthetase, and cytosolic glutamine synthetase proteins were also determined in the same tissues. High levels of NADH-GOGAT protein (33.1 μg protein/g fresh weight) and activity were detected in the 10th leaf blade before emergence. The unexpanded, nongreen portion of the 9th leaf blade contained more than 50% of the NADH-GOGAT protein and activity per gram fresh weight when compared with the 10th leaf. The expanding, green portion of the 9th leaf blade outside of the sheath contained a slightly lower abundance of NADH-GOGAT protein than the nongreen portion of the 9th blade on a fresh weight basis. The fully expanded leaf blades at positions lower than the 9th leaf had decreased NADH-GOGAT levels as a function of increasing age, and the oldest, 5th blade contained only 4% of the NADH-GOGAT protein compared with the youngest 10th leaf blade. Fd-GOGAT protein, on the other hand, was the major form of GOGAT in the green tissues, and the highest amount of Fd-GOGAT protein (111 μg protein/g fresh weight) was detected in the 7th leaf blade. In the nongreen 10th leaf blade, the content of Fd-GOGAT protein was approximately 7% of that found in the 7th leaf blade. In addition, the content of NADH-GOGAT protein in the 10th leaf blade was about 4 times higher than that of Fd-GOGAT protein. The content of plastidic glutamine synthetase polypeptide was also the highest in the 7th leaf blade (429 μg/g fresh weight) and lowest in nongreen blades and sheaths. On the other hand, the relative abundance of the cytosolic glutamine synthetase polypeptide was the highest in the oldest leaf blade, decreasing to 10 to 20% of that value in young, nongreen leaves. These results suggest that NADH-GOGAT is important for the synthesis of glutamate from the glutamine that is transported from senescing source tissues through the phloem in the nongreen sink tissues in rice leaves.  相似文献   

16.
Induction of flowering of etiolated Lemna paucicostata Hegelm. T-101, a short-day plant, was inhibited by far-red (FR) or blue light (BL) applied at the beginning of a 72-h inductive dark period which was followed by two short days. In either case the inhibition was reversed by a subsequent exposure of the plants to near-ultraviolet radiation (NUV), with a peak of effectiveness near 380 nm. Inhibition by BL or FR and its reversion by NUV are repeatable, i.e., NUV is acting in these photoresponses like red light although with much lower effectiveness. Thus, it is considered that NUV acts through phytochrome and no specific BL and NUV photoreceptor is involved in photocontrol of floral induction on this plant.Abbreviations BL blue light - FR far-red light - NUV near ultraviolet radiation - P red-absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - R red light  相似文献   

17.
The physiological role of the NADH-dependent glutamine-2-oxoglutarate aminotransferase (NADH-GOGAT) enzyme was addressed in Arabidopsis using gene expression analysis and by the characterization of a knock-out T-DNA insertion mutant (glt1-T) in the single NADH-GOGAT GLT1 gene. The NADH-GOGAT GLT1 mRNA is expressed at higher levels in roots than in leaves. This expression pattern contrasts with GLU1, the major gene encoding Fd-GOGAT, which is most highly expressed in leaves and is involved in photorespiration. These distinct organ-specific expression patterns suggested a non-redundant physiological role for the NADH-GOGAT and Fd-GOGAT gene products. To test the in vivo function of NADH-GOGAT, we conducted molecular and physiological analysis of the glt1-T mutant, which is null for NADH-GOGAT, as judged by mRNA level and enzyme activity. Metabolic analysis showed that the glt1-T mutant has a specific defect in growth and glutamate biosynthesis when photorespiration was repressed by 1% CO2. Under these conditions, the glt1-T mutant displayed a 20% decrease in growth and a dramatic 70% reduction in glutamate levels. Herein, we discuss the significance of NADH-GOGAT in non-photorespiratory ammonium assimilation and in glutamate synthesis required for plant development.  相似文献   

18.
19.
Unrolling of 1 cm sections, taken between 3 and 4 cm from the apex, of 6-day-old, etiolated barley leaves, was promoted by blue (426 nm) and red (658 nm) light. Accompanying such unrolling was a reduction in the level of the free proline of the tissue. When leaf unrolling was prevented by irradiation with far-red (728 nm) light, or treatment with abscisic acid (ABA) following red light irradiation, the level of proline remained more or less unchanged, at the level of the untreated, dark controls. The proline analogue, azetidine carboxylic acid (AZC) powerfully inhibited the light induced leaf opening, emphasizing the significance of proline-containing, structural and functional proteins in barley leaf unrolling. The inhibition imposed by AZC is partially reversible by added proline.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号