首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasive plant species have been suggested to change the composition of the soil community in a way that results in a positive feedback for them and a negative feedback for the native plant community. Carpobrotus edulis, a species native to South Africa, is one of the most aggressive exotic species in Mediterranean Europe. Although several aspects of its invasion biology have been studied, the occurrence of plant-soil feedback has been scarcely investigated. We first checked for the existence of biotic resistance in soils from two invaded sites of Mediterranean Europe and one site in the native area. Secondly, we evaluated the effects of soil conditioning on the germination and plant growth of C. edulis and two key species of native dunes. Finally, we tested the effects of short- and long-term soil conditioning on the performance and reproductive effort of C. edulis. Our results show that at first there is a natural resistance to invasion by the soil biota. Later, biotic resistance in invaded soil is suppressed by the establishment of a soil community that enhances the growth of C. edulis and that negatively influences the growth and survival of the native plants. Long-term soil conditioning in the field resulted in shifts in the balance between vegetative growth and sexual reproduction. Long-term invasion was also reflected in high levels of endophyte colonization by chytrids in roots, although the physiological consequences of this colonization remain unknown. The results obtained illustrate a mechanism that explains how C. edulis breaks the initial biotic resistance of newly-invaded landscapes. Finally, this study highlights the importance of studying plant-soil interactions on different members of the plant community and temporal stages in order to fully understand invasion.  相似文献   

2.
Does Carpobrotus edulis have an impact on native plants? How do C. edulis’ soil residual effects affect the maintenance of native populations? What is the extent of interspecific competition in its invasion process? In order to answer those questions, we established pure and mixed cultures of native species and C. edulis on soil collected from invaded and native areas of Mediterranean coastal dunes in the Iberian Peninsula. We examined the impact of the invader on the germination, growth and survival of seeds and adult plants of two native plant species (Malcolmia littorea (L.) R.Br, and Scabiosa atropurpurea L.) growing with ramets or seeds of C. edulis. Residual effects of C. edulis on soils affected the germination process and early growth of native plants in different ways, depending on plant species and density. Interspecific competition significantly reduced the germination and early growth of native plants but this result was soil, density, timing and plant species dependent. Also, at any density of adult individuals of C. edulis, established native adult plants were not competitive. Moreover, ramets of C. edulis had a lethal effect on native plants, which died in a short period of time. Even the presence of C. edulis seedlings prevents the recruitment of native species. In conclusion, C. edulis have strong negative impacts on the germination, growth and survival of the native species M. littorea and S. atropurpurea. These impacts were highly depended on the development stages of native and invasive plants. Our findings are crucial for new strategies of biodiversity conservation in coastal habitats.  相似文献   

3.
Coastal dune areas are valuable ecosystems, generally impacted by habitat destruction and invasive alien species. In this study, we assessed how human disturbance and invasion by Carpobrotus edulis impact the soils and the establishment of native flora in the north-western coastal regions of Spain. We compared soil characteristics (pH, conductivity, water content, nutrients and enzymatic activities) and native plant as well as C. edulis fitness correlates (germination and early growth) between uninvaded and invaded soils from urban and natural coastal dune areas. We found that human disturbance impacts coastal soils by increasing organic matter and water content, modifying soil nutrients and cycles, and reducing the pH in urban soils. The presence of invasive C. edulis further increases these impacts. These changes in soil characteristics allow for the establishment of the native, but ruderal, Scolymus hispanicus and non-native C. edulis, both of which are not adapted to the typically limiting conditions of coastal dunes. In some instances, the coastal dune endemic, Malcolmia littorea, showed no fitness effects in response to urbanization or the presence of C. edulis. These results suggest that human disturbed coastal areas might be more easily invaded than natural areas. More broadly, our findings of differential responses of different native species to disturbance and invasion, illustrate the need for multi-taxon approaches when assessing the impacts of invasive species.  相似文献   

4.

Background

The species Carpobrotus edulis, native to South Africa, is one of the major plant invaders of Mediterranean coastal ecosystems around the world. Invasion by C. edulis exerts a great impact on coastal habitats. The low number of native species in invaded communities points to the possible existence of mechanisms suppressing their germination. In this study we assessed whether soil factors, endozoochory, competition and allelopathic effects of the invader affect its own early establishment and that of the native species Malcolmia littorea. We used laboratory solutions representing different chemical composition and moisture of the soil, herbivore feeding assays to simulate seed scarification and rainwater solutions to account for the effect of differently aged C. edulis litter.

Principal Findings

We show that unlike that of the native species, germination and early growth of C. edulis was not constrained by low moisture. The establishment of C. edulis, in terms of germination and early growth, was increased by scarification of seeds following passage through the European rabbit intestines; the rabbits therefore may have potential implications for plant establishment. There was no competition between C. edulis and M. littorea. The litter of the invasive C. edulis, which remains on the soil surface for several years, releases allelopathic substances that suppress the native plant germination process and early root growth.

Conclusions

The invasive species exhibits features that likely make it a better colonizer of sand dunes than the co-occurring native species. Allelopathic effects, ability to establish in drier microsites and efficient scarification by rabbits are among the mechanisms allowing C. edulis to invade. The results help to explain the failure of removal projects that have been carried out in order to restore dunes invaded by C. edulis, and the long-lasting effects of C. edulis litter need to be taken into account in future restoration projects.  相似文献   

5.
Macek  Petr  Lepš  Jan 《Plant Ecology》2003,168(1):31-43
Melinis minutiflora Beauv. (Poaceae) is an African grass that is invading mid-elevation Trachypogon savannas in Venezuela. The objective of this study was to investigate the influence of soil fertility, competition and soil disturbance in facilitating Melinis' invasion and growth in these savanna sites. We manipulated soil fertility by adding nitrogen (+N), phosphorus and potassium (+PK), or nitrogen, phosphorus, and potassium (+NPK). We simultaneously manipulated the competitive environment by clipping background vegetation. In a separate experiment, we mechanically disrupted the soil to simulate disturbance. We hypothesized that germination and growth were bottlenecks to early establishment in undisturbed savanna, but that disturbance would alleviate those bottlenecks. We measured Melinis seed germination and subsequent establishment by adding seeds to all plots. We examined Melinis growth by measuring biomass of Melinis seedling transplants, 11 months after they were placed into treatment plots. Germination and establishment of Melinis from seed was extremely low. Of the 80,000 seeds applied in the experiment, only 28 plants survived the first growing season. Mortality of Melinis seedling transplants was lowest in PK fertilized plots, but in the absence of PK mortality increased with N additions and clipping. By contrast, fertilization of the savanna with NPK greatly increased Melinis seedling biomass and this effect was greatly enhanced when competition was reduced (e.g. clipping). Melinis transplant growth responded strongly to soil disturbance- a response not fully explained by removal of competitors (clipping) or changes in soil nutrients and moisture. We suspect that disruption of the soil structure allowed for greater root proliferation and subsequent plant growth. We believe that native savanna is relatively resistant to Melinis invasion, since Melinis seedlings persisted in intact savanna but exhibited little or no growth during the first year. The significant enhancement of Melinis seedling growth with clipping and nutrient additions suggests that low soil nutrients and the presence of native savanna species are important factors in the ability of native savanna to resist Melinis establishment. However, the potential for Melinis growth increases enormously with soil disturbance.  相似文献   

6.

The anthropogenic movement of species has favoured the introduction of invasive plants worldwide. Invasive plants are frequently released from their natural enemies; however, new associations with generalist herbivores may induce defence mechanisms of non-native plants. Defensive traits are often directly related to the highly competitive ability, but also to potential antagonisms and mutualisms that they can establish with soil microorganisms. Here, we examined whether the intraspecific competition and soil microorganisms influence the morphological and physiological traits of Carpobrotus edulis when is being attacked by the native generalist snail Theba pisana. To achieve this, we grew two C. edulis individuals in separate and same pots filled with live or sterile sand, and with or without T. pisana. Our results indicated that herbivory induced an increase of shoot biomass in attacked C. edulis individuals (i.e., treated donor plants), as well as in un-attacked neighbouring individuals co-growing in the same pot (i.e., untreated recipient plants). Nevertheless, intraspecific competition nor soil microorganisms did not affect the growth of C. edulis despite reduced physiological activity and damage caused by the herbivore. Overall, our findings revealed that C. edulis individuals tolerate snail attack by inducing a compensatory growth response. We conclude that phenotypic plasticity of invasive C. edulis favours tolerance against herbivores, but we also suggest that plant-plant interactions probably determine the plant growth of un-attacked neighbouring C. edulis individuals, thus favouring their invasion mechanisms.

  相似文献   

7.
Sand dune ecosystems have a high conservation value worldwide, but they are highly threatened by exotic plant invasion. We investigated the impacts of the exotic invasive species Carpobrotus edulis on the composition and structure (spatial pattern, total cover, species diversity and species co-occurrence) of native sand dune communities in the western coast of Portugal. We studied eight sites following a north-south gradient; in each site we established 8–10 transects of 25 contiguous quadrats of one square meter. C. edulis had a significantly clumped pattern in five of the study sites, which, however, was not related to the spatial pattern of native species. The effects of climate on the community structure variables were on average three times stronger than those of C. edulis. This species also had small effects on the floristic composition of native species. Our results indicate that the success and impacts of C. edulis are habitat-dependent and context-specific. They also provide evidence of a strong resilience to the impacts of invasion in the studied sand dune ecosystems: C. edulis did not reach large abundances or exert negative impacts on native communities to the extent expected. These ecosystems provide a unique opportunity to increase our understanding on the origin of impacts by invasive species, and on how particular communities resist the impacts of an invader.  相似文献   

8.
Increases in nitrogen (N) availability can favor fast-growing invasive species over slow-growing native species. One way to reduce N availability is to add labile carbon (C) to the soil, which can lead to microbial immobilization of plant available N. This method has been used, with widely varying degrees of success, to both study and control plant invasions. One reason that C addition might not work as expected is that N is not always the limiting resource for plant growth. For example, if plant growth is limited by water, changes in N availability might have little effect on invasion. Here I ask whether effects of C addition on N availability, resident plant biomass, and invasion depend on water availability in semi-arid mixedgrass prairie. Six invasive species were seeded into plots treated with a factorial combination of water (ambient or added) and N (+C, control or +N). Carbon addition reduced capture of mineral N by resin probes (by an average of 73%), and reduced biomass of resident species (from 336 g m−2 to 203 g m−2), both with and without added water. In contrast, because there was little invasion in ambient-water plots, C addition reduced invasion only in added-water plots. Given added water, C addition reduced biomass of Centaurea diffusa by 95%, and prevented invasion by Gypsophila paniculata and Linaria dalmatica. Mechanisms by which C addition reduced invasion varied by species, with added C reducing the growth of individual C. diffusa plants, but reducing numbers of G. paniculata and L. dalmatica individuals.  相似文献   

9.
Germination, growth, and physiological responses of hybridizing Carpobrotus from coastal California to soil salinity were studied. Hybrids are presumably the result of hybridization and introgression between the exotic Carpobrotus edulis, a succulent perennial invading coastal habitats, and the native or long-naturalized C. chilensis. Germination responses were investigated at 0, 10, 20, and 50% seawater. Seedling growth and physiology were compared by irrigating seedlings with solutions of the same seawater concentrations and in low and high nutrients. Germination was inhibited in the presence of salt, but recovered after transferring the seeds to fresh water. Seeds exposed to salt had higher final germination rates than control. Growth of Carpobrotus was slightly enhanced by low seawater concentrations but reduced at high salinity at both nutrient regimes. Leaf cell sap osmolarity increased with increasing soil salinity, and taxa did not differ significantly in this physiological adjustment. Leaf carbon isotope ratios (∂13C) ranged from −28 to −22‰ and became less negative at higher salinities, indicating an improved water use efficiency in the seedlings at high salt concentrations. In addition, ∂13C values were generally less negative at high than at low nutrients. Differences among taxa were generally small. The results show that salinity affects both establishment and growth of hybridizing Carpobrotus. The overall weak species differences in salt tolerance indicate that the exotic C. edulis can occupy the same sites as C. chilensis in terms of salinity. The similarity of hybrids in their response to salinity suggests that they may contribute to the invasion by Carpobrotus.  相似文献   

10.
Forge  Thomas  Muehlchen  Andrea  Hackenberg  Clemens  Neilsen  Gerry  Vrain  Thierry 《Plant and Soil》2001,236(2):185-196
Six species of arbuscular mycorrhizal (AM) fungi (Glomus aggregatum, G. clarum, G. etunicatum, G. intraradices, G. mosseae and G. versiforme) were evaluated, in three greenhouse experiments, for their effects on reproduction of the root-lesion nematode, Pratylenchus penetrans, and growth of Ottawa 3 apple rootstock. Glomus mosseae increased total dry weights of nematode-inoculated and non-inoculated rootstock in all three greenhouse experiments, and G. intraradices increased dry weights in two of three greenhouse experiments. Plants inoculated with G. mosseae generally supported fewer P. penetrans per gram of root than plants inoculated with other AM fungi, but did not differ significantly from the controls in any greenhouse experiment. Colonization of roots by AM fungi was reduced by P. penetrans at initial inoculum densities greater than 250 nematodes/L soil. In field trials, preplant inoculation with either G. intraradices or G. mosseae increased rootstock growth and leaf concentrations of P, Mg, Zn and Cu in fumigated plots but not in non-fumigated plots, indicating that colonization by native AM fungi in non-fumigated plots may have been sufficient for adequate nutrient acquisition. The abundance of vesicles and arbuscules was greater in roots of plants inoculated with AM fungi before planting than in roots of non-inoculated plants, in both fumigated and non-fumigated plots. P. penetrans per gram of root and per 50 ml soil were significantly lower for G. mosseae- inoculated plants than for non-inoculated plants in fumigated soil but not in non-fumigated soil.  相似文献   

11.
为了解毛竹林下不同盖度芒萁种群对土壤碳含量和养分状况的影响,研究了四川长宁县芒萁(Dicranopteris dichoyoma)盖度分别为7.75%(PE)和63.25%(DD)下的毛竹(Phyllostachys edulis)林土壤团聚体稳定性和生态化学计量特征。结果表明,DD样方土壤大团聚体含量显著低于PE样方,进而导致团聚体稳定性降低。DD样方土壤总有机碳(TOC)、全氮(TN)、全磷(TP)含量显著低于PE样方,且TP降幅最大,使得土壤C:N、C:P和N:P显著增加。毛竹凋落叶和细根的TOC、TN、TP、C:N、C:P和N:P在DD和PE样方间无显著差异,但DD样方芒萁凋落叶和细根的TN和TP含量显著高于毛竹。相关分析表明PE毛竹细根的TP含量仅与大团聚体的TP含量呈显著正相关;DD毛竹和芒萁细根的TP含量与大团聚体、微团聚体和中团聚体的TP含量均呈显著正相关。毛竹林下高盖度的芒萁种群降低了土壤团聚体稳定性和土壤C、N、P含量,通过改变土壤生态化学计量特征进而增加毛竹和芒萁细根对土壤不同粒径团聚体N和P的吸收,尤其是对P的吸收。因此,在川南地区粗放经营毛竹林中应考虑调整林下...  相似文献   

12.
We examine the effect of mulches on the soil volumetric water content (SVWC), pH, carbon (C), total and mineral (NH4 and NO3) nitrogen (N), total and bicarbonate phosphorus (P), and on the survival and relative growth rate of three species, Ipomea wolcottiana Rose, Lonchocarpus eriocarinalis Micheli and Caesalpinia eriostachys Benth, in a degraded seasonally dry tropical forest (SDTF) area. Our study year was unusually dry, with only half of the mean annual rainfall. Sixteen plots (5 × 6 m) for each of our four treatments, mulches with alfalfa (Medicago sativa L.) straw, forest litter (SDTF litter), polyethylene and bare soil (control), were used. In each plot, 20 tree saplings were planted of each species. The SVWC was higher in plots mulched with polyethylene than in bare soil plots. The soil pH did not change with mulching, and there were no differences between treatments in the concentrations of soil organic C, total N, NO3 and total P. However, soil concentrations of NH4 were highest in plots with alfalfa straw and of bicarbonate P in plots with polyethylene. Sapling survival was higher in polyethylene mulch plots than in other mulching treatments, in the order I.␣wolcottiana > C. eriostachys > L. eriocarinalis. Sapling survival under organic mulches, alfalfa straw and forest litter were similar, and lowest in bare soil. The relative growth rate followed the order L. eriocarinalis < C. eriostachys < I. wolcotiana, and the growth rate of all species was greatest under polyethylene mulch. We conclude that a combination of polyethylene mulch with species of high growth rate is best for restoring seasonally dry tropical areas.  相似文献   

13.
3种菊科入侵植物不同生长时期的土壤酶活性和养分变化   总被引:1,自引:0,他引:1  
【目的】黄顶菊、三叶鬼针草和豚草是我国危害较严重的3种菊科入侵植物。了解3种菊科植物生长过程中土壤养分和酶活性的变化,可以为研究其入侵机制提供依据。【方法】在中国农业科学院植物保护研究所廊坊中试基地开展同质园实验,比较分析了黄顶菊、三叶鬼针草和豚草3种菊科入侵植物在幼苗期、旺盛生长期和生殖生长期根际土壤养分和酶活性的变化。【结果】3种外来菊科植物的生长时期对土壤养分和酶活性存在显著影响。3种外来植物入侵域的土壤速效磷、硝态氮含量以及磷酸酶活性随生长时期变化都表现出先升高后降低的趋势,均在旺盛生长期达到最大值。入侵域土壤速效磷和硝态氮含量的变化趋势与狗尾草明显不同。3种外来植物入侵降低了土壤速效钾含量,提高了土壤脲酶、磷酸酶活性。【结论】3种外来菊科植物的入侵改变了土壤养分和酶活性,创造出更有利于自身生长和繁殖的条件,以利于其进一步扩张。  相似文献   

14.
Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via ‘cross-facilitation’ of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as ‘nurse’species in restoration efforts.  相似文献   

15.
The spread of exotic, invasive species is a global phenomenon that is recognized as a major source of environmental change. Although many studies have addressed the effects of exotic plants on the communities they invade, few have quantified the effects of invader removal on plant communities, or considered the degree to which different plant groups vary in response to invasion and invader removal. We evaluated the effects of an exotic succulent, iceplant (Carpobrotus edulis), on a coastal dune plant community in northern California, as well as the community responses to its removal. To assess possible mechanisms by which iceplant affects other plants, we also evaluated its above- and belowground influences on the germination and growth of a dominant exotic annual grass, Bromus diandrus. We found that iceplant invasion was associated with reduced native plant cover as well as increased cover and density of some exotic plants—especially exotic annual grasses. However, iceplant removal did not necessarily lead to a reversal of these effects: removal increased the cover and density of both native and exotic species. We also found that B. diandrus grown in iceplant patches, or in soil where iceplant had been removed, had poorer germination and growth than B. diandrus grown in soil not influenced by iceplant. This suggests that the influence of iceplant on this dune plant community occurs, at least in part, due to belowground effects, and that these effects remain after iceplant has been removed. Our study demonstrates the importance of considering how exotic invasive plants affect not only native species, but also co-occurring exotic taxa. It also shows that combining observational studies with removal experiments can lead to important insights into the influence of invaders and the mechanisms of their effects.  相似文献   

16.
Biological soil crusts dominated by lichens are common components of shrub-steppe ecosystems in northwestern US. We conducted growth chamber experiments to investigate the effects of these crusts on seed germination and initial seedling establishment of two annual grasses; the highly invasive exotic Bromus tectorum L. and the native Vulpia microstachys Nutt. We recorded germination time courses on bare soil and two types of biological soil crusts; one composed predominantly of the lichen Diploschistes muscorum (Scop.) R. Sant. (lichen crust) and the other comprised of an assortment of lichens and mosses (mixed crust). Final germination on the lichen crust for both grass species was about a third of that on the bare soil surface. Mean germination time (MGT) was 3–4 days longer on the lichen crust compared with the bare soil. In contrast, there was no difference in germination percentage or MGT between the mixed crust and bare soil, and results were similar for both grass species. For both species, root penetration of germinating seeds on the lichen crust was lower than on the bare soil or mixed crust surfaces. The combined effects of the lichen crust on germination and root penetration resulted in an overall reduction in seedling establishment of 78% for V. microstachys and 85% for B. tectorum relative to the bare soil treatment. Our results clearly demonstrate that lichen-dominated biological soil crust can inhibit germination and root penetration, but the extent of these effects depends on the composition of the crust. Responsible Editor: Tibor Kalapos  相似文献   

17.
Seastedt TR  Suding KN 《Oecologia》2007,151(4):626-636
Knapweeds (Centaurea spp.) are among the most invasive of non-indigenous plant species that have colonized western North America over the last century. We conducted a 4-year experiment in a reconstructed grassland to test hypotheses related to the ability of grasslands to resist the invasion of diffuse knapweed (C. diffusa). We experimentally invaded C. diffusa and three native species into areas where we manipulated soil nitrogen (N) and phosphorus (P) availability and removed extant grasses to reduce competition. We evaluated the growth response of these species to these resources and competitive manipulations. Of the native species that were experimentally added, only one species, Ratibida pinnata (prairie coneflower), established in any numbers. Establishment values in intact vegetation were low for both species, but establishment by C. diffusa (0.02%) clearly outperformed that of R. pinnata (0.001%). Under reduced grass competition, establishment was enhanced, but the values for C. diffusa (0.68%) were not statistically different from those of R. pinnata (0.57%). Neither species performed better under higher soil nutrients in the presence of competing grasses. In plots with both species, biomass of the two planted species was positively correlated, but the biomass of both species was negatively correlated with non-added weedy species. Subsequent harvests of C. diffusa indicated that establishment was enhanced in treatments with higher soil nutrients but that the biomass of these plants could only be enhanced when plant competition was also reduced. These results indicate that C. diffusa can establish in intact grasslands at rates higher than natives, but opportunism rather than competitive ability best describes the invasiveness of C. diffusa. Thus, the mechanisms contributing to the establishment of this knapweed species are different from factors identified as contributing to the dominance of this invader.  相似文献   

18.
Exotic plant invasion may alter underground microbial communities, and invasion-induced changes of soil biota may also affect the interaction between invasive plants and resident native species. Increasing evidence suggests that feedback of soil biota to invasive and native plants leads to successful exotic plant invasion. To examine this possible underlying invasion mechanism, soil microbial communities were studied where Ageratina adenophora was invading a native forest community. The plant–soil biota feedback experiments were designed to assess the effect of invasion-induced changes of soil biota on plant growth, and interactions between A. adenophora and three native plant species. Soil analysis showed that nitrate nitrogen (NO3-N), ammonium nitrogen (NH4+-N), and available P and K content were significantly higher in a heavily invaded site than in a newly invaded site. The structure of the soil microbial community was clearly different in all four sites. Ageratina adenophora invasion strongly increased the abundance of soil VAM (vesicular-arbuscular mycorrhizal fungi) and the fungi/bacteria ratio. A greenhouse experiment indicated that the soil biota in the heavily invaded site had a greater inhibitory effect on native plant species than on A. adenophora and that soil biota in the native plant site inhibited the growth of native plant species, but not of A. adenophora. Soil biota in all four sites increased A. adenophora relative dominance compared with each of the three native plant species and soil biota in the heavily invaded site had greater beneficial effects on A. adenophora relative dominance index (20% higher on average) than soil biota in the non-invaded site. Our results suggest that A. adenophora is more positively affected by the soil community associated with native communities than are resident natives, and once the invader becomes established it further alters the soil community in a way that favors itself and inhibits natives, helping to promote the invasion. Soil biota alteration after A. adenophora establishment may be an important part of its invasion process to facilitate itself and inhibit native plants.  相似文献   

19.
Clonal growth seems to be a common trait for many of the most aggressive invasive plant species. However, little research has been conducted to determine the role of clonality in the successful invasion of new areas by exotic species. Carpobrotus edulis (L.) N.E. Br. is a mat-forming succulent plant, native to South Africa that is invasive in coastal dunes of Australia, New Zealand, USA and Southern Europe. Although Carpobrotus edulis is a clonal plant, there is no information on the role of clonality for the invasion by this species, therefore the objective of this study was to test whether or not physiological integration improves the performance of C. edulis invading coastal sand dunes. To do that, a 6-month field experiment was designed in which the stolon connections between the apical ramets and the C. edulis mats were severed to prevent physiological integration. This treatment was applied to ramets growing under high and low competition with the native species. Apical ramets with intact stolon connections were used as control. Integration improved the survivorship and growth of apical ramets, both in high and low competition. Connected ramets showed a more pronounced increase of clonal growth (estimated as stolon length) during the experimental period and a higher total biomass and number of ramets at the completion of the experiment. In terms of survivorship, the benefit of integration was greater under high competition. Physiological integration can therefore be considered an important factor in the invasiveness of C. edulis, both in open space and in direct competition with the native plants.  相似文献   

20.
Hahn  A.  Hock  B.  Kesavan  A.  Animon  M.M.  Narayanan  R.  Wheeler  C.T. 《Plant and Soil》2003,255(1):27-33
Monoclonal antibodies were raised against Frankia 0RS020607, a strain isolated originally by H.G. Diem from nodules of Casuarina equisetifolia from Senegal. One of these antibodies, mAb8C5, was shown by ELISA to have high, but not absolute specificity for 0RS020607. This antibody was employed to investigate the mobility and persistence of 0RS020607 in plantations of C. equisetifolia. Seedlings were inoculated in pots of sand in a forest nursery with 0RS020607, with local crushed nodule suspensions or were left uninoculated. They were planted out after 5 months in experimental plots on a moderately fertile black soil site and on a low organic, oxidised red soil site. Compared with crushed nodule inoculated seedlings or uninoculated controls, growth of seedlings at transplant was improved by inoculation with Frankia 0RS020607. However, 4 years after transplant to experimental plots, the growth of trees receiving different treatments was similar. The possibility that movement of ORS 020607 between treatment plots contributed to new nodulation and enhanced growth of uninoculated trees was tested using mAb8C5 in ELISA of Frankia mycelium, extracted from the nodules of trees of the three treatments. No significant differences in reactivity were detected between nodules from uninoculated and 0RS020607 inoculated trees at either the black or the red soil sites, showing that 0RS020607 moved between treatment plots at both sites. However, at both sites, nodules from plots of trees that were inoculated originally with local crushed nodules gave reactions in ELISA that were significantly lower than values for 0RS020607 inoculated trees, possibly due to the competitive effects for new nodulation of enhancement of the indigenous population of Frankia. Serological techniques using antibodies of high specificity against Frankia strains have value for rapid screening of field samples as a preliminary for further analysis by more discriminatory techniques based on assays of genetic polymorphisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号