首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A microscope-television system was used to monitor quantitatively the behavior of Gymnodinium splendens Lebour in response to light. The predominant behavioral sequence upon stimulation is (a) an initial 2–5 sec cessation of movement (stop-response) followed by (b) positive phototaxis. The action spectra for each response are identical, having maxima at 450 and 280 nm. Upon measuring the percent response to a range of stimulus intensities, it is apparent that a stop-response is not a behavioral prerequisite for phototaxis. An identical circadian rhythm in photoresponsiveness is observed for phototaxis and for the stop-response with greatest light sensitivity occurring during the first 4 hr of the entrained light period. The implication of phototactic sensitivity and the phototactic circadian rhythm in diurnal vertical migration is discussed.  相似文献   

2.
Summary Using cessation of movement (stop-response) as an index for light reception by the dinoflagellate Gyrodinium dorsum Kofoid, an association was shown between the blue-light action-spectrum maximum for this response and prior exposure of the organism to red and far-red light. When the light energy necessary to produce a positive stop-response (above 50%) was used as a criterion for the threshold intensity, the cells were most sensitive to light of 470 nm following an exposure to red (620 nm) light; after a far-red (700 nm) light exposure, the threshold was lowest for light of 490 nm. A second response criterion was the time in darkness until a positive response could no longer be initiated upon stimulation. The response persists longer for 490 nm than for 470 nm after both red and far-red light exposure. This result can theoretically be attributed to thermal reversion of the proposed phytochrome from the Pfr to the Pr form. A two-pigment system in which a phytochrome works in combination with a blue-absorbing pigment may be involved in the photoresponse.This study was supported by National Science Foundation grant GB5137, Demorest Davenport, principal investigator.  相似文献   

3.
Gyrodinium dorsum Kofoid responds photophobically to flashes of blue light. The photophobic response consists of a cessation of movement (stop-response). Without background light and after a flash fluence above 10 J m−2, 75–85% of the cells show a stop-response, while only 50% of the cells show this response at 5 J m−2. With a flash fluence of 5 J m−2, background light of different wavelengths either increases (614 nm. 5.5–18.2 μmol m−2 s−1) or decreases (700 nm, 18.4–36.0 μmol m−2 s−1) the stop-response. Two hypotheses for the mechanism of the modulation by background light of the photophobic response are discussed: an effect of light on the balance of the photosynthetic system (PS I/PS II) or an effect on a phytochrome-like pigment (Pr/Pfr). This study supports the idea that a phytochrome-like pigment works in combination with a blue light-absorbing pigment. It was also found that cells of Gyrodinium dorsum cultured in red light (39.8 μmol m−2) had a higher absorption in the red region of the absorption spectra than those cultured in white light (92.7 μmol m−2).  相似文献   

4.
Abstract

The circadian chloroplast migration in Acetabularia mediterranea was monitored by continuously measuring the transmission of the cells near the apex. Under continuous red light the amplitude of the rhythm decreased rapidly within a few days. However, circadian changes of chloroplast density were still detectable even after 28 days of red light, indicating the persistence of the rhythm. When blue light was added after red light preirradiation of several days phase shifts were observed which were expressed as advances as well as delays. The period of the rhythm proved to be strongly dependent on the intensity of the continuous blue light which was given in addition to red light. Different red light intensities did not change the period. The occurrence of both effects indicates that the sensory transduction of blue light photoreception in Acetabularia works in two different ways: quanta counting processes and processes of light intensity measurement.  相似文献   

5.
In aquaculture, feeding is essential for the maintenance of metabolic processes and homoeostasis of fish. However, fasting acts as a stressor. In this study, we investigated the effect of circadian rhythm under various LED wavelengths [blue (460 nm), green (520 nm) and red (630 nm)] and two light intensities (0.3 and 0.6 W m?2) over a 9-days period in the olive flounder (Paralichthys olivaceus). We analysed clock genes like period 2 (Per 2) and cryptochrome 1 (Cry 1), and serotonin and arylalkylamine-N-acetyltransferase 2 (AANAT 2), which control circadian rhythms. Per 2, Cry 1, serotonin and AANAT 2 were significantly decreased during the starvation period compared to the normal feeding group. Nevertheless, their levels increased in the groups exposed to green- and blue LED light during the experimental period. These results confirmed that green and blue wavelengths are effective in maintaining the circadian rhythm in olive flounder.  相似文献   

6.
Photosynthesis of Ectocarpus siliculosus (Dillwyn) Lyngb. under continuous saturating red irradiation follows a circadian rhythm. Blue-light pulses rapidly stimulate photosynthesis with high effectiveness in the troughs of this rhythm but the effectiveness of such pulses is much lower at its peaks. In an attempt to understand how blue light and the rhythm affected photosynthesis, the effects of inorganic carbon on photosynthetic light saturation curves were studied under different irradiation conditions. The circadian rhythm of photosynthesis was apparent only at irradiances which were not limiting for photosynthesis. The same was found for blue-light-stimulated photosynthesis, although stimulation was observed also under very low red-light irradiances after a period of adaptation, provided that the inorganic-carbon concentration was not in excess. Double-reciprocal plots of light-saturated photosynthetic rates versus the concentration of total inorganic carbon (up to 10 mM total inorganic carbon) were linear and had a common constant for half-saturation (3.6 mM at pH 8) at both the troughs and the peaks of the rhythm and before and after blue-light pulses. Only at very low carbon concentrations was a clear deviation found from these lines for photosynthesis at the rhythm maxima (red and blue light), which indicated that the strong carbon limitation specifically affected photosynthesis at the peak phases of the rhythm. Very high inorganic carbon concentrations (20 mM) in the medium diminished the responses to blue light, although they did not fully abolish them. The kinetics of the stimulation indicate that the rate of photosynthesis is affected by two blue-light-dependent components with different time courses of induction and decay. The faster component seemed to be at least partially suppressed at red-light irradiances which were not saturating for photosynthesis. Lowering the pH of the medium had the same effects as an increase of the carbon concentration to levels of approx. 10 mM. This indicates that Ectocarpus takes up free CO2 only and not bicarbonate, although additional physiological mechanisms may enhance the availability of CO2.Abbreviation TIC total inorganic carbon  相似文献   

7.
Stimulation or light-saturated rates of photosynthesis in Ectocarpus siliculosus (Dillwyn) Lyngb. by blue light was eliminated by increasing dissolved inorganic carbon (DIC) or by lowering pH in natural seawater. The amplitude of the circadian rhythm of photosynthesis was also diminished under these conditions, and the pH compensation points in a closed system were higher in the presence of blue light and during the circadian day. These observations suggest that blue light and the circadian clock regulate the activity of a carbon acquisition system in these plants. The inhibitor of external carbonic anhydrase, acetazolamide, reduced overall rates of photosynthesis by only about 30%, but ethoxyzolamide suppressed the circadian rhythm of photosynthesis almost completely and markedly reduced the duration of responses to blue light pulses. Similar patterns were obtained when photosynthesis was measured in strongly limiting DIC concentrations (0–0.5 mol m?3). Since blue light stimulated photosynthesis under these conditions of strong carbon limitation, we suggest that blue light activates the release of CO2 from an internal CO2 store. We propose a metabolic pathway with similarities to that of CAM plants. Non-photosynthetic fixation leads to the accumulation of a storage metabolite. The circadian clock and blue light control the mobilization of CO2 at the site of decarboxylation of this metabolite. In the presence of continuous blue light the pathway is proposed to cycle and act as a pump for CO2 into the chloroplasts. This hypothesis helps to explain a number of previously reported peculiarities of brown algal photosynthesis.  相似文献   

8.
The effects of the calcium channel blockers, verapamil, diltiazem and lanthanum ions and the Ca2+ dependency on motility as well as the photophobic response (stop-response) of Gyrodinium dorsum were studied. At Ca2+ concentrations below 10-3 M, motility was inhibited. La3+ inhibits the stop-response, in contrast to verapamil and diltiazem. The only calcium channel blocker that increased the amount of non-motile cells was verapamil. The results indicate that motility are Ca2+ dependent and that the stop-responses of G. dorsum could be affected by extracellular Ca2+. Effects of the photosythesis inhibitor (DCMU) on the stop-response was also determined. With background light of different wavelength (614, 658 and 686 nm) the stop-response increased. DCMU inhibited this effect of background light. Negative results with the monoclonal antibody Pea-25 directed to phytochrome and the results with DCMU, indicate that the stop-response of G. dorsum is coupled to photosynthesis rather than to a phytochrome-like pigment. Oxygen evolution, but not cell movement, was completely inhibited by 10-6 M DCMU.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-methylurea - DILT diltiazem - DMSO dimethylsulfoxide - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - VER verapamil  相似文献   

9.
10.
A circadian rhythm in growth was detected by computer-aided image analysis in 3–4-cm-long, juvenile sporophytes of the kelp species Pterygophora California Rupr. and in seven Laminaria spp. In P. californica, the free-running rhythm occurred in continuous white fluorescent light, had a period of 26 h at 10°or 15°C, and persisted for at least 2 weeks in white or blue light. The rhythm became insignificant in continuous green or red light after 3 cycles. Synchronization by white light-dark regimes, e.g. by 16 h light per day, resulted in an entrained period of 24 h and in a shift of the circadian growth minimum into the middle of the light phase. A morning growth peak represented the decreasing portion of the circadian growth curve, and an evening peak the increasing portion. The circadian growth peak was not visible during the dark phase, because growth rate decreased immediately after the onset of darkness. At night, some growth still occurred at 16 or 12 h light per day, whereas growth stopped completely at 8 h light per day, as in continuous darkness. During 11 days of darkness, the thallus area became reduced by 3.5%, but growth rate recovered in subsequent light–dark cycles, and the circadian growth rhythm reappeared in subsequent continuous light.  相似文献   

11.
JONES  M. B. 《Annals of botany》1973,37(5):1027-1034
Detached shoots of Bryophyllum fedtschenkoi maintained in continuouslight and at a constant temperature exhibit a circadian rhythmin CO2 compensation. The rhythm has a period of 21.6±0.1h at 23 °C and its phase can be set and shifted by suitabletreatments. These observations suggest that the ryhthm is trulyendogenous in nature. The phase is set by a light-on stimulus, or a drop in lightintensity. Phase shift can be induced by short periods (3 h)of reduced light intensity as well as similar periods of darknessgiven during the day phase of the rhythm. A change from whitelight to the same number of incident quanta of monochromaticlight of 450 nm (blue), 550 nm (green), or 652 nm (red) alwaysshifted the phase, but the degree of shift was less in red lightthan in blue or green. The plant reacted to achange to blueor green light as though it had been placed in the dark. Althbughred light was apparently ‘recognized’, the changefrom white to red was still sufficient to alter the phase ofthe rhythm. The possible role of phosphoenolpyruvate carboxylase activityin controlling the rhythm is discussed.  相似文献   

12.
The effects of light wavelength on photoperiodic clock were determined in the migratory male blackheaded bunting (Emberiza melanocephala). We constructed an action spectrum for photoperiodic induction (body fattening, gain in body mass, and gonadal recrudescence) by exposing birds for 4.5 weeks to 13 h light per day (L:D = 13:11 h) of white (control), blue (450 nm), or red (640 nm) color at irradiances ranging from 0.028 to 1.4 W m?2. The threshold light irradiance for photoinduction was about 10-fold higher for blue, compared to red and white light. Phase-dependent effects of light wavelength on the photoperiodic clock were further examined in the next two sets of skeleton photoperiods (SKPs). In the first set of SKPs, birds were exposed for four weeks to asymmetrical light periods (L:D:L:D = 6:6:1:11 h) at 0.25 ± 0.01 W m?2; two light periods applied were of the same (450 nm: blue:blue, B:B; 640 nm, red:red, R:R) or different (blue:red, B:R or red:blue, R:B) wavelengths, or of white:white (W:W, controls). Photoperiodic induction occurred under R:R and B:R, but not under B:B and R:B light conditions; the W:W condition induced an intermediate response. The second set of SKPs used symmetrical light periods (L:D:L:D = 1:11:1:11 h), and measured effects also on the activity rhythm. Birds were first exposed to one of the four SKPs (R:R, B:B, R:B, or B:R) for three weeks, subsequently were released into dim constant light (LLdim; ?0.01 W m?2, the night light used in an L:D cycle) for two weeks, and then were returned to respective SKPs for another three weeks. Activity was greater in the R:R compared to B:B, and in B:R compared to R:B light condition. Zugunruhe (intense nighttime activity, indicating migratory restlessness in a caged situation) developed under the R:R and B:R, but not the B:B and R:B, light condition. Under LLdim, all birds free-ran with a period >24 h, the Zugunruhe had a circadian period longer than the daytime activity, and the re-entrainment to SKPs was influenced by the position of light periods relative to circadian phase of the activity rhythm. Photoperiodic induction at the end of 8 weeks was found in the R:R and B:R, but not in B:B, light conditions; in the R:B condition only one bird had initiated testes. Taken together, these results suggest that in the blackheaded bunting, the circadian photoperiodic clock is differentially responsive to light wavelengths; this responsiveness is phase-dependent, and the development of Zugunruhe reflects a true circadian function. Wavelength-dependent response of the photoperiodic clock could be part of an adaptive strategy in evolution of the seasonality in reproduction and migration among photoperiodic species under wild conditions.  相似文献   

13.
Circadian Rhythms in Stomatal Responsiveness to Red and Blue Light   总被引:4,自引:0,他引:4       下载免费PDF全文
Stomata of many plants have circadian rhythms in responsiveness to environmental cues as well as circadian rhythms in aperture. Stomatal responses to red light and blue light are mediated by photosynthetic photoreceptors; responses to blue light are additionally controlled by a specific blue-light photoreceptor. This paper describes circadian rhythmic aspects of stomatal responsiveness to red and blue light in Vicia faba. Plants were exposed to a repeated light:dark regime of 1.5:2.5 h for a total of 48 h, and because the plants could not entrain to this short light:dark cycle, circadian rhythms were able to "free run" as if in continuous light. The rhythm in the stomatal conductance established during the 1.5-h light periods was caused both by a rhythm in sensitivity to light and by a rhythm in the stomatal conductance established during the preceding 2.5-h dark periods. Both rhythms peaked during the middle of the subjective day. Although the stomatal response to blue light is greater than the response to red light at all times of day, there was no discernible difference in period, phase, or amplitude of the rhythm in sensitivity to the two light qualities. We observed no circadian rhythmicity in net carbon assimilation with the 1.5:2.5 h light regime for either red or blue light. In continuous white light, small rhythmic changes in photosynthetic assimilation were observed, but at relatively high light levels, and these appeared to be attributable largely to changes in internal CO2 availability governed by stomatal conductance.  相似文献   

14.
The circadian activity rhythm of the common marmoset, Callithrix j. jacchus was investigated by long-term recording of the locomotor activity of 15 individuals (5 males, 10 females) from 1.5 to 8 years old, both under constant illumination and under LD 12:12. The mean period of the spontaneous circadian rhythm was 23.2 ± 0.3 h. Neither sex-specific differences nor a systematic influence of light intensity on the spontaneous period were observed, but the period was dependent on the duration of the trial and on the age of the individual. Due to the short spontaneous period, in LD 12:12 there was a distinct advance of the activity phase with respect to the light time and a masking of the true onset of activity by the inhibitory direct effect of low light intensity during the dark time. After an 8 h delay shift of the LD 12:12, re-entrainment of the circadian activity rhythm required an average of 6.8 ± 0.7 days; the average re-entrainment time after an 8 h phase advance of the LD cycle was 8.6 ± 1.3 day. This directional effect is ascribed to characteristics of the phase-response curve. No ultradian components were observed, either in the LD-entrained or the free-running circadian activity rhythm.  相似文献   

15.
Circadian rhythms in the retina may reflect intrinsic rhythms in the eye. Previous reports on circadian variability in electrophysiological human retinal measures have been scanty, and the results have been somewhat inconsistent. We studied the circadian variation of the electrooculography (EOG), electroretinography (ERG), and visual threshold (VTH) in subjects undergoing a 36h testing period. We used an ultrashort sleep-wake cycle to balance effects of sleep and light-dark across circadian cycles. Twelve healthy volunteers (10 males, 2 females; mean age 26.3 years, standard deviation [SD] 8.0 years, range 19–40 years) participated in the study. The retinal functions and oral temperature were measured every 90 min. The EOG was measured in the light, whereas the ERG and the VTH were measured in the dark. Sleep was inferred from activity detected by an Actillume monitor. The EOG peak-to-peak responses followed a circadian rhythm, with the peak occurring late in the morning (acrophase 12:22). The ERG b-wave implicit time peaked in the early morning (acrophase 06:46). No statistically significant circadian rhythms could be demonstrated in the ERG a-wave implicit time or peak-to-peak amplitude. The VTH rhythm peaked in the early morning (acrophases 07:59 for blue and 07:32 for red stimuli). All retinal rhythms showed less-consistent acrophases than the temperature and sleep rhythms. This study demonstrated several different circadian rhythms in retinal electrophysiological and psychophysical measures of healthy subjects. As the retinal rhythms had much poorer signal-to-noise ratios than the temperature rhythm, these measures cannot be recommended as circadian markers. (Chronobiology International, 18(6), 957971, 2001)  相似文献   

16.
Light strongly influences the circadian timing system in humans via non-image-forming photoreceptors in the retinal ganglion cells. Their spectral sensitivity is highest in the short-wavelength range of the visible light spectrum as demonstrated by melatonin suppression, circadian phase shifting, acute physiological responses, and subjective alertness. We tested the impact of short wavelength light (460 nm) on sleep EEG power spectra and sleep architecture. We hypothesized that its acute action on sleep is similar in magnitude to reported effects for polychromatic light at higher intensities and stronger than longer wavelength light (550 nm). The sleep EEGs of eight young men were analyzed after 2-h evening exposure to blue (460 nm) and green (550 nm) light of equal photon densities (2.8 x 10(13) photons x cm(-2) x s(-1)) and to dark (0 lux) under constant posture conditions. The time course of EEG slow-wave activity (SWA; 0.75-4.5 Hz) across sleep cycles after blue light at 460 nm was changed such that SWA was slightly reduced in the first and significantly increased during the third sleep cycle in parietal and occipital brain regions. Moreover, blue light significantly shortened rapid eye movement (REM) sleep duration during these two sleep cycles. Thus the light effects on the dynamics of SWA and REM sleep durations were blue shifted relative to the three-cone visual photopic system probably mediated by the circadian, non-image-forming visual system. Our results can be interpreted in terms of an induction of a circadian phase delay and/or repercussions of a stronger alerting effect after blue light, persisting into the sleep episode.  相似文献   

17.
The relative contribution of rods, cones, and melanopsin to non-image-forming (NIF) responses under light conditions differing in irradiance, duration, and spectral composition remains to be determined in humans. NIF responses to a polychromatic light source may be very different to that predicted from the published human action spectra data, which have utilized narrow band monochromatic light and demonstrated short wavelength sensitivity. To test the hypothesis that only melanopsin is driving NIF responses in humans, monochromatic blue light (lambda(max) 479 nm) was matched with polychromatic white light for total melanopsin-stimulating photons at three light intensities. The ability of these light conditions to suppress nocturnal melatonin production was assessed. A within-subject crossover design was used to investigate the suppressive effect of nocturnal light on melatonin production in a group of diurnally active young male subjects aged 18-35 yrs (24.9+/-3.8 yrs; mean+/-SD; n=11). A 30 min light pulse, individually timed to occur on the rising phase of the melatonin rhythm, was administered between 23:30 and 01:30 h. Regularly timed blood samples were taken for measurement of plasma melatonin. Repeated measures two-way ANOVA, with irradiance and light condition as factors, was used for statistical analysis (n=9 analyzed). There was a significant effect of both light intensity (p<0.001) and light condition (p<0.01). Polychromatic light was more effective at suppressing nocturnal melatonin than monochromatic blue light matched for melanopsin stimulation, implying that the melatonin suppression response is not solely driven by melanopsin. The findings suggest a stimulatory effect of the additional wavelengths of light present in the polychromatic light, which could be mediated via the stimulation of cone photopigments and/or melanopsin regeneration. The results of this study may be relevant to designing the spectral composition of polychromatic lights for use in the home and workplace, as well as in the treatment of circadian rhythm disorders.  相似文献   

18.
Summary The eye of the mollusk Bulla gouldiana contains a pacemaker that generates a circadian rhythm in compound action potentials (CAPs) in the optic nerve. In this paper, we present evidence of a second circadian rhythm in the optic nerve of the eye maintained in darkness at 15 °C. This is a rhythm in the frequency of small (10–40 V) neural impulses that occurs about 12 h out-of-phase with the rhythm in CAPs. Typically, the small-spike frequency is at a minimum within an hour of the peak in CAP frequency and is maximal during the subjective night. Like the CAP rhythm, the phase of the small-spike rhythm is determined by the prior light/dark cycle. A rebound in small-spike activity following the end of a light pulse and the presence of photoinhibited impulses in surgically reduced eyes suggests that the cells that generate the small-spikes may be photoreceptors that are inhibited by light. In addition, by using isolated nervous system preparations, we have found that smallspikes occur in the two optic nerves in a one-for-one relationship immediately following a light-to-dark transition. This inter-eye communication may be involved in the coupling of the ocular pacemakers.Abbreviations ASW artificial sea water - BRN basal retinal neuron - CAP compound action potential  相似文献   

19.
Light is necessary for life, and artificial light improves visual performance and safety, but there is an increasing concern of the potential health and environmental impacts of light. Findings from a number of studies suggest that mistimed light exposure disrupts the circadian rhythm in humans, potentially causing further health impacts. However, a variety of methods has been applied in individual experimental studies of light-induced circadian impacts, including definition of light exposure and outcomes. Thus, a systematic review is needed to synthesize the results. In addition, a review of the scientific evidence on the impacts of light on circadian rhythm is needed for developing an evaluation method of light pollution, i.e., the negative impacts of artificial light, in life cycle assessment (LCA). The current LCA practice does not have a method to evaluate the light pollution, neither in terms of human health nor the ecological impacts. The systematic literature survey was conducted by searching for two concepts: light and circadian rhythm. The circadian rhythm was searched with additional terms of melatonin and rapid-eye-movement (REM) sleep. The literature search resulted to 128 articles which were subjected to a data collection and analysis. Melatonin secretion was studied in 122 articles and REM sleep in 13 articles. The reports on melatonin secretion were divided into studies with specific light exposure (101 reports), usually in a controlled laboratory environment, and studies of prevailing light conditions typical at home or work environments (21 studies). Studies were generally conducted on adults in their twenties or thirties, but only very few studies experimented on children and elderly adults. Surprisingly many studies were conducted with a small sample size: 39 out of 128 studies were conducted with 10 or less subjects. The quality criteria of studies for more profound synthesis were a minimum sample size of 20 subjects and providing details of the light exposure (spectrum or wavelength; illuminance, irradiance or photon density). This resulted to 13 qualified studies on melatonin and 2 studies on REM sleep. Further analysis of these 15 reports indicated that a two-hour exposure to blue light (460 nm) in the evening suppresses melatonin, the maximum melatonin-suppressing effect being achieved at the shortest wavelengths (424 nm, violet). The melatonin concentration recovered rather rapidly, within 15 min from cessation of the exposure, suggesting a short-term or simultaneous impact of light exposure on the melatonin secretion. Melatonin secretion and suppression were reduced with age, but the light-induced circadian phase advance was not impaired with age. Light exposure in the evening, at night and in the morning affected the circadian phase of melatonin levels. In addition, even the longest wavelengths (631 nm, red) and intermittent light exposures induced circadian resetting responses, and exposure to low light levels (5–10 lux) at night when sleeping with eyes closed induced a circadian response. The review enables further development of an evaluation method of light pollution in LCA regarding the light-induced impacts on human circadian system.  相似文献   

20.
Summary The rhythm of autophagic degradation (AV) in visual cell inner segments shows circadian characteristics: it persists under constant conditions of continuous darkness (DD) and continuous light (LL) and can be reentrained to phase-shifts of the light-dark (LD) cycle. However, unlike the rhythm of disk-shedding and many other circadian rhythms, the rhythm of AV persists with a distinct peak even after 3 days of LL and is rapidly abolished to almost baseline levels after 1.5 days of DD, confirming our previous observations of a strong light-dependence of AV. Since the rhythms of disk-shedding and AV reveal this inverse pattern in DD and LL, different regulative mechanisms may be involved.Light stimulation with increasing intensities at day-time and night-time evoked AV responses that increased and disk-shedding responses that decreased at higher intensities. Furthermore, both the AV and phagosome response was different according to day-time or night-time stimulation, pointing towards the possibility of a circadian phase of sensitivity to light.Abbreviations AV autophagic degradation, autophagic vacuole, autophay - LD light dark cycle - DD constant darkness - LL constant light - CNS central nervous system - SCN suprachiasmatic nucleus - DA dopamine - ftc footcandle - ANOVA analysis of variance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号