首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extensive polymorphism of the BOLA-DRB3 gene distinguished by PCR-RFLP   总被引:11,自引:0,他引:11  
A polymerase chain reaction (PCR)-based method is described for typing of alleles of the bovine lymphocyte antigen (BoLA)-DRB3 gene. A total of 30 DRB3 alleles were distinguished by digestion of PCR amplification products of BoLA-DRB3 exon 2 with RsaI, BstYI and HaeIII (PCR-RFLP). All restriction fragment patterns, with the exception of one HaeIII pattern, were consistent with restriction sites that were found among 14 previously sequenced DRB3 alleles. The PCR-RFLP typing method was evaluated on 168 genomic DNA samples collected from animals of 10 cattle breeds, 48 of which were typed in the Fourth International BoLA Workshop for BoLA-DRB and -DQ by conventional restriction fragment length polymorphism (RFLP) analysis using heterologous and homologous DNA probes. Thirty-one DRB/DQ haplotypes containing 23 DRB3 alleles were identified among the 48 workshop animals analysed. Using PCR-RFLP, 11 DRB3 alleles were identified in 18 workshop animals for which DRB RFLPs were not informative. PCR-RFLP typing of additional animals revealed five new DRB3 alleles, of which three contained a putatively located three basepair deletion in the identical position as found for the sequenced allele DRB*2A. PCR-RFLP was shown to be a rapid and sensitive method for the detection of polymorphism in a functionally relevant domain of the BoLA-DRB3 gene and should be useful for studying the evolution of DRB polymorphism in cattle and other Bovidae.  相似文献   

2.
Hypervariability of intronic simple (gt)n(ga)m repeats in HLA-DRB genes   总被引:2,自引:2,他引:0  
We have investigated the extent of DNA variability in intronic simple (gt)n(ga)m repeat sequences and correlated this to sequence polymorphisms in the flanking exon 2 of HLA-DRB genes. The polymerase chain reaction (PCR) was used to amplify a DNA fragment containing exon 2 and the repeat region of intron 2. The PCR products were separated on sequencing gels in order to demonstrate length hypervariability of the (gt)n(ga)m repeats. In a parallel experiment, the PCR products were cloned and sequenced (each exon 2 plus adjacent simple repeats) to characterize the simple repeats in relation to the HLA-DRB sequences. In a panel of 25 DRB1, DRB4, and DRB5 alleles new sequences were not detected. Restriction fragment length polymorphism (RFLP) subtyping of serologically defined haplotypes corresponds to translated DNA sequences in 85% of the cases, the exceptions involving unusual DR/DQ combinations. Many identical DRB1 alleles can be distinguished on the basis of their adjacent simple repeats. We found group-specific organization of the repeats: the DRw52 supergroup repeats differ from those of DRB1*0101, DRB4*0101, and DRB5*0101 alleles and from those of pseudogenes. Finally, we amplified baboon DNA and found a DRB allele with extensive similarity to DRB1 sequences of the DRw52 supergroup. The simple repeat of the baboon gene, however, resembles that of human pseudogenes. In addition to further subtyping, the parallel study of polymorphic protein and hypervariable DNA alleles may allow conclusions to be drawn on the relationships between the DRB genes and perhaps also on the theory of trans-species evolution.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M 34258.  相似文献   

3.
Two divergent routes of evolution gave rise to the DRw13 haplotypes   总被引:1,自引:0,他引:1  
The HLA class II genes and haplotypes have evolved over a long period of evolutionary time by mechanisms such as gene conversion, reciprocal recombination and point mutation. The extent of the diversity generated is most clearly evident in an analysis of the HLA class II alleles present within DRw13 haplotypes. This study uses cDNA sequencing to examine the first domains of DRB1, DRB3, DQA1, and DQB1 alleles from several American black individuals expressing seven different DRw13 haplotypes, five with undefined HLA-D specificities (i.e., not Dw18 or Dw19). Two new DRw13 alleles described in this study are the first examples of convergent evolution of DR alleles in which gene conversion has apparently combined segments of DRB1 alleles encoding DRw11 and DRw8 to generate two new DRB1 alleles, DRB1*1303 and DRB1*1304, that encode molecules bearing serologic determinants of a third allele, DRw13. These new DRw13 alleles are found embedded in haplotypes of DRw11 origin distinct from haplotypes encoding previously identified DRw13 alleles, DRB1*1301 and DRB1*1302. These data suggest that two evolutionary pathways may have given rise to two subgroups of alleles encoding molecules that share DRw13 serologic determinants yet which possess different structural and, likely, functional motifs. Reciprocal gene recombination events resulting in different DR, DRw52 and DQ allele combinations also appear to have played a crucial role in augmenting the level of diversity found in DRw13 haplotypes. Recombination has resulted in the association of one of the new DRw13 alleles with a DQw2 allele normally found associated with DR7 and the association of the DRw52c-associated DRw13 allele (DRB1*1302) with three different DQw1 alleles. The seven DRw13 haplotypes that have resulted from the effect of recombination on haplotypes formed by the two pathways of DRw13 allelic diversification have resulted in different repertoires of class II molecules and, most likely, different immune response profiles in individuals with these haplotypes.  相似文献   

4.
Jugo BM  Vicario A 《Immunogenetics》2000,51(11):887-897
Single-strand conformational polymorphism analysis and DNA sequencing were used to characterize Mhc-DRB second exon variability in the Latxa and Karrantzar breeds of sheep. The presence of more than two sequences in some animals indicates that alleles of two different loci have been amplified. Six new alleles were identified by sequencing. The allele frequency distribution of the DRB1 gene is striking, with two alleles accounting for half of the gene pool in both breeds under study. The most frequent allele in both breeds was the same (named DRB1*0702), with some specific amino acids: Tyr in position 31 and Thr in 51. A species variability analysis was also performed including the entire set of sheep DRB exon 2 sequences. Based on the patchwork patterns of different alleles, interallelic recombination appears to be playing a significant role in the generation of allelic diversity at this locus in sheep. The phylogenetic tree of all known Caprinae DRB sequences shows that certain alleles from one species are more closely related to those from other species than they are to each other. Allele DRB1*0702 merits special attention due to its high similarity to the Mufflon allele. As this is the most frequent in both breeds analyzed, one can hypothesize that in sheep, both Mufflon and Argali have had different influences depending on the sheep breed under study and that the relationship between domestic sheep and Mufflon is greater than previously thought. The data generated in this study can serve as a basis for developing a typing assay for the sheep DRB genes in the Latxa and Karrantzar populations.  相似文献   

5.
6.
The HLA region harbors some of the most polymorphic loci in the human genome. Among them is the class II locus HLA-DRB1, with more than 400 known alleles. The age of the polymorphism and the rate at which new alleles are generated at HLA loci has caused much controversy over the years. Previous studies have mostly been restricted to the 270 base pairs that constitute the second exon and represent the most variable part of the gene. Here, we investigate the evolutionary history of the HLA-DRB1 locus on the basis of an analysis of 15 genomic full-length alleles (10-15 kb). In addition, the variation in 49 complete coding sequences and 322 exon 2 sequences were analyzed. When excluding exon 2 from the analysis, the diversity at the synonymous sites was found to be similar to the intron diversity. The overall diversity in noncoding region was also similar to the genome average. The DRB1*03 lineage has been found in human, chimpanzee, bonobo, gorilla, and orangutan. An ancestral "proto HLA-DRB1*03 lineage" appeared to have diverged in the last 5 million years into the human-specific lineages *08, *11, *13, and *14. With exception to exon 2, both the coding- and the noncoding diversity suggests a recent origin (<1 million years ago) for most of the alleles at the HLA-DRB1 locus. Sites encoding for amino acids involved in antigen binding [antigen recognizing sites (ARS)] appear to have a more ancient origin. Taken together, the recent origin of most alleles, the high diversity between allelic lineages, and the ancient origin of sequence motifs in exon 2, is consistent with a relatively rapid generation of novel alleles by gene conversion like events.  相似文献   

7.
We analyzed the origin of allelic diversity at the class II HLA-DRB1 locus, using a complex microsatellite located in intron 2, close to the polymorphic second exon. A phylogenetic analysis of human, gorilla, and chimpanzee DRB1 sequences indicated that the structure of the microsatellite has evolved, primarily by point mutations, from a putative ancestral (GT)x(GA)y-complex-dinucleotide repeat. In all contemporary DRB1 allelic lineages, with the exception of the human *04 and the gorilla *08 lineages, the (GA)y repeat is interrupted, often by a G-->C substitution. In general, the length of the 3' (GA)y repeat correlates with the allelic lineage and thus evolves more slowly than a middle (GA)z repeat, whose length correlates with specific alleles within the lineage. Comparison of the microsatellite sequence from 30 human DRB1 alleles showed the longer 5' (GT)x to be more variable than the shorter middle (GA)z and 3' (GA)y repeats. Analysis of multiple samples with the same exon sequence, derived from different continents, showed that the 5' (GT)x repeat evolves more rapidly than the middle (GA)z and the 3' (GA)y repeats, which is consistent with findings of a higher mutation rate for longer tracts. The microsatellite-repeat-length variation was used to trace the origin of new DRB1 alleles, such as the new *08 alleles found in the Cayapa people of Ecuador and the Ticuna people of Brazil.  相似文献   

8.
Sequence and PCR-RFLP analysis of 14 novel BoLA-DRB3 alleles   总被引:5,自引:0,他引:5  
The genetic diversity of the bovine class IIDRB3 locus was investigated by polymerase chain reaction (PCR) amplification and DNA sequencing of the first domain exon. Studying 34 animals of various cattle breeds, 14 previously unrecognized DRB3 alleles were identified. In three alleles, amino acid substitutions were observed that had not been previously found in bovine DRB3, but occurred at the same position in bovine DQB and in the DRB alleles of other mammals. For all newly identified alleles, the restriction fragment length polymorphism (RFLP) patterns of PCR products obtained with the enzymes Rsa I, Bst YI, and Hae III were compared with patterns of 38 previously described alleles. Altogether, eleven novel PCR-RFLP types were defined. Twelve out of the 42 PCR-RFLP types identified so far were not found to be fully informative because they corresponded to more than one allelic sequence. PCR-RFLP may therefore be a rapid and useful method for DRB3 typing in cattle families, but for studies on outbred populations, sequencing and hybridization techniques are required.  相似文献   

9.
本研究通过对123只陕北白绒山羊DRB1基因外显子2的遗传变异分析,旨在获得陕北白绒山羊DRB1基因的多态性及变异信息,为山羊抗病基因的挖掘研究提供基础资料。本研究共获得6条陕北白绒山羊DRB1基因外显子2序列,其中4条为首次发现。生物信息学分析表明DRB1位点具有较高的多态性,6条等位基因可能起源于2个祖先基因。在长期的进化过程中,DRB1位点受到了明显的选择压力作用,这种选择作用有助于陕北白绒山羊对当地气候的适应。蛋白质结构的预测证实了DRB1*1与其它等位基因间的差异性,说明核苷酸变异可能会引起蛋白质结构的改变,最终可能影响宿主对病原体的免疫应答。本次对陕北白绒山羊DRB1基因多态性的调查与分析有助于筛选疾病抗性和易感性MHC (Major histocompatibility complex)候选基因,进而可加速绒山羊抗病品系的改良与培育进程。  相似文献   

10.
The polymorphism of the major histocompatibility complex (MHC) class II DRB gene of riverine buffalo (Bubalus bubalis) was studied. Second exon sequences from the buffalo DRB locus, homologous to the cattle DRB3 gene, were amplified and characterized. A combination of single strand conformation polymorphism (SSCP) and heteroduplex analysis (HA) in a non-denaturing gel was used to identify new DRB second exon sequences. SSCP, HA and finally sequencing allowed the identification of 22 MHC-DRB exon 2 alleles from 25 unrelated Indian river buffalo. These are the first river buffalo DRB second exon sequences reported. A high degree of polymorphism in the sequences encoding the peptide binding regions was observed and some amino acid substitutions were found unique to the river buffalo.  相似文献   

11.
Blood samples from 54 animals were exchanged between 15 laboratories in nine countries to improve and expand BoLA class I and class II typing. A total of 27 out of 33 (82%) of previously accepted BoLA-w specificities were represented within the cell panel. Seventeen new serum-defined BoLA specificities were accepted by the workshop participants, thus expanding the number of internationally recognized BoLA specificities to 50. The large number of new specificities detected resulted from the number of serological reagents used (n = 1139) and the genetic diversity of the cell panel. Confidence derived from the high percentage of agreement between the laboratories on antigen detection (97.3%; r = 0.84) permitted the removal of the workshop (w) notation from 23 BoLA-w specificities and their acceptance as full status BoLA-A antigens. Two new non-BoLA antigens were also detected, one completely included within the red blood cell factor S' (BoLy-S'), whereas a second (BoLy-w1) did not show any association with tested red blood cell factors. A comparison between serological, isoelectric focusing (IEF) and DNA typing for BoLA class II polymorphism was conducted with a subset of workshop cells. Correlation between the three methods was significant for three combinations of alleles. Three other serologically defined class II specificities were correlated with DR and/or DQ restriction fragment length polymorphism (RFLP) types, whereas six additional IEF types were correlated with DR and/or DQ RFLP types (r greater than or equal to 0.50). Several new IEF, DRB, DQA and DQB RFLP patterns were identified. In 46 animals that were typed for BoLA-DR and DQ genes by RFLP analysis, 46 different BoLA haplotypes were tentatively defined. These 46 haplotypes were distinguished by 31 serologically-defined BoLA-A alleles (and 2 'blanks'), 15 DRB RFLP types (plus up to 10 new DRB RFLP patterns) and 23 DQA-DQB haplotypes.  相似文献   

12.
The human major histocompatibility complex (MHC) class I chain-related gene A ( MICA) is located 46 kb upstream of HLA-B and encodes a stress-inducible protein which displays a restricted pattern of tissue expression. MICA molecules interact with NKG2D, augmenting the activation of natural killer cells, CD8(+) alpha beta T cells, and gamma delta T cells. MICA allelic variation is thought to be associated with disease susceptibility and immune response to transplants. We investigated MICA allelic variations and linkage disequilibrium with HLA-A, B, and DRB1 loci on 110 parental haplotypes from 29 African-American families. PCR/sequence-specific oligonucleotide probing (SSOP) was used to define MICA polymorphisms in exons 2, 3, and 4. Ambiguous allelic combinations were resolved by sequencing exons 2, 3, and 4. Exon 5 polymorphisms were analyzed by size sequencing. For HLA-A, B and DRB1 typing, low-resolution PCR/SSOP and allelic PCR/sequence-specific priming techniques were used. Twelve MICA alleles were observed, the most frequent of which were MICA*008, MICA*004, and MICA*002, with gene frequencies of 28.2, 26.4, and 25.5%, respectively. Thirty-eight HLA-B- MICA haplotypic combinations were uncovered, 22 of which have not been reported in the HLA homozygous typing cell lines from the 10th International Histocompatibility Workshop. Significant positive linkage disequilibria were found in 8 HLA-B- MICA haplotypes. Furthermore, haplotypes bearing HLA-B*1503, *1801, *4901, *5201, *5301, and *5703 were found to segregate with at least two different MICA alleles. Our results provide new data about MICA genetic polymorphisms in African-Americans, which will form the basis for future studies of MICA alleles in allogeneic stem cell transplantation outcome.  相似文献   

13.
Characterization of 18 new BoLA-DRB3 alleles   总被引:4,自引:0,他引:4  
The second exon of the bovine MHC class II DRB3 gene was amplified by polymerase chain reaction (PCR) from DNA samples of 568 zebu Brahman cattle (Bos indicus) from Martinique (French West Indies). Cloning of these PCR products allowed the isolation of both alleles from each animal, which were characterized by the PCR-restriction fragment length polymorphism (RFLP) technique using the restriction enzymes RsaI, BstYI and HaeIII. Four new PCR-RFLP patterns were obtained by digestion with RsaI. These patterns were named 'v', 'w', 'x' and 'y' continuing the accepted nomenclature. Sequencing of each allele allowed the identification of 18 new BoLA-DRB3 exon 2 nucleotide sequences and their deduced amino acid sequences.  相似文献   

14.
The distribution of the frequencies of BoLA-DRB3 gene alleles in the Iranian cattle breed Sistani was studied by the PCR-RFLP (“hemi-nested”) assay using restriction endonucleases RsaI, HaeIII and BstYI. In the examined cattle breed (65 animals) 32 alleles have been identified one of which being described for the first time (6.15% frequency). The nucleotide sequence of the polymorphic region of exon 2 of this allele has been determined and submitted in the GenBank database under accession number DQ486519. The submitted sequence has maximum homology (92%) with the previously described sequence DRB3-mRNA from Bos indicus (AccN X79346) and differs from it by 24 nucleotide substitutions which result in 16 amino acid substitutions. The peptide (on the basis of the reconstructed amino acid sequence) has 89% identity to the sequence encoded by the BIDRBF 188 locus (Bos indicus). The results obtained permit the sequence described by us to be considered as a new allele of the BoLA-DRB3 gene (DRB3.2 * X). The total frequency of the main six alleles (DRB3.2*8, *10, *11, *20, *34 and *X) occurring with a frequency of over 5% is about 60% in Iranian Sistani cattle. Fifteen alleles have <1% frequency. The highest frequency was observed for DRB3.2*8 allele (21.54%) like in other previously described breeds of Bos indicus (up to 23.07%). The Iranian breed Sistani has a high level of similarity by the spectrum of BoLA-DRB3 alleles and their frequencies to other Bos indicus breeds and significantly differs by these criteria from the Bos Taurus breeds. The Iranian Sistani herd under study includes alleles associated with to resistance to leukemia (DRB3.2*11 and *23) and to different forms of mastitis (DRB3.2* 2, *7, *11, *23 and *24) although their frequencies are low (from 0.77 to 5.37%). On the whole, a high level of diversity of BoLA-DRB3 gene alleles and the availability of alleles associated with resistance to different diseases makes this breed of interest for breeding practice. The article is published in the original.  相似文献   

15.
16.
17.
Conventional phylogenetic trees for the human leukocyte antigen (HLA)-DRB1 alleles constructed by the neighbor-joining (Saitou and Nei 1987) and UPGMA (Sneath and Sokal 1973) methods using nucleotide sequences of the DRB1 alleles suggest that DRB1*0701 may have diverged from other DRB1 alleles before the separation of the human and chimpanzee species, because of a large number of nucleotide changes in DRB1*0701 compared with any of the other DRB1 alleles. Here we show new evidence that the haplotypes centering on DRB1*0701 and DRB1*04 alleles are the most homologous. This suggests that these haplotypes have derived from the common ancestral haplotype, and that they have likely retained complete linkage disequilibrium even after the divergence of the DRB1*0701 and DRB1*04 allelic lineages. Together with the corresponding haplotype carrying chimpanzee DRB1*0701, which has a high sequence homology to HLA-DRB1*0701, these haplotypes reveal that: (1) the DRB1*04 allelic lineage may have been generated from the DRB1*0701 lineage after the separation of the human and chimpanzee species; (2) the DRB1*04 allelic lineage possibly has a higher substitution rate of DRB1 compared with pseudogene and neutral region; (3) there could be a significant difference in the substitution rate of DRB1 between the DRB1*0701 and DRB1*04 allelic lineages. Based on the difference between the present and previous results, we would like to propose that phylogenetic studies using not only nucleotide sequences of the DRB1 alleles but also haplotypes centering on the alleles should be conducted for understanding detailed phylogenetic relationships of the DRB1 alleles.  相似文献   

18.
A method for MHC DRB typing in cattle based on two closely linked and highly polymorphic microsatellites is described. The two microsatellites DRBP1ms and DRB3ms are located in intron 2 of the corresponding DRB gene. The very strong linkage disequilibrium between the two loci made it possible to establish DRB microsatellite haplotypes. The typing results with this method on reference samples followed closely that obtained with RFLP and direct sequence analysis of DRB3 exon 2. The method is well suited for large scale genotyping and was successfully applied for typing more than 600 unrelated animals representing 23 breeds. The data were used to test whether the observed DRB allele frequency distributions were consistent with that expected for selectively neutral alleles in populations at mutation-drift equilibrium. A significant heterozygosity excess was detected and there was an obvious trend across breeds towards a more even allele frequency distribution than expected. The deviation may be due to balancing selection acting on the DRB locus or by recent population bottlenecks.  相似文献   

19.
Human leukocyte antigen (HLA) class I and class II alleles are implicated as genetic risk factors for many autoimmune diseases. However, the role of the HLA loci in human systemic lupus erythematosus (SLE) remains unclear. Using a dense map of polymorphic microsatellites across the HLA region in a large collection of families with SLE, we identified three distinct haplotypes that encompassed the class II region and exhibited transmission distortion. DRB1 and DQB1 typing of founders showed that the three haplotypes contained DRB1*1501/ DQB1*0602, DRB1*0801/ DQB1*0402, and DRB1*0301/DQB1*0201 alleles, respectively. By visualizing ancestral recombinants, we narrowed the disease-associated haplotypes containing DRB1*1501 and DRB1*0801 to an approximately 500-kb region. We conclude that HLA class II haplotypes containing DRB1 and DQB1 alleles are strong risk factors for human SLE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号