首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple sequence alignment (MSA) is a crucial first step in the analysis of genomic and proteomic data. Commonly occurring sequence features, such as deletions and insertions, are known to affect the accuracy of MSA programs, but the extent to which alignment accuracy is affected by the positions of insertions and deletions has not been examined independently of other sources of sequence variation. We assessed the performance of 6 popular MSA programs (ClustalW, DIALIGN-T, MAFFT, MUSCLE, PROBCONS, and T-COFFEE) and one experimental program, PRANK, on amino acid sequences that differed only by short regions of deleted residues. The analysis showed that the absence of residues often led to an incorrect placement of gaps in the alignments, even though the sequences were otherwise identical. In data sets containing sequences with partially overlapping deletions, most MSA programs preferentially aligned the gaps vertically at the expense of incorrectly aligning residues in the flanking regions. Of the programs assessed, only DIALIGN-T was able to place overlapping gaps correctly relative to one another, but this was usually context dependent and was observed only in some of the data sets. In data sets containing sequences with non-overlapping deletions, both DIALIGN-T and MAFFT (G-INS-I) were able to align gaps with near-perfect accuracy, but only MAFFT produced the correct alignment consistently. The same was true for data sets that comprised isoforms of alternatively spliced gene products: both DIALIGN-T and MAFFT produced highly accurate alignments, with MAFFT being the more consistent of the 2 programs. Other programs, notably T-COFFEE and ClustalW, were less accurate. For all data sets, alignments produced by different MSA programs differed markedly, indicating that reliance on a single MSA program may give misleading results. It is therefore advisable to use more than one MSA program when dealing with sequences that may contain deletions or insertions, particularly for high-throughput and pipeline applications where manual refinement of each alignment is not practicable.  相似文献   

2.
Thompson JD  Koehl P  Ripp R  Poch O 《Proteins》2005,61(1):127-136
Multiple sequence alignment is one of the cornerstones of modern molecular biology. It is used to identify conserved motifs, to determine protein domains, in 2D/3D structure prediction by homology and in evolutionary studies. Recently, high-throughput technologies such as genome sequencing and structural proteomics have lead to an explosion in the amount of sequence and structure information available. In response, several new multiple alignment methods have been developed that improve both the efficiency and the quality of protein alignments. Consequently, the benchmarks used to evaluate and compare these methods must also evolve. We present here the latest release of the most widely used multiple alignment benchmark, BAliBASE, which provides high quality, manually refined, reference alignments based on 3D structural superpositions. Version 3.0 of BAliBASE includes new, more challenging test cases, representing the real problems encountered when aligning large sets of complex sequences. Using a novel, semiautomatic update protocol, the number of protein families in the benchmark has been increased and representative test cases are now available that cover most of the protein fold space. The total number of proteins in BAliBASE has also been significantly increased from 1444 to 6255 sequences. In addition, full-length sequences are now provided for all test cases, which represent difficult cases for both global and local alignment programs. Finally, the BAliBASE Web site (http://www-bio3d-igbmc.u-strasbg.fr/balibase) has been completely redesigned to provide a more user-friendly, interactive interface for the visualization of the BAliBASE reference alignments and the associated annotations.  相似文献   

3.
MOTIVATION: Partial order alignment (POA) has been proposed as a new approach to multiple sequence alignment (MSA), which can be combined with existing methods such as progressive alignment. This is important for addressing problems both in the original version of POA (such as order sensitivity) and in standard progressive alignment programs (such as information loss in complex alignments, especially surrounding gap regions). RESULTS: We have developed a new Partial Order-Partial Order alignment algorithm that optimally aligns a pair of MSAs and which therefore can be applied directly to progressive alignment methods such as CLUSTAL. Using this algorithm, we show the combined Progressive POA alignment method yields results comparable with the best available MSA programs (CLUSTALW, DIALIGN2, T-COFFEE) but is far faster. For example, depending on the level of sequence similarity, aligning 1000 sequences, each 500 amino acids long, took 15 min (at 90% average identity) to 44 min (at 30% identity) on a standard PC. For large alignments, Progressive POA was 10-30 times faster than the fastest of the three previous methods (CLUSTALW). These data suggest that POA-based methods can scale to much larger alignment problems than possible for previous methods. AVAILABILITY: The POA source code is available at http://www.bioinformatics.ucla.edu/poa  相似文献   

4.
This paper presents Tcoffee@igs, a new server provided to the community by Hewlet Packard computers and the Centre National de la Recherche Scientifique. This server is a web-based tool dedicated to the computation, the evaluation and the combination of multiple sequence alignments. It uses the latest version of the T-Coffee package. Given a set of unaligned sequences, the server returns an evaluated multiple sequence alignment and the associated phylogenetic tree. This server also makes it possible to evaluate the local reliability of an existing alignment and to combine several alternative multiple alignments into a single new one. Tcoffee@igs can be used for aligning protein, RNA or DNA sequences. Datasets of up to 100 sequences (2000 residues long) can be processed. The server and its documentation are available from: http://igs-server.cnrs-mrs.fr/Tcoffee/.  相似文献   

5.
The most popular way of comparing the performance of multiple sequence alignment programs is to use empirical testing on sets of test sequences. Several such test sets now exist, each with potential strengths and weaknesses. We apply several different alignment packages to 6 benchmark datasets, and compare their relative performances. HOMSTRAD, a collection of alignments of homologous proteins, is regularly used as a benchmark for sequence alignment though it is not designed as such, and lacks annotation of reliable regions within the alignment. We introduce this annotation into HOMSTRAD using protein structural superposition. Results on each database show that method performance is dependent on the input sequences. Alignment benchmarks are regularly used in combination to measure performance across a spectrum of alignment problems. Through combining benchmarks, it is possible to detect whether a program has been over-optimised for a single dataset, or alignment problem type.  相似文献   

6.
This article presents an immune inspired algorithm to tackle the Multiple Sequence Alignment (MSA) problem. MSA is one of the most important tasks in biological sequence analysis. Although this paper focuses on protein alignments, most of the discussion and methodology may also be applied to DNA alignments. The problem of finding the multiple alignment was investigated in the study by Bonizzoni and Vedova and Wang and Jiang, and proved to be a NP-hard (non-deterministic polynomial-time hard) problem. The presented algorithm, called Immunological Multiple Sequence Alignment Algorithm (IMSA), incorporates two new strategies to create the initial population and specific ad hoc mutation operators. It is based on the 'weighted sum of pairs' as objective function, to evaluate a given candidate alignment. IMSA was tested using both classical benchmarks of BAliBASE (versions 1.0, 2.0 and 3.0), and experimental results indicate that it is comparable with state-of-the-art multiple alignment algorithms, in terms of quality of alignments, weighted Sums-of-Pairs (SP) and Column Score (CS) values. The main novelty of IMSA is its ability to generate more than a single suboptimal alignment, for every MSA instance; this behaviour is due to the stochastic nature of the algorithm and of the populations evolved during the convergence process. This feature will help the decision maker to assess and select a biologically relevant multiple sequence alignment. Finally, the designed algorithm can be used as a local search procedure to properly explore promising alignments of the search space.  相似文献   

7.
Accurate tools for multiple sequence alignment (MSA) are essential for comparative studies of the function and structure of biological sequences. However, it is very challenging to develop a computationally efficient algorithm that can consistently predict accurate alignments for various types of sequence sets. In this article, we introduce PicXAA (Probabilistic Maximum Accuracy Alignment), a probabilistic non-progressive alignment algorithm that aims to find protein alignments with maximum expected accuracy. PicXAA greedily builds up the multiple alignment from sequence regions with high local similarities, thereby yielding an accurate global alignment that effectively grasps the local similarities among sequences. Evaluations on several widely used benchmark sets show that PicXAA constantly yields accurate alignment results on a wide range of reference sets, with especially remarkable improvements over other leading algorithms on sequence sets with local similarities. PicXAA source code is freely available at: http://www.ece.tamu.edu/∼bjyoon/picxaa/.  相似文献   

8.
Combining many multiple alignments in one improved alignment   总被引:7,自引:0,他引:7  
MOTIVATION: The fact that the multiple sequence alignment problem is of high complexity has led to many different heuristic algorithms attempting to find a solution in what would be considered a reasonable amount of computation time and space. Very few of these heuristics produce results that are guaranteed always to lie within a certain distance of an optimal solution (given a measure of quality, e.g. parsimony). Most practical heuristics cannot guarantee this, but nevertheless perform well for certain cases. An alignment, obtained with one of these heuristics and with a bad overall score, is not unusable though, it might contain important information on how substrings should be aligned. This paper presents a method that extracts qualitatively good sub-alignments from a set of multiple alignments and combines these into a new, often improved alignment. The algorithm is implemented as a variant of the traditional dynamic programming technique. RESULTS: An implementation of ComAlign (the algorithm that combines multiple alignments) has been run on several sets of artificially generated sequences and a set of 5S RNA sequences. To assess the quality of the alignments obtained, the results have been compared with the output of MSA 2.1 (Gupta et al., Proceedings of the Sixth Annual Symposium on Combinatorial Pattern Matching, 1995; Kececioglu et al., http://www.techfak.uni-bielefeld. de/bcd/Lectures/kececioglu.html, 1995). In all cases, ComAlign was able to produce a solution with a score comparable to the solution obtained by MSA. The results also show that ComAlign actually does combine parts from different alignments and not just select the best of them. AVAILABILITY: The C source code (a Smalltalk version is being worked on) of ComAlign and the other programs that have been implemented in this context are free and available on WWW (http://www.daimi.au.dk/ ?caprani). CONTACT: klaus@bucka-lassen.dk; jotun@pop.bio.au.dk;ocaprani@daimi.au.dk  相似文献   

9.
MOTIVATION: We introduce a novel approach to multiple alignment that is based on an algorithm for rapidly checking whether single matches are consistent with a partial multiple alignment. This leads to a sequence annealing algorithm, which is an incremental method for building multiple sequence alignments one match at a time. Our approach improves significantly on the standard progressive alignment approach to multiple alignment. RESULTS: The sequence annealing algorithm performs well on benchmark test sets of protein sequences. It is not only sensitive, but also specific, drastically reducing the number of incorrectly aligned residues in comparison to other programs. The method allows for adjustment of the sensitivity/specificity tradeoff and can be used to reliably identify homologous regions among protein sequences. AVAILABILITY: An implementation of the sequence annealing algorithm is available at http://bio.math.berkeley.edu/amap/  相似文献   

10.
The simple fact that proteins are built from 20 amino acids while DNA only contains four different bases, means that the 'signal-to-noise ratio' in protein sequence alignments is much better than in alignments of DNA. Besides this information-theoretical advantage, protein alignments also benefit from the information that is implicit in empirical substitution matrices such as BLOSUM-62. Taken together with the generally higher rate of synonymous mutations over non-synonymous ones, this means that the phylogenetic signal disappears much more rapidly from DNA sequences than from the encoded proteins. It is therefore preferable to align coding DNA at the amino acid level and it is for this purpose we have constructed the program RevTrans. RevTrans constructs a multiple DNA alignment by: (i) translating the DNA; (ii) aligning the resulting peptide sequences; and (iii) building a multiple DNA alignment by 'reverse translation' of the aligned protein sequences. In the resulting DNA alignment, gaps occur in groups of three corresponding to entire codons, and analogous codon positions are therefore always lined up. These features are useful when constructing multiple DNA alignments for phylogenetic analysis. RevTrans also accepts user-provided protein alignments for greater control of the alignment process. The RevTrans web server is freely available at http://www.cbs.dtu.dk/services/RevTrans/.  相似文献   

11.
Multiple comparison or alignmentof protein sequences has become a fundamental tool in many different domains in modern molecular biology, from evolutionary studies to prediction of 2D/3D structure, molecular function and inter-molecular interactions etc. By placing the sequence in the framework of the overall family, multiple alignments can be used to identify conserved features and to highlight differences or specificities. In this paper, we describe a comprehensive evaluation of many of the most popular methods for multiple sequence alignment (MSA), based on a new benchmark test set. The benchmark is designed to represent typical problems encountered when aligning the large protein sequence sets that result from today's high throughput biotechnologies. We show that alignmentmethods have significantly progressed and can now identify most of the shared sequence features that determine the broad molecular function(s) of a protein family, even for divergent sequences. However,we have identified a number of important challenges. First, the locally conserved regions, that reflect functional specificities or that modulate a protein's function in a given cellular context,are less well aligned. Second, motifs in natively disordered regions are often misaligned. Third, the badly predicted or fragmentary protein sequences, which make up a large proportion of today's databases, lead to a significant number of alignment errors. Based on this study, we demonstrate that the existing MSA methods can be exploited in combination to improve alignment accuracy, although novel approaches will still be needed to fully explore the most difficult regions. We then propose knowledge-enabled, dynamic solutions that will hopefully pave the way to enhanced alignment construction and exploitation in future evolutionary systems biology studies.  相似文献   

12.
MOTIVATION: The maximum expected accuracy optimization criterion for multiple sequence alignment uses pairwise posterior probabilities of residues to align sequences. The partition function methodology is one way of estimating these probabilities. Here, we combine these two ideas for the first time to construct maximal expected accuracy sequence alignments. RESULTS: We bridge the two techniques within the program Probalign. Our results indicate that Probalign alignments are generally more accurate than other leading multiple sequence alignment methods (i.e. Probcons, MAFFT and MUSCLE) on the BAliBASE 3.0 protein alignment benchmark. Similarly, Probalign also outperforms these methods on the HOMSTRAD and OXBENCH benchmarks. Probalign ranks statistically highest (P-value < 0.005) on all three benchmarks. Deeper scrutiny of the technique indicates that the improvements are largest on datasets containing N/C-terminal extensions and on datasets containing long and heterogeneous length proteins. These points are demonstrated on both real and simulated data. Finally, our method also produces accurate alignments on long and heterogeneous length datasets containing protein repeats. Here, alignment accuracy scores are at least 10% and 15% higher than the other three methods when standard deviation of length is >300 and 400, respectively. AVAILABILITY: Open source code implementing Probalign as well as for producing the simulated data, and all real and simulated data are freely available from http://www.cs.njit.edu/usman/probalign  相似文献   

13.
Although multiple sequence alignments (MSAs) are essential for a wide range of applications from structure modeling to prediction of functional sites, construction of accurate MSAs for distantly related proteins remains a largely unsolved problem. The rapidly increasing database of spatial structures is a valuable source to improve alignment quality. We explore the use of 3D structural information to guide sequence alignments constructed by our MSA program PROMALS. The resulting tool, PROMALS3D, automatically identifies homologs with known 3D structures for the input sequences, derives structural constraints through structure-based alignments and combines them with sequence constraints to construct consistency-based multiple sequence alignments. The output is a consensus alignment that brings together sequence and structural information about input proteins and their homologs. PROMALS3D can also align sequences of multiple input structures, with the output representing a multiple structure-based alignment refined in combination with sequence constraints. The advantage of PROMALS3D is that it gives researchers an easy way to produce high-quality alignments consistent with both sequences and structures of proteins. PROMALS3D outperforms a number of existing methods for constructing multiple sequence or structural alignments using both reference-dependent and reference-independent evaluation methods.  相似文献   

14.
Motivations: Biclustering is a clustering method that simultaneously clusters both the domain and range of a relation. A challenge in multiple sequence alignment (MSA) is that the alignment of sequences is often intended to reveal groups of conserved functional subsequences. Simultaneously, the grouping of the sequences can impact the alignment; precisely the kind of dual situation biclustering is intended to address. RESULTS: We define a representation of the MSA problem enabling the application of biclustering algorithms. We develop a computer program for local MSA, BlockMSA, that combines biclustering with divide-and-conquer. BlockMSA simultaneously finds groups of similar sequences and locally aligns subsequences within them. Further alignment is accomplished by dividing both the set of sequences and their contents. The net result is both a multiple sequence alignment and a hierarchical clustering of the sequences. BlockMSA was tested on the subsets of the BRAliBase 2.1 benchmark suite that display high variability and on an extension to that suite to larger problem sizes. Also, alignments were evaluated of two large datasets of current biological interest, T box sequences and Group IC1 Introns. The results were compared with alignments computed by ClustalW, MAFFT, MUCLE and PROBCONS alignment programs using Sum of Pairs (SPS) and Consensus Count. Results for the benchmark suite are sensitive to problem size. On problems of 15 or greater sequences, BlockMSA is consistently the best. On none of the problems in the test suite are there appreciable differences in scores among BlockMSA, MAFFT and PROBCONS. On the T box sequences, BlockMSA does the most faithful job of reproducing known annotations. MAFFT and PROBCONS do not. On the Intron sequences, BlockMSA, MAFFT and MUSCLE are comparable at identifying conserved regions. AVAILABILITY: BlockMSA is implemented in Java. Source code and supplementary datasets are available at http://aug.csres.utexas.edu/msa/  相似文献   

15.
Joo K  Lee J  Kim I  Lee SJ  Lee J 《Biophysical journal》2008,95(10):4813-4819
We present a new method for multiple sequence alignment (MSA), which we call MSACSA. The method is based on the direct application of a global optimization method called the conformational space annealing (CSA) to a consistency-based score function constructed from pairwise sequence alignments between constituting sequences. We applied MSACSA to two MSA databases, the 82 families from the BAliBASE reference set 1 and the 366 families from the HOMSTRAD set. In all 450 cases, we obtained well optimized alignments satisfying more pairwise constraints producing, in consequence, more accurate alignments on average compared with a recent alignment method SPEM. One of the advantages of MSACSA is that it provides not just the global minimum alignment but also many distinct low-lying suboptimal alignments for a given objective function. This is due to the fact that conformational space annealing can maintain conformational diversity while searching for the conformations with low energies. This characteristics can help us to alleviate the problem arising from using an inaccurate score function. The method was the key factor for our success in the recent blind protein structure prediction experiment.  相似文献   

16.
In a case study of fungi of the class Sordariomycetes, we evaluated the effect of multiple sequence alignment (MSA) on the reliability of the phylogenetic trees, topology and confidence of major phylogenetic clades. We compared two main approaches for constructing MSA based on (1) the knowledge of the secondary (2D) structure of ribosomal RNA (rRNA) genes, and (2) automatic construction of MSA by four alignment programs characterized by different algorithms and evaluation methods, CLUSTAL, MAFFT, MUSCLE, and SAM. In the primary fungal sequences of the two functional rRNA genes, the nuclear small and large ribosomal subunits (18 S and 28 S), we identified four and six, respectively, highly variable regions, which correspond mainly to hairpin loops in the 2D structure. These loops are often positioned in expansion segments, which are missing or are not completely developed in the Archaeal and Eubacterial kingdoms. Proper sorting of these sites was a key for constructing an accurate MSA. We utilized DNA sequences from 28 S as an example for one-gene analysis. Five different MSAs were created and analyzed with maximum parsimony and maximum likelihood methods. The phylogenies inferred from the alignments improved with 2D structure with identified homologous segments, and those constructed using the MAFFT alignment program, with all highly variable regions included, provided the most reliable phylograms with higher bootstrap support for the majority of clades. We illustrate and provide examples demonstrating that re-evaluating ambiguous positions in the consensus sequences using 2D structure and covariance is a promising means in order to improve the quality and reliability of sequence alignments.  相似文献   

17.
Accurate multiple sequence alignments of proteins are very important to several areas of computational biology and provide an understanding of phylogenetic history of domain families, their identification and classification. This article presents a new algorithm, REFINER, that refines a multiple sequence alignment by iterative realignment of its individual sequences with the predetermined conserved core (block) model of a protein family. Realignment of each sequence can correct misalignments between a given sequence and the rest of the profile and at the same time preserves the family's overall block model. Large-scale benchmarking studies showed a noticeable improvement of alignment after refinement. This can be inferred from the increased alignment score and enhanced sensitivity for database searching using the sequence profiles derived from refined alignments compared with the original alignments. A standalone version of the program is available by ftp distribution (ftp://ftp.ncbi.nih.gov/pub/REFINER) and will be incorporated into the next release of the Cn3D structure/alignment viewer.  相似文献   

18.
T-Coffee (Tree-based consistency objective function for alignment evaluation) is a versatile multiple sequence alignment (MSA) method suitable for aligning most types of biological sequences. The main strength of T-Coffee is its ability to combine third party aligners and to integrate structural (or homology) information when building MSAs. The series of protocols presented here show how the package can be used to multiply align proteins, RNA and DNA sequences. The protein section shows how users can select the most suitable T-Coffee mode for their data set. Detailed protocols include T-Coffee, the default mode, M-Coffee, a meta version able to combine several third party aligners into one, PSI (position-specific iterated)-Coffee, the homology extended mode suitable for remote homologs and Expresso, the structure-based multiple aligner. We then also show how the T-RMSD (tree based on root mean square deviation) option can be used to produce a functionally informative structure-based clustering. RNA alignment procedures are described for using R-Coffee, a mode able to use predicted RNA secondary structures when aligning RNA sequences. DNA alignments are illustrated with Pro-Coffee, a multiple aligner specific of promoter regions. We also present some of the many reformatting utilities bundled with T-Coffee. The package is an open-source freeware available from http://www.tcoffee.org/.  相似文献   

19.
Multiple sequence alignments are successfully applied in many studies for under- standing the structural and functional relations among single nucleic acids and protein sequences as well as whole families. Because of the rapid growth of sequence databases, multiple sequence alignments can often be very large and difficult to visualize and analyze. We offer a new service aimed to visualize and analyze the multiple alignments obtained with different external algorithms, with new features useful for the comparison of the aligned sequences as well as for the creation of a final image of the alignment. The service is named FASMA and is available at http://bioinformatica.isa.cnr.it/FASMA/.  相似文献   

20.
MOTIVATION: Multiple structure alignments are becoming important tools in many aspects of structural bioinformatics. The current explosion in the number of available protein structures demands multiple structural alignment algorithms with an adequate balance of accuracy and speed, for large scale applications in structural genomics, protein structure prediction and protein classification. RESULTS: A new multiple structural alignment program, MAMMOTH-mult, is described. It is demonstrated that the alignments obtained with the new method are an improvement over previous manual or automatic alignments available in several widely used databases at all structural levels. Detailed analysis of the structural alignments for a few representative cases indicates that MAMMOTH-mult delivers biologically meaningful trees and conservation at the sequence and structural levels of functional motifs in the alignments. An important improvement over previous methods is the reduction in computational cost. Typical alignments take only a median time of 5 CPU seconds in a single R12000 processor. MAMMOTH-mult is particularly useful for large scale applications. AVAILABILITY: http://ub.cbm.uam.es/mammoth/mult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号