首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Hybridomas are known to exhibit increased specific antibody production rated when subjected to environmental stress. Under these conditions, viability is low so that population-average measurements do not properly reflect the state of viable cells. Even for flow cytometry, which gives a population distribution, special techniques must be used to discriminate between viable and nonviable cells. We describe the use of the vital stain ethidium monoazide (EMA) for independent measurement of intracellular antibody content in live and dead cells via flow cytometry. EMA is shown to be superior to light scattering techniques in identifying dead cells. We apply this technique to show that, in control batch culture, the specific antibody prodution rate and antibody content in live cells are constant during exponential growth, but decrease as cells enter the stationary phase. Antibody is retained in dead cells, but at a lower level than in live cells. We further show that, under hyperosmotic stress, the specific antibody production rate and antibody content in live both remain high during death phase. (c) 1992 John Wiley & Sons, Inc.  相似文献   

2.
The use of flow cytometry in microbiology allows rapid characterization of cells from a nonhomogeneous population. A method based on flow cytometry to assess the effects of lethal agents and the bacterial survival in starved cultures through the use of membrane potential-sensitive dyes and a nucleic acid marker is presented. The use of propidium iodide, rhodamine, and oxonol has facilitated the differentiation of cells of Escherichia coli and Salmonella typhimurium of various states of vitality following various treatments (heat, sonication, electroporation, and incubation with gramicidin) and during starvation in artificial seawater. The fluorescence intensity is directly correlated with viable cell counts for rhodamine 123 labelling, whereas oxonol and propidium iodide labelling is inversely correlated with viable counts. The distribution of rhodamine and oxonol uptake during starvation-survival clearly indicates that single-species starved bacteria are heterogeneous populations, and flow cytometry can be a fundamental tool for quantifying this heterogeneity.  相似文献   

3.
The light scattering properties of mouse activated macrophages were analyzed by flow cytometry. Peritoneal adherent cells from B. abortus treated animals were found to segregate into two subpopulations as a function of their forward angle and 90 degrees angle light scatter. The cell subpopulations were separated by automatic sorting. The strongly scattering ones contained an elevated proportion of large volume and acid phosphatase rich cells. Their nonspecific cytotoxic activity against tumor cells was more important than that of weakly light scattering cells. Thus, flow cytometry might be helpful to characterize and isolate cytotoxic macrophage populations.  相似文献   

4.
The use of flow cytometric analysis and sorting techniques for the enumeration and purification of lymphocyte-target conjugates was investigated. Murine cytotoxic T-lymphocytes (CTL) with killer effector function were identified and quantitated during a 3-hour cell-mediated cytotoxicity reaction using multiparameter analysis. Resolution of conjugates containing single and multiple lymphocytes was achieved by two-color fluorescence, and individual conjugate subpopulations were subsequently sorted for further analysis. To measure total and cytotoxic conjugate frequencies, CTL were labelled with FITC-conjugated Thy 1.2 antibody and dead target cells were stained with propidium iodide (PI). Size difference between the CTL and P815 tumor target cells, as measured by Coulter volume and axial light loss, facilitated detection of conjugates which were identified as both large and Thy 1.2-positive. Conjugates containing dead target cells possessed red fluorescence due to PI uptake. The frequency of conjugates containing cytotoxic activity increased with time during the cytotoxicity period and correlated with frequencies obtained in single-cell assays. Analysis of the distribution of single and multiple lymphocyte-bound conjugates was done by co-centrifugation of Hoechst-stained CTL and FITC-labeled P815 target cells. Analysis by two-color fluorescence effectively resolved conjugate populations containing different numbers of CTL and allowed their purification by cell sorting. The purity of the separate populations was confirmed by fluorescence microscopic inspection. The results of these studies demonstrate that flow cytometry can resolve target-bound and free CTL, measure cytolytic efficiency and specifically sort out cytometrically defined subgroups within the effector cell population.  相似文献   

5.
The use of flow cytometry to rapidly assess the viability of Pseudomonas spp. and Staphylococcus spp. after exposure to a quaternary ammonium compound (QAC) was investigated using rhodamine 123 (Rh 123), Stain A (LIVE Stain) accumulating in viable but not in dead cells (Live/Dead Bac light bacterial viability kit, Molecular Probes Inc., Eugene, OR, USA), and Sytox green (Molecular Probes) accumulating in dead but not viable cells. Staining conditions were optimized for each stain. The fraction of viable cells after exposure to benzalkonium chloride was determined by using the three staining techniques and colony counts on agar medium. For all Staphylococcus spp. tested there was a high correlation between the methods based on flow cytometry and colony counts irrespective of which stain was used. Although viable, all Pseudomonas spp. tested accumulated Rh 123 poorly and about 30% failed to accumulate LIVE stain as well. However, the correlation between colony counts and Sytox green labelling of Pseudomonas spp. was high. Our results indicate that flow cytometry together with live or dead cell labelling can be used to study the bactericidal effect of QACs. The methods based on LIVE stain and Sytox green were simpler and less time consuming than Rh 123 labelling. Only Sytox green could be used with all strains of Staphylococcvs and Pseudomonas tested.  相似文献   

6.
流式细胞术检测毕赤酵母发酵过程中胞内活性氧水平   总被引:5,自引:1,他引:4  
以2′,7′-二氢二氯荧光黄双乙酸钠(DCFH-DA)和碘化丙锭(PI)为标记探针,通过DCFH-DA/PI双染色与PI单染色的对照,检测毕赤酵母胞内活性氧(reactive oxygen species,ROS)的水平及其影响。研究发现发酵过程细胞活性下降与胞内ROS积累相关。在甘油生长期,细胞几乎没有ROS积累,细胞活性接近100%。在甲醇诱导初期,部分细胞积累少量的ROS,细胞活性仍然很高,死亡细胞所占比例只有1.5%。在甲醇诱导后期,94.0%的细胞积累了大量的ROS,高含量的ROS造成细胞损伤,引起部分细胞丧失了活性,在总共29.1%的死亡细胞中,高ROS积累的死亡细胞占了25.4%。  相似文献   

7.
Identification of nonviable cells in immunofluorescently stained cell populations is essential for obtaining accurate data. Fluorescent non-vital DNA dyes, particularly propidium iodide (PI), have been used routinely in flow cytometry for discrimination of dead cells from viable cells on the basis of fluorescence. We describe here the use of an alternative DNA dye, 7-amino-actinomycin D (7-AAD), which can replace PI for the exclusion of nonviable cells. As an example, we present in this paper the utilization of 7-AAD on various leukemic cell lines for dead cell exclusion whenever the viable cell population could not be discriminated reliably from nonviable cells on the light scatter histogram; 7-AAD is suitable for dead cell discrimination in lengthy experiments because it is efficiently excluded by intact cells and has a high DNA binding constant. In addition, the dye is valuable in combination with phycoerythrin (PE)-fluorescence dual-color flow cytometry on a single argon laser instrument, since its emission in the far red can easily be separated from the emission of PE; 7-AAD was used on fluoresceinisothiocyanate (FITC) and PE surface-labeled human thymocytes for characterization of the dying subpopulation of cells which is undergoing programmed cell death. In this heterogeneous cell preparation, the spectral properties of the dye permitted the classification of viable and nonviable cell subpopulations by multiparameter analysis.  相似文献   

8.
AIMS: The aim of this study was to improve knowledge about the dynamics of the physiological states of Lactococcus lactis ssp. cremoris SK11, a chain-forming bacterium, during growth, and to evaluate whether flow cytometry (FCM) combined with fluorescent probes can assess these different physiological states. METHODS AND RESULTS: Cellular viability was assessed using double labelling with carboxyfluorescein diacetate and propidium iodide. FCM makes it possible to discriminate between three cell populations: viable cells, dead cells and cells in an intermediate physiological state. During exponential and stationary phases, the cells in the intermediate physiological state were culturable, whereas this population was no longer culturable at the end of the stationary phase. CONCLUSIONS, AND IMPACT OF THE STUDY: We introduced a new parameter, the ratio of the means of the fluorescence cytometric index to discriminate between viable culturable and viable nonculturable cells. Finally, this work confirms the relevance of FCM combined with two fluorescent stains to evaluate the physiological states of L. lactis SK11 cells during their growth and to distinguish viable cells from viable but not culturable cells.  相似文献   

9.
Summary Chinese hamster ovary cells were synchronized into purified populations of viable G1-, S-, G2-, and M-phase cells by a combination of methods, including growth arrest, aphidicolin block, cell cycle progression, mitotic shake-off, and centrifugal elutriation. The DNA content and bromodeoxyuridine (BrdUrd) labeling index were measured in each purified fraction by dual-parameter flow cytometry. The cell cycle distributions determined from the DNA measurements alone (single parameter) were compared with those calculated from both DNA and BrdUrd data (dual parameter). The results show that highly purified cells can be obtained using these methods, but the assessed purity depends on the method of cell cycle analysis. Using the single versus dual parameter measurement to determine cell cycle distributions gave similar results for most phases of the cell cycle, except for cells near the transition from G1- to S-phase and S- to G2-phase. There the BrdUrd labeling index determined by flow cytometry was more sensitive for detecting small amounts of DNA synthesis. As an alternative to flow cytometry, a simple method of measuring BrdUrd labeling index on cell smears was used and gave the same result as flow cytometry. Measuring both DNA content and DNA synthesis improves characterization of synchronized cell populations, especially at the transitions in and out of S-phase, when cells are undergoing dramatic shifts in biochemical activity.  相似文献   

10.
Aims: This research investigated the effect of sonication at frequencies of 20, 40 and 580 kHz and approximately the same acoustic intensity on the viability and declumping of two micro‐organisms (Escherichia coli and Klebsiella pneumonia). Methods and Results: Two analytical methods were employed; viable plate counts (CFU ml?1) and flow cytometry to identify and quantify both live/viable and dead bacteria in the bulk liquid. Flow cytometry results for E. coli and Kl. pneumonia indicated a high sensitivity to 20 and 40 kHz frequency with a continuous decrease in the viable cells and an increase in dead cells during experiments. In contrast, results using the higher frequency of 580 kHz indicate predominantly deagglomeration of bacterial clumps rather than cell membrane disruption (Joyce et al. 2003). Results indicate a good correlation between flow cytometry and viable plate count methodology. Conclusions: Sonication has two different effects on bacteria (i) inactivation and (ii) declumping; however, the scale of these effects is dependent on intensity and frequency. Flow cytometry provides a method to distinguish between and quantify the effects through the observation of two subpopulations: (i) live/viable and (ii) dead bacterial cells. Significance and Impact of the study: Treatment using power ultrasound has been shown to have a significant impact on microbial activity. This is the first time a study has compared the influence of a range of different frequencies, but at similar power settings on the survival of bacteria in phosphate buffer saline (PBS). This work is of importance for applications where ultrasound has been considered for use in industry as a means of disinfection including the treatment and pretreatment of water and also for the sterilization of liquid foods.  相似文献   

11.
Flow cytometry is an automated, laser- or impedance-based, high throughput method that allows very rapid analysis of multiple chemical and physical characteristics of single cells within a cell population. It is an extremely powerful technology that has been used for over four decades with filamentous fungi. Although single cells within a cell population are normally analysed rapidly on a cell-by-cell basis using the technique, flow cytometry can also be used to analyse cell (e.g. spore) aggregates or entire microcolonies. Living or fixed cells can be stained with a wide range of fluorescent reporters to label different cell components or measure different physiological processes. Flow cytometry is also suited for measurements of cell size, interaction, aggregation or shape using non-labelled cells by means of analysing their light scattering characteristics. Fluorescence-activated cell sorting (FACS) is a specialized form of flow cytometry that provides a method for sorting a heterogeneous mixture of cells into two or more containers based upon the fluorescence and/or light scattering properties of each cell. The major advantage of analysing cells by flow cytometry over microscopy is the speed of analysis: thousands of cells can be analysed per second or sorted in minutes. Drawbacks of flow cytometry are that specific cells cannot be followed in time and normally spatial information relating to individual cells is lacking. A big advantage over microscopy is when using FACS, cells with desired characteristics can be sorted for downstream experimentation (e.g. for growth, infection, enzyme production, gene expression assays or ‘omics’ approaches). In this review, we explain the basic concepts of flow cytometry and FACS, define its advantages and disadvantages in comparison with microscopy, and describe the wide range of applications in which these powerful technologies have been used with filamentous fungi.  相似文献   

12.
Flow cytometry was used to study the effect of the bacteriocin leucocin B-TA11a on Listeria (L.) monocytogenes. Mixed proportions of dead and live control populations were analyzed by flow cytometry to determine detection limits of the Dead/Live Baclight Bacterial Viability KitTM. High correlations for flow cytometric detection of defined proportions of live or dead cells in mixtures between 10 and 100% of dead (r2 = 0.97) or live (r2 = 0.99) cells were obtained. However, mixtures containing less than 10% of either live or dead control cells gave correlations below 0.72. The growth of L. monocytogenes in the absence and presence of leucocin B-TA11a was analyzed by flow cytometry with Baclight, plate counts, and optical density measurements. Although leucocin B-TA11a initially inhibited listerial growth, the uptake of both Baclight dyes suggested that cells remained viable but became leaky, possibly indicating bacteriocin-induced pore formation in the target membranes. Received: 30 June 1997 / Accepted: 20 October 1997  相似文献   

13.
A new method was developed for selective measurement of DNA distributions in viable cell populations. The method is based on the fact that non-viable cells lose membrane integrity and treatment of such cells with DNase should remove their DNA. The DNase-treated cells were stained with DNA fluorochrome 4′-6-diamidino-2-phenylindole (DAPI) in the presence of Triton X-100. DNA distribution was measured by flow cytometry prior to and after treatment with DNase. Percentage of cells stained after DNase treatment was considered as an index of cell viability. Optimal conditions for DNase treatment and application of DNase exclusion test for the analysis of spontaneous cell death, selective death of cells arrested in S/G2 phases, instant cell disintegration induced by cytotoxic compounds and cell death induced by hyperthermia are described.  相似文献   

14.
High hydrostatic pressure is a new food preservation technology known for its capacity to inactivate spoilage and pathogenic microorganisms. That inactivation is usually assessed by the number of colonies growing on solid media after treatment. Under normal conditions the method does not permit recovery of damaged cells and may underestimate the number of cells that will remain viable and grow after a few days in high-pressure-processed foodstuffs. This study investigated the damage inflicted on Listeria monocytogenes cells treated by high pressure for 10 min at 400 MPa in pH 5.6 citrate buffer. Under these conditions, no cell growth occurred after 48 h on plate count agar. Scanning electron microscopy, light scattering by flow cytometry, and cell volume measurements were compared to evaluate the morphological changes in cells after pressurization. All these methods revealed that cellular morphology was not really affected. Esterase activity, as assessed either by enzymatic activity assays or by carboxy fluorescein diacetate fluorescence monitored by flow cytometry, was dramatically lowered, but not totally obliterated, under the effects of treatment. The measurement of propidium iodide uptake followed by flow cytometry demonstrated that membrane integrity was preserved in a small part of the population, although the membrane potential measured by analytical methods or evaluated by oxonol uptake was reduced from -86 to -5 mV. These results showed that such combined methods as fluorescent dyes monitored by flow cytometry and physiological activity measurements provide valuable indications of cellular viability.  相似文献   

15.
Using a flow cytometry-based approach, we assessed the viability of Bifidobacterium lactis DSM 10140 and Bifidobacterium adolescentis DSM 20083 during exposure to bile salt stress. Carboxyfluorescein diacetate (cFDA), propidium iodide (PI), and oxonol [DiBAC4(3)] were used to monitor esterase activity, membrane integrity, and membrane potential, respectively, as indicators of bacterial viability. Single staining with these probes rapidly and noticeably reflected the behavior of the two strains during stress exposure. However, the flow cytometry results tended to overestimate the viability of the two strains compared to plate counts, which appeared to be related to the nonculturability of a fraction of the population as a result of sublethal injury caused by bile salts. When the cells were simultaneously stained with cFDA and PI, flow cytometry and cell sorting revealed a striking physiological heterogeneity within the stressed bifidobacterium population. Three subpopulations could be identified based on their differential uptake of the probes: cF-stained, cF and PI double-stained, and PI-stained subpopulations, representing viable, injured, and dead cells, respectively. Following sorting and recovery, a significant fraction of the double-stained subpopulation (40%) could resume growth on agar plates. Our results show that in situ assessment of the physiological activity of stressed bifidobacteria using multiparameter flow cytometry and cell sorting may provide a powerful and sensitive tool for assessment of the viability and stability of probiotics.  相似文献   

16.
Flow cytometric signatures (i.e., light scatter, red and green fluorescence) were obtained for the active but non-culturable (ABNC) cells of E. coli and a coliform isolate H03N1, in seawater microcosms using BacLight, a live-dead assay kit from Molecular Probes (Eugene/Portland, OR). Previous studies have reported that there are two major adaptations, which cells undergo during the formation of ABNC states: cell wall toughening and DNA condensation. Therefore, we hypothesized that the matured ABNC forms should be more resistant to extreme temperature treatments (i.e., by freezing in liquid nitrogen and thawing at room temperature) than the normal and transition populations. It was shown that the membrane-compromised cells (comprising of normal wild-type and dead cells which are less resistant to rapid freeze thaw) could be differentiated from the matured ABNC using BacLight staining and fluorescence detection by flow cytometry. The population of ABNC cells, which could not be cultured using m-FC media (for the enumeration of fecal coliforms), was resuscitated in phosphate buffer saline followed by growth in Luria broth. Flow cytometry was thus able to detect and differentiate the ABNC cells against a mixed population comprising of culturable cells, transition populations, and dead cells. The results also showed that the formation of ABNC is as early as 2 days in seawater microcosms. By directly comparing the coliform levels enumerated by the BacLight based flow cytometry assays and m-FC technique, it was shown that the presence of coliforms can be undetected by the membrane filtration method.  相似文献   

17.
Sinusoidal cells isolated from adult rat liver were fractionated by velocity sedimentation at 1 X g ( primarily on the basis of size) and the various cell fractions were further analysed by flow cytometry on the basis of forward and perpendicular light scattering and autofluorescence. Cell volume was also measured electronically using a Coulter counter. At least four enriched cell populations were resolved after velocity sedimentation. They corresponded to cells having a modal diameter of 6.5, 7.5, 9, and 11 microns, respectively. Transmission electron microscopy (TEM) analysis of the various cell populations revealed that the 7.5- and 9-microns cell fractions represented two distinct classes of endothelial cells while the 11-microns cells corresponded to Kupffer cells. The 6.5-microns cells were identified as lymphocytes. Fat-storing cells, identified by their autofluorescence and lipid content, were included in the Kupffer population. Further information about the nature of the two physically distinct endothelial cell populations was obtained by TEM. It demonstrated that the smaller endothelial cells possessed quantitatively and relatively less retracted sieve plates than the larger ones. This ultrastructural feature can be possibly correlated to a differential localization of the two classes of endothelial cells within the liver acinus.  相似文献   

18.
The multicellular development of the single celled eukaryote Dictyostelium discoideum is induced by starvation and consists of initial aggregation of the isolated amoebae, followed by their differentiation into viable spores and dead stalk cells. These stalk cells retain their structural integrity inside a stalk tube that support the spores in the fruiting body. Terminal differentiation into stalk cells has been shown to share several features with programmed cell death (Cornillon et al. (1994), J. Cell Sci. 107, 2691-2704). Here we report that, in the absence of aggregation and differentiation, D. discoideum can undergo another form of programmed cell death that closely resembles apoptosis of most mammalian cells, involves loss of mitochondrial transmembrane potential, phosphatidylserine surface exposure, and engulfment of dying cells by neighboring D. discoideum cells. This death has been studied by various techniques (light microscopy and scanning or transmission electron microscopy, flow cytometry, DNA electrophoresis), in two different conditions inhibiting D. discoideum multicellular development. The first one, corresponding to an induced unicellular cell death, was obtained by starving the cells in a "conditioned" cell-free buffer, prepared by previous starvation of another D. discoideum cell population in potassium phosphate buffer (pH 6.8). The second one, corresponding to death of D. discoideum after axenic growth in suspension, was obtained by keeping stationary cells in their culture medium. In both cases of these unicellular-specific cell deaths, microscopy revealed morphological features known as hallmarks of apoptosis for higher eukaryotic cells and apoptosis was further corroborated by flow cytometry. The occurrence in D. discoideum of programmed cell death with two different phenotypes, depending on its multicellular or unicellular status, is further discussed.  相似文献   

19.
High hydrostatic pressure is a new food preservation technology known for its capacity to inactivate spoilage and pathogenic microorganisms. That inactivation is usually assessed by the number of colonies growing on solid media after treatment. Under normal conditions the method does not permit recovery of damaged cells and may underestimate the number of cells that will remain viable and grow after a few days in high-pressure-processed foodstuffs. This study investigated the damage inflicted on Listeria monocytogenes cells treated by high pressure for 10 min at 400 MPa in pH 5.6 citrate buffer. Under these conditions, no cell growth occurred after 48 h on plate count agar. Scanning electron microscopy, light scattering by flow cytometry, and cell volume measurements were compared to evaluate the morphological changes in cells after pressurization. All these methods revealed that cellular morphology was not really affected. Esterase activity, as assessed either by enzymatic activity assays or by carboxy fluorescein diacetate fluorescence monitored by flow cytometry, was dramatically lowered, but not totally obliterated, under the effects of treatment. The measurement of propidium iodide uptake followed by flow cytometry demonstrated that membrane integrity was preserved in a small part of the population, although the membrane potential measured by analytical methods or evaluated by oxonol uptake was reduced from −86 to −5 mV. These results showed that such combined methods as fluorescent dyes monitored by flow cytometry and physiological activity measurements provide valuable indications of cellular viability.  相似文献   

20.
In the midgut of Heliothis virescens larvae, proliferation and differentiation of stem cell populations allow for midgut growth and regeneration. Basic epithelial regenerative function can be assessed in vitro by purifying these two cell type populations, yet efficient high throughput methods to monitor midgut stem cell proliferation and differentiation are not available. We describe a flow cytometry method to differentiate stem from mature midgut cells and use it to monitor proliferation, differentiation and death in primary midgut stem cell cultures from H. virescens larvae. Our method is based on differential light scattering and vital stain fluorescence properties to distinguish between stem and mature midgut cells. Using this method, we monitored proliferation and differentiation of H. virescens midgut cells cultured in the presence of fetal bovine serum (FBS) or AlbuMAX II. Supplementation with FBS resulted in increased stem cell differentiation after 5 days of culture, while AlbuMAX II-supplemented medium promoted stem cell proliferation. These data demonstrate utility of our flow cytometry method for studying stem cell-based epithelial regeneration, and indicate that AlbuMAX II-supplemented medium may be used to maintain pluripotency in primary midgut stem cell cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号