首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Vespertilionidae is the largest chiropteran family that comprises species of different specialization and wide geographic distribution. Up to now, only a few vespertilionid species have been studied by molecular cytogenetic approaches. Here, we have investigated the karyotypic relationships of 4 Vespertilionidae species from Siberia by G-banding and comparative chromosome painting. Painting probes from Aselliscus stoliczkanus were used to establish interspecific homologous chromosomal segments in Myotis dasycneme (2n = 44), Murina hilgendorfi (2n = 44), Plecotus auritus (2n = 32), and Vespertilio murinus (2n = 38). Robertsonian translocations and a few inversions differentiated the karyotypes of the examined species. Painting of P. auritus karyotype with human probes revealed 3 previously undetected cryptic segments homologous to human chromosomes (Homo sapiens, HSA) 8, 15, and 19, respectively. As a consequence, the existence of 2 HSA 4 + 8 syntenies in the P. auritus karyotype has been proven. In addition, a pericentric inversion or centromere shift was revealed on the smallest metacentric P. auritus chromosome 16/17 using the HSA 16 probe explaining the different G-banding pattern in comparison to the homologous Myotis chromosome 16/17.  相似文献   

2.
The weta Hemideina crassidens has two chromosomal races that differ by two centric fusions or fissions. The mitochondrial DNA of weta from both chromosomal races and a sister species were sequenced for a 750-bp region of the gene coding for cytochrome oxidase I. The average pairwise genetic distance among the 15 (XO)-chromosome race weta was almost four times greater than the average distance among the 19 (XO)-chromosome race weta. The weta from the 19-chromosome race formed a well-supported monophyletic clade in all shortest maximum parsimony trees. Maximum likelihood and neighbor-joining trees suggested that the 15-chromosome karyotype was paraphyletic with respect to the 19-chromosome karyotype, but this was not supported by maximum parsimony analyses. Although phylogenetic analysis could not exclude chromosome fusion as the rearrangement responsible for the karyotype differentiation, the level of sequence variation and pattern of distribution appear to implicate fission as the more likely event.  相似文献   

3.
棕色田鼠罗伯逊易位的研究(简报)   总被引:2,自引:0,他引:2  
屈艾  高焕 《实验生物学报》2000,33(4):367-375
The type of chromosome No. 1 and chromosome number from 53 individuals of Microtus mandarinus have been studied and compared in three sex types: XY, XX, XO. We found that the first pair of autosomes are very unstable, and there are three types: (1) M, M (With a double metacentric chromosome), (2) M, T, T, (With single metacentric chromosome). (3) T, T, T, T (Without metacentric chromosome). The chromosome number of the same sex individuals changes regularly with the type change of chromosome No. 1, that is, the increase of one chromosome in 2n number is always accompanied by the increase of two T and the decrease of one M, and vice versa. The synaptonemal complexes (SCs) of spermatocyte in pachytene nuclei from the males (2n = 51) were analysed by the electron microscopy. The SCs studies demonstrate that there are 23 fully paired autosomal bivalents, XY-bivalent and an autosomal trivalent. This trivalent is formed by one metacentric and two telocentric elements and characterized by the presence of two short side-arms. Meanwhile, all trivalents are in a cis configuration. The study of G-banding also demonstrates that the No. 1 autosome polymorphism is caused by Robertsonian translocation. Robertsonian fission is the main reason of the polymorphism of chromosome No. 1 and of variation of chromosome number in M. mandarinus.  相似文献   

4.
A new population of Mus musculus domesticus showing Robertsonian translocations (2n = 22) has been identified in Tunisia. Mice carried 9 pairs of Robertsonian translocations: Rb(1.11), Rb(2.16), Rb(3.12), Rb(4.6), Rb(5.14), Rb(7.18), Rb(8.9), Rb(10.17) and Rb(13.15). Five of the nine translocations are not known to occur elsewhere. In two populations only 2n = 22 mice were present, whereas in a third one a mixture of karyotypes (2n = 22, 38, 39, 40) was found. The slight electrophoretic differentiation observed for other Robertsonian populations as well as the hybrid nature of the karyotypically heterogeneous populations are confirmed. Allele frequency differences between the 2n = 22 and 2n = 40 mice in the latter population show that local electrophoretic differentiation exists and allow to compare chromosome flow and gene flow. The presence of a chromosome-1 polymorphism for additional fragments of heterochromatin present in the Robertsoman population provides a convenient marker of recombinational events in the hybrid zone.  相似文献   

5.
青海四种雏蝗染色体核型的比较分析   总被引:1,自引:0,他引:1  
严林 《昆虫知识》2001,38(4):286-290
采用常规染色体制片方法对雏蝗属的褐色雏蝗Chorthippusbrunneus(Thunb .) ,异色雏蝗C .big uttulus(Linnaeus) ,小翅雏蝗C .fallax(Zub .) ,青藏雏蝗C .qingzangensis(Ying)的染色体核型进行分析 ,结果 :染色体数目均为 2n(♂ ) =1 7=1 6+XO ;常染色体类型为两类 ,中着丝点染色体 (m ,6条 )和端着丝点染色体 (T ,1 0条 ) ;性染色体类型为端着丝点。褐色雏蝗、异色雏蝗和青藏雏蝗的核型公式和染色体的相对长度组成为K( 2n ,♂ ) =1 7=6m +1 1T =6L +6M +4S +XO ,K( 2n ,♀ ) =1 8=6m +1 2T =6L +6M +4S +XX ;小翅雏蝗的为K( 2n,♂ ) =1 7=6m +1 1T =6L +4M +6S +XO ,K( 2n ,♀ ) =1 8=6m +1 2T =6L +4M +6S+XX。褐色雏蝗性染色体中部有次缢痕。染色体臂数 4种均为NF =2 3(♂ ) ,2 4 (♀ )。  相似文献   

6.
Complete sets of chromosome-specific painting probes, derived from flow-sorted chromosomes of human (HSA), Equus caballus (ECA) and Equus burchelli (EBU) were used to delineate conserved chromosomal segments between human and Equus burchelli, and among four equid species, E. przewalskii (EPR), E. caballus, E. burchelli and E. zebra hartmannae (EZH) by cross-species chromosome painting. Genome-wide comparative maps between these species have been established. Twenty-two human autosomal probes revealed 48 conserved segments in E. burchelli. The adjacent segment combinations HSA3/21, 7/16p, 16q/19q, 14/15, 12/22 and 4/8, presumed ancestral syntenies for all eutherian mammals, were also found conserved in E. burchelli. The comparative maps of equids allow for the unequivocal characterization of chromosomal rearrangements that differentiate the karyotypes of these equid species. The karyotypes of E. przewalskii and E. caballus differ by one Robertsonian translocation (ECA5 = EPR23 + EPR24); numerous Robertsonian translocations and tandem fusions and several inversions account for the karyotypic differences between the horses and zebras. Our results shed new light on the karyotypic evolution of Equidae.  相似文献   

7.
Nine karyotypes are described within a single species of common New Zealand tree weta. Their diploid numbers range from 11 to 25. The distribution of the karyotypes suggests that each had a single origin except the 17-karyotype which was the most common karyotype and had a disjunct distribution. The overall level of allozyme diversity observed is similar to that seen within many widespread taxa. The distribution of allozyme alleles did not coincide with the distribution of karyotypes within this species and the Neighbour-Joining tree was not concordant with the chromosome based sub-divisions of the species. Thus, no evidence was found to suggest that chromosomal differentiation has been acting as a barrier to the flow of alleles within H. thoracica. The lack of concordance of genetic markers is thought to result from rapid chromosome radiation and reticulate evolution. Northland peninsula of North Island, New Zealand is a region of high chromosomal and allozymic diversity in H. thoracica. This may have resulted from geographic isolation during the Pliocene when Northland formed an archipelago of many small low-lying islands.  相似文献   

8.
Cytogenetic and molecular cytogenetic characteristics have been studied in 210 couples with fertility problems. The patients’ karyotypes contained various chromosomal rearrangements in 46 cases (10.95%). The structural chromosomal rearrangements such as pericentric inversions, Robertsonian translocations, balanced reciprocal translocations, and marker chromosomes were more frequent than numerical chromosome aberrations (89.13 and 10.87% of cases, respectively). We have found 19 (4.52%) karyotypes with “hidden’ low mosaicism in X and Y chromosomes. We believe that the patients with chromosomal anomalies in the karyotype need differentiated treatment.  相似文献   

9.
The cycad %amia loddigesii Miq. forms a morphologically variable complex on the Yucatan peninsula, Mexico. Several diploid chromosome numbers have been found in the species: In = 17, 24, 25, 26 and 27. Differing karyotypes and chromosome numbers were found in individuals of the same population and die karyotypes differ widely in numbers of metacentric and telocentric chromosomes present. Centrometric fission as well as pericentric inversions and unequal translocations are suggested to be the probable mechanisms for this karyotype variation. There appears to be a correlation between high chromosome number and increasing dryness of the habitats. Coupled with the strongly asymmetrical karyotypes, this suggests that karyotype evolution in Z- loddigesii is recent.  相似文献   

10.
Modern mole voles of the genus Ellobius are characterized by species-specific features of autosomes and sex chromosomes. Owing to the use of the Zoo-FISH method, the nomenclature of chromosomes was refined and nonhomologous Robertsonian translocations indistinguishable by G-staining were identified for Ellobius tancrei, which is a species with a wide chromosome variation of the Robertsonian type. The electron-microscopic analysis of synaptonemal complexes in F1 hybrids of forms with 2n = 50 and 2n = 48 revealed the formation of a closed SC-pentavalent composed of three metacentrics with monobrachial homology and two acrocentrics. Segregation of chromosomes of such complex systems is impeded by disturbances in the nucleus architecture leding to the formation of unbalanced gametes and to a dramatic reduction in fertility of hybrids. Our data support the hypothesis that the formation of monobrachial homologous metacentric chromosomes can be considered as a way of chromosomal speciation.  相似文献   

11.
The five species of Tradescantia section Cymbispatha studied, including one species T. poelliae D. R. Hunt, have chromosome numbers of In = 12, 14, 16, 22, 28, 30 and 36 and karyotypes of acrocentric, metacentric or telocentric chromosomes, or mixtures of both acrocentric and metacentric chromosomes. The numbers of major chromosome arms of these cytotypes give a nombre fondamentaP series of 14, 28, 42 and 56 which, in combination with meiotic analyses, indicates plants which, in genetical terms at least, are diploid, tetraploid, hexaploid and octoploid. This series has evolved from a 2 n = 14 acrocentric or telocentric karyotype by a combination of Robertsonian fusion and polyploidy. Pseudo-iso-chromosomes are sometimes formed in this evolutionary development and can persist as stable members of normal complements.  相似文献   

12.
The five species of Tradescantia section Cymbispatha studied, including one species T. poelliae D. R. Hunt, have chromosome numbers of In = 12, 14, 16, 22, 28, 30 and 36 and karyotypes of acrocentric, metacentric or telocentric chromosomes, or mixtures of both acrocentric and metacentric chromosomes. The numbers of major chromosome arms of these cytotypes give a nombre fondamentaP series of 14, 28, 42 and 56 which, in combination with meiotic analyses, indicates plants which, in genetical terms at least, are diploid, tetraploid, hexaploid and octoploid. This series has evolved from a 2 n = 14 acrocentric or telocentric karyotype by a combination of Robertsonian fusion and polyploidy. Pseudo-iso-chromosomes are sometimes formed in this evolutionary development and can persist as stable members of normal complements.  相似文献   

13.
伞形科3个种5个居群的核型分析   总被引:1,自引:0,他引:1  
对伞形科前胡属(PeucedanumL.)2个种以及羌活属(NotopterygiumH.Boiss.)1个种3个居群的染色体数目和核型进行了研究。研究表明,它们的染色体数目均为2n=22,核型公式可分别表示为长前胡:2n=2x=22=22 m(1 SAT),属1A型;松潘前胡:2n=2x=22=20 m 2 sm,属2A型;宽叶羌活的3个居群分别是:马边大风顶居群1为2n=2x=22=6 m 12 sm 4 st,属2A型;马边大风顶居群2为2n=2x=22=12 m 4 sm 6 st,属2B型;屏山老君山居群为2n=2x=22=4 m 14 sm 4 st,属2A型。其中长前胡和松潘前胡的染色体数目和核型为首次报道。  相似文献   

14.
棕色田鼠罗伯逊易位的研究(简报)   总被引:2,自引:0,他引:2  
棕色田鼠(Microtus mandarinus Milne-Edwards,1871)又称北方田鼠,主要分布于我国。前苏联、蒙古的少数地区亦有分布,前苏联学者称该鼠为中国田鼠。关于该鼠的染色体研究国内外已有报道。仅推测罗伯逊易位是引起该鼠第一对常染色体多态及其染色体数目多态的主要原因。本文详细研究了该鼠第一对常染色体多态类型与个体染色体数目之间的一一对应关系、性个体(2n=51)的G带带型及其联会复合作中三价体的存在,完全证实了  相似文献   

15.
The differences in chromosome number between Otolemur crassicaudatus (2n = 62) and Galago moholi (2n = 38) are dramatic. However, the total number of signals given by hybridizing human chromosome paints to galago metaphases is similar: 42 in O. crassicaudatus and 38 G. moholi. Many human chromosome homologs are found fragmented in each species, and numerous translocations have resulted in chromosomal syntenies or hybridization associations which differ from those found in humans. Only 7 human autosomes showed conserved synteny in O. crassicaudatus, and 9 in G. moholi. Both galago species have numerous associations or syntenies not found in humans: O. crassicaudatus has 11, and G. moholi has 21. The phylogenetic line leading to the last common ancestor of the two galago species accumulated 6 synapomorphic fissions and 5 synapomorphic fusions. Since the divergence of the two galago species, 10 Robertsonian translocations have further transformed the G. moholi karyotype, and 2 fissions have been incorporated into the O. crassicaudatus karyotype. Comparison with other primates, tree shrews, and other mammals shows that both galagos have karyotypes which are a mixture of derived and conserved chromosomes, and neither has a karyotype close to that of the proposed ancestor of all primates. Am J Phys Anthropol 117:319-326, 2002. Published 2002 Wiley-Liss, Inc.  相似文献   

16.
The karyotypes of Gryllus rubens (Scudder) and Gryllus sp. collected in the US were studied using conventional Giemsa staining and two differential staining methods. Both species had a chromosome complement of 2n = 28 + XX/XO, and the X chromosome was large and metacentric. In addition, nucleolus organizer regions (NOR) were detected in the short arm of one pair in the two species, and the NOR showed variation in size. The two species had species‐specific chromosome configuration and C‐banding patterns. In Gryllus sp., the chromosome configuration showed polymorphism in size and type among individuals, and the distal C‐bands of Gryllus sp. were larger than those of G. rubens.  相似文献   

17.
A karyotypic study on a subspecies of the dusky titi,Callicebus moloch brunneus, was carried out and a third karyotype ofC. moloch was discovered. The chromosome number of this subspecies is 48. The autosomes consist of 5 subtelocentric, 5 submeta- or metacentric, and 13 acrocentric chromosome pairs. The X chromosome and the Y chromosome are submetacentric and metacentric, respectively. A comparative study with other subspecies of theC. moloch group (i.e.,C. m. cupreus andC. m. ornatus with 2n=46 andC. m. donacophilus with 2n=50) suggests that the karyotype ofbrunneus occupies a position intermediate between the two other karyotypes ofC. moloch, but nearer to that of 2n=50. The presumed total differences betweenbrunneus andcupreus comprise one Robertsonian rearrangement, one centromeric transposition and four pericentric inversions, and those betweenbrunneus anddonacophilus involve one translocation or breakage (possibly corresponding to two events, that is, one Robertsonian rearrangement and one centromeric transposition).  相似文献   

18.
Through use of BrdU replication, RBA-banded karyotypes of Tupaia belangeri, T. chinensis, and T. glis were obtained. A chromosome number of 2n = 62 for T. belangeri is described here for the first time and is confirmed for T. chinensis. All chromosomes between these two phenotypically different species appear to have identical RBA banding patterns; in addition, there is no difference between T. belangeri and T. chinensis in the number and position of nucleolus organizer regions (NORs). The reduced chromosome number of 2n = 60 in T. glis can be explained by a Robertsonian translocation between two acrocentric chromosome pairs, Nos. 10 and 13, of T. belangeri and/or T. chinensis, resulting in the metacentric chromosome pair 1 of T. glis. Furthermore, two chromosome pairs each of T. glis and T. belangeri and/or T. chinensis are not homoeologous, as judged by their RBA patterns. Differences were also found in the number and position of NORs; whereas T. glis displays eight positively stained NORs after AgNO3 staining, there are only four silver-stained NORs in both T. belangeri and T. chinensis. The possibility of geographical isolation as an explanation for the lack of chromosomal differentiation between T. belangeri and T. chinensis is discussed.  相似文献   

19.
A silver stain (Kt) technique was used to analyze the centromeric area in metacentric chromosomes originating from Robertsonian rearrangements in the mouse. The 2n=40 all-acrocentric mouse karyotype and two Robertsonian-rearranged karyotypes (2n=24 and 2n=26 from Upper Valtellina) were used. The existence was demonstrated of a single centromeric pattern common to metacentric and to acrocentric chromosomes except for the Y, and consisting of two deeply stained dots, one per chromatid. In many cells this technique stains the nucleolar organizers and resolves the paracentromeric constitutive heterochromatin in chromomeres.  相似文献   

20.
Zhu B  Dong Y  Gao J  Li P  Pang Y  Liu H  Chen H 《Hereditas》2006,143(2006):130-137
Here we describe our studies on Microtus mandarinus faeceus of Jiangyan in Jiangsu province of China. By karyotype and G-banding analysis we have found variation in chromosome number and polymorphisms of the X chromosome and the second pair of autosomes of the subspecies. Chromosome number of the subspecies is 2n=47-50. The subspecies has three kinds of chromosomal sex: XX, XO and XY, among which one of the X chromosomes is subtelocentric (X(ST)) and the other is metacentric (X(M)). After comparing karyotypes of different subspecies, we found the specific cytogenetic characteristics of Microtus mandarinus, that is they have three kinds of chromosomal sex: XX, XO and XY; X chromosomes are heteromorphic; the chromosome number of female individuals are one less than male individuals; chromosome number of XX individuals are equal to that of XO ones. We hypothesize that Robertsonian translocation is the main reason of the polymorphism of the second pair of autosomes and variety of chromosome number, and it also causes the chromosome number evolution in different subspecies of Microtus mandarinus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号