首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The influence of maternal and formula milk on lipid metabolism was studied in 7-day-old pigs. Lipid content, fatty acid composition, lipogenic enzyme activities and expression of GLUT4 mRNA were determined in subcutaneous adipose tissue and skeletal muscle from pigs that were bottle-fed formula milk (F) or sow milk (SM), or were sow-reared (SR). Bottle-fed pigs were isoenergetically fed and achieved similar daily body weight gain. SR pigs have a higher (P < 0.05) body weight gain than bottle-fed pigs. Lipid content of adipose tissue was lower (P < 0.05) in F than in SM and SR pigs. In muscle, lipid content did not differ significantly between groups. In adipose tissue, acetyl-CoA-carboxylase (CBX), fatty acid synthase (FAS), malic enzyme (ME), glucose-6-phosphate-dehydrogenase (G6PDH) and lipoprotein lipase (LPL) activities and GLUT4 mRNA levels were higher (P < 0.05) in SR than in bottle-fed pigs. In muscle, ME and G6PDH activities and GLUT4 mRNA were higher (P < 0.05) in F than in SM and SR pigs; LPL was not detected. The present study indicates that lipogenic enzyme activities and GLUT4 mRNA expression are regulated differently in subcutaneous adipose tissue and skeletal muscle in the neonatal pig.  相似文献   

2.
Depletion of GLUT4, the primary glucose transporter protein in adipose tissue and skeletal muscle, is reported to contribute to insulin resistance in pregnancy or diabetes. To examine this phenomenon, the expression of GLUT4 protein was assessed by Western blotting in streptozotocin-induced diabetic pregnant rats. In adipose tissue, relative to control, it was decreased by 30% in the normal pregnant group (p<0.001), by 37% in the diabetic nonpregnant group (p<0.01) and by 65% in the diabetic pregnant group (p<0.001). On the other hand, no significant variation was evident among the groups in skeletal muscle. To assess the mechanisms responsible for depletion of GLUT4 protein in adipose tissue, we quantitated levels of GLUT4 mRNA with a RNase protection assay. It was decreased by 44% in the normal pregnant group (p<0.05) and by 55% in the diabetic pregnant group (p<0.05), but not altered in the diabetic nonpregnant group. These results suggest that the depletion of GLUT4 protein in adipose tissue is a factor contributing to insulin resistance in pregnancy or diabetes, especially when the two states exist in combination.  相似文献   

3.
Glucose transporters: structure, function, and regulation   总被引:2,自引:0,他引:2  
Glucose is transported into the cell by facilitated diffusion via a family of structurally related proteins, whose expression is tissue-specific. One of these transporters, GLUT4, is expressed specifically in insulin-sensitive tissues. A possible change in the synthesis and/or in the amount of GLUT4 has therefore been studied in situations associated with an increase or a decrease in the effect of insulin on glucose transport. Chronic hyperinsulinemia in rats produces a hyper-response of white adipose tissue to insulin and resistance in skeletal muscle. The hyper-response of white adipose tissue is associated with an increase in GLUT4 mRNA and protein. In contrast, in skeletal muscle, a decrease in GLUT4 mRNA and a decrease (tibialis) or no change (diaphragm) in GLUT4 protein are measured, suggesting a divergent regulation by insulin of glucose transport and transporters in the 2 tissues. In rodents, brown adipose tissue is very sensitive to insulin. The response of this tissue to insulin is decreased in obese insulin-resistant fa/fa rats. Treatment with a beta-adrenergic agonist increases insulin-stimulated glucose transport, GLUT4 protein and mRNA. The data suggest that transporter synthesis can be modulated in vivo by insulin (muscle, white adipose tissue) or by catecholamines (brown adipose tissue).  相似文献   

4.
To study the molecular basis of tissue-specific expression of the GLUT4/muscle-fat facilitative glucose transporter gene, we generated lines of transgenic mice carrying 2.4 kilobases of the 5'-flanking region of the human GLUT4 gene fused to a chloramphenicol acetyltransferase (CAT) reporter gene (hGLUT4[2.4]-CAT). This reporter gene construct was specifically expressed in tissues that normally express GLUT4 mRNA, which include both brown and white adipose tissues as well as cardiac, skeletal, and smooth muscle. In contrast, CAT reporter activity was not detected in brain or liver, two tissues that do not express the GLUT4 gene. In addition, the relative levels of CAT mRNA driven by the human GLUT4 promoter in various tissues of these transgenic animals mirrored those of the endogenous mouse GLUT4 mRNA. Since previous studies have observed alterations in GLUT4 mRNA levels induced by fasting and refeeding (Sivitz, W. I., DeSautel, S. L., Kayano, T., Bell, G. I., and Pessin, J. E. (1989) Nature 340, 72-74), the regulated expression the hGLUT4[2.4]-CAT transgene was also assessed in these animals. Fasting was observed to decrease CAT activity in white adipose tissue which was super-induced upon refeeding. These alterations in CAT expression occurred in parallel to the changes in endogenous mouse GLUT4 mRNA levels. Although CAT expression in skeletal muscle and brown adipose tissue was unaffected, the endogenous mouse GLUT4 mRNA was also refractory to the effects of fasting/refeeding in these tissues. These data demonstrate that 2.4 kilobases of the 5'-flanking region of the human GLUT4 gene contain all the necessary sequence elements to confer tissue-specific expression and at least some of the sequence elements controlling the hormonal/metabolic regulation of this gene.  相似文献   

5.
Mitochondrial uncoupling protein 3 (UCP3) is expressed in skeletal muscles. We have hypothesized that increased glucose flux in skeletal muscles may lead to increased UCP3 expression. Male transgenic mice harboring insulin-responsive glucose transporter (GLUT4) minigenes with differing lengths of 5'-flanking sequence (-3237, -2000, -1000 and -442 bp) express different levels of GLUT4 protein in various skeletal muscles. Expression of the GLUT4 transgenes caused an increase in UCP3 mRNA that paralleled the increase of GLUT4 protein in gastrocnemius muscle. The effects of increased intracellular GLUT4 level on the expression of UCP1, UCP2 and UCP3 were compared in several tissues of male 4 month-old mice harboring the -1000 GLUT4 minigene transgene. In the -1000 GLUT4 transgenic mice, expression of GLUT4 mRNA and protein in skeletal muscles, brown adipose tissue (BAT), and white adipose tissue (WAT) was increased by 1.4 to 4.0-fold. Compared with non-transgenic littermates, the -1000 GLUT4 mice exhibited about 4- and 1.8-fold increases of UCP3 mRNA in skeletal muscle and WAT, respectively, and a 38% decrease of UCP1 mRNA in BAT. The transgenic mice had a 16% increase in oxygen consumption and a 14% decrease in blood glucose and a 68% increase in blood lactate, but no change in FFA or beta-OHB levels. T3 and leptin concentrations were decreased in transgenic mice. Expression of UCP1 in BAT of the -442 GLUT4 mice, which did not overexpress GLUT4 in this tissue, was not altered. These findings indicate that overexpression of GLUT4 up-regulates UCP3 expression in skeletal muscle and down-regulates UCP1 expression in BAT, possibly by increasing the rate of glucose uptake into these tissues.  相似文献   

6.
Takemori K  Kimura T  Shirasaka N  Inoue T  Masuno K  Ito H 《Life sciences》2011,88(25-26):1088-1094
AimsTo determine the effects of food restriction (FR) on the expression of Sirt1 and its down-stream factors related to lipid and glucose metabolism in obese and hypertensive rats (SHRSP/IDmcr-fa), as a model of human metabolic syndrome.Main methodsMale, 10-week-old SHRSP/IDmcr-fa rats were treated with 85% FR for 2 weeks. Metabolic parameters, serum adipocytokines and distribution of serum adiponectin multimers were investigated. Sirt1 expression was determined in epididymal adipose tissue, liver and skeletal muscle. We also determined the expression of PPARα, γ and other adipocyte-related genes in epididymal adipose tissue, and glucose transporters (GLUT2 and GLUT4) in the liver and skeletal muscle.Key findingsFR improved the general conditions as well as blood chemistry of SHRSP/IDmcr-fa rats. In the epididymal adipose tissue of the FR rats, Sirt1 expression was enhanced, as was adiponectin, whereas leptin was downregulation, findings that were paralleled by the serum protein levels. Furthermore, the serum ratio of high to total adiponectin was increased in the FR group. The mRNA expression of Sirt1 was upregulated in the adipose tissue in the FR group. Sirt1 mRNA expression was downregulated, while PPARα and GLUT2 expression was enhanced in the liver. No differences were found in terms of Sirt1, PPAR or GLUT4 expression in skeletal muscle.SignificanceThese results indicate that FR corrects adipokine dysfunction by activating PPARγ via Sirt1 in adipose tissue. Furthermore, glucose and lipid metabolism are activated by upregulation of GLUT2 via the activation of PPARα in the liver.  相似文献   

7.
Insulin receptor (IR) gene expression at the mRNA level was investigated in liver, hindlimb skeletal muscle, and epididymal adipose tissue of rats exposed to prolonged in vivo administration of adrenaline in relation to control rats. In the liver of adrenaline-treated rats, there were no differences in relation to controls when DNA and protein content were measured. In skeletal muscle, only a slight decrease in protein concentration was detected. By contrast, a clear increase in both protein and DNA content was observed in the adipose tissue of treated animals. Northern blot assays revealed two IR mRNA species of approximately 9.5 and 7.5 Kb in the three tissues from controls. Adrenaline treatment induced an increase of approximately 60% in the levels of both RNAs in adipose tissue but not in liver or skeletal muscle. These results provide evidence for an in vivo tissue-specific regulation of IR gene expression at the mRNA level in rats under an experimental condition of excess of catecholamines.  相似文献   

8.
9.
When rats were exposed to a cold environment (4 degrees C) for 10 days, tissue glucose utilization was increased in brown adipose tissue (BAT), a tissue specified for non-shivering thermogenesis, but not in skeletal muscle. Cold exposure also caused an increase in the amount of GLUT4, an isoform of glucose transporters expressed in insulin-sensitive tissues, in parallel with an increased cellular level of GLUT4 mRNA. In contrast to BAT, no significant effect of cold exposure was found in skeletal muscle. The results suggest the cold-induced increase in glucose utilization by BAT is attributable, at least in part, to the increased expression of GLUT4.  相似文献   

10.
Previous studies have shown that chronic salt overload increases insulin sensitivity, while chronic salt restriction decreases it. In the present study we investigated the influence of dietary sodium on 1) GLUT4 gene expression, by No the n and Western blotting analysis; 2) in vivo GLUT4 protein translocation, by measuring the GLUT4 protein in plasma membrane and microsome, before and after insulin injection; and 3) insulin signaling, by analyzing basal and insulin-stimulated tyrosine phosphorylation of insulin receptor (IR)-beta, insulin receptor substrate (IRS)-1, and IRS-2. Wistar rats we e fed no mal-sodium (NS-0.5%), low-sodium (LS-0.06%), o high-sodium diets (HS-3.12%) fo 9 wk and were killed under pentobarbital anesthesia. Compared with NS ats, HS ats inc eased (P < 0.05) the GLUT4 protein in adipose tissue and skeletal muscle, whereas GLUT4 mRNA was increased only in adipose tissue. GLUT4 expression was unchanged in LS ats compared with NS ats. The GLUT4 translocation in HS ats was higher (P < 0.05) both in basal and insulin-stimulated conditions. On the other hand, LS ats did not increase the GLUT4 translocation after insulin stimulus. Compared with NS ats, LS ats showed reduced (P < 0.01) basal and insulin-stimulated tyrosine phosphorylation of IRS-1 in skeletal muscle and IRS-2 in live, whereas HS ats showed enhanced basal tyrosine phosphorylation of IRS-1 in skeletal muscle (P < 0.05) and of IRS-2 in live. In summary, increased insulin sensitivity in HS ats is elated to increased GLUT4 gene expression, enhanced insulin signaling, and GLUT4 translocation, whereas decreased insulin sensitivity of LS ats does not involve changes in GLUT4 gene expression but is elated to impaired insulin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号