首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Phosphatidylcholine (PC, lecithin) has long been considered a solely eukaryotic membrane lipid. Only a minority of all bacteria is able to synthesize PC. The plant‐transforming bacterium Agrobacterium tumefaciens encodes two potential PC forming enzymes, a phospholipid N‐methyltransferase (PmtA) and a PC synthase (Pcs). We show that PC biosynthesis and tumour formation on Kalanchoë plants was impaired in the double mutant. The virulence defect was due to a complete lack of the type IV secretion machinery in the Agrobacterium PC mutant. Our results strongly suggest that PC in bacterial membranes is an important determinant for the establishment of host–microbe interactions.  相似文献   

2.
Phosphatidylcholine (PC), or lecithin, is the major phospholipid in eukaryotic membranes, whereas only 10% of all bacteria are predicted to synthesize PC. In Rhizobiaceae, including the phytopathogenic bacterium Agrobacterium tumefaciens, PC is essential for the establishment of a successful host-microbe interaction. A. tumefaciens produces PC via two alternative pathways, the methylation pathway and the Pcs pathway. The responsible genes, pmtA (coding for a phospholipid N-methyltransferase) and pcs (coding for a PC synthase), are located on the circular chromosome of A. tumefaciens C58. Recombinant expression of pmtA and pcs in Escherichia coli revealed that the individual proteins carry out the annotated enzyme functions. Both genes and a putative ABC transporter operon downstream of PC are constitutively expressed in A. tumefaciens. The amount of PC in A. tumefaciens membranes reaches around 23% of total membrane lipids. We show that PC is distributed in both the inner and outer membranes. Loss of PC results in reduced motility and increased biofilm formation, two processes known to be involved in virulence. Our work documents the critical importance of membrane lipid homeostasis for diverse cellular processes in A. tumefaciens.  相似文献   

3.
Mutations in the chromosomal virulence (chv) region ofA. tumefaciens strain A723 reduce virulence, motility, and ability of the bacteria to bind to plant cells. We conducted experiments to assess the ability ofchv mutants to colonize the rhizosphere ofPisum sativum. The mutation had no effect on ability of bacteria to grow with a defined number of root cap cells as the sole carbon and nitrogen source. Ten days after inoculation, there were up to 103-fold more wild type thanchv mutant bacteria present in the rhizosphere of inoculated plants.  相似文献   

4.
The Salmonella pathogenicity island 2 (SPI-2) type III secretion system (TTSS) of Salmonella typhimurium is required for bacterial replication within host cells. It acts by translocating effector proteins across the membrane of the Salmonella-containing vacuole (SCV). The SifA effector is required to maintain the integrity of the SCV membrane, and for the formation in epithelial cells of Salmonella-induced filaments (Sifs), which are tubular extensions of SCVs. We have investigated the role in S. typhimurium virulence of the putative SPI-2 effector genes sifB, srfJ, sseJ and sseI. An S. typhimurium strain carrying a mutation in sseJ was mildly attenuated for systemic virulence in mice, but strains carrying mutations in either srfJ, sseI or sifB had very little or no detectable virulence defect after intraperitoneal inoculation. Expression of SseJ in HeLa cells resulted in the formation of globular membranous compartments (GMCs), the composition of which appears to be similar to that of SCV membranes and Sifs. The formation of GMCs was dependent on the serine residue of the predicted acyltransferase/lipase active site of SseJ. Transiently expressed SseJ also inhibited Sif formation by wild-type bacteria, and was found to associate with Sifs, SCV membranes and simultaneously expressed SifA. Intracellular vacuoles containing sseJ mutant bacteria appeared normal but, in contrast to a sifA mutant, a sifA sseJ double mutant strain did not lose its vacuolar membrane, indicating that loss of vacuolar membrane around sifA mutant bacteria requires the action of SseJ. Collectively, these results suggest that the combined action of SseJ and SifA regulate dynamics of the SCV membrane in infected cells.  相似文献   

5.
The pathogenicity of Listeria monocytogenes is related to its ability of invading and multiplying in eukaryotic cells. Its main virulence factors are now well characterized, but limited proteomic data is available concerning its adaptation to the intracellular environment. In this study, L. monocytogenes EGD (serotype 1/2a) grown in human THP‐1 monocytes (24 h) were successfully separated from host organelles and cytosolic proteins by differential and isopycnic centrifugation. For control, we used cell homogenates spiked with bacteria grown in broth. Proteomes from both forms of bacteria were compared using a 2‐D‐DIGE approach followed by MALDI‐TOF analysis to identify proteins. From 1684 distinct spots, 448 were identified corresponding to 245 distinct proteins with no apparent contamination of host proteins. Amongst them, 61 show underexpression (stress defense; transport systems, carbon metabolism, pyrimidines synthesis, D ‐Ala‐D ‐Ala ligase) and 22 an overexpression (enzymes involved in the synthesis of cell envelope lipids, glyceraldehyde‐3‐phosphate, pyruvate and fatty acids). Our proteomic analysis of intracellular L. monocytogenes (i) suggests that bacteria thrive in a more favorable environment than extracellularly, (ii) supports the concept of metabolic adaptation of bacteria to intracellular environment and (iii) may be at the basis of improved anti‐Listeria therapy.  相似文献   

6.
The Gram‐negative bacterium Erwinia amylovora causes fire blight, an economically important disease of apples and pears. Elongation factor P (EF‐P) is a highly conserved protein that stimulates the formation of the first peptide bond of certain proteins and facilitates the translation of certain proteins, including those with polyproline motifs. YjeK and YjeA are two enzymes involved in the essential post‐translational β‐lysylation of EF‐P at a conserved lysine residue, K34. EF‐P, YjeA and YjeK have been shown to be essential for the full virulence of Escherichia coli, Salmonella species and Agrobacterium tumefaciens, with efp, yjeA and yjeK mutants having highly similar phenotypes. Here, we identified an E. amylovora yjeK::Tn5 transposon mutant with decreased virulence in apple fruit and trees. The yjeK::Tn5 mutant also showed pleiotropic phenotypes, including reduced growth in rich medium, lower extracellular polysaccharide production, reduced swimming motility and increased chemical sensitivity compared with the wild‐type, whilst maintaining wild‐type level growth in minimal medium. All yjeK::Tn5 mutant phenotypes were complemented in trans with a plasmid bearing a wild‐type copy of yjeK. Comprehensive, quantitative proteomics analyses revealed numerous, environmentally dependent changes in the prevalence of a wide range of proteins, in higher abundance and lower abundance, in yjeK::Tn5 compared with the wild‐type, and many of these alterations could be linked to yjeK::Tn5 mutant phenotypes. The environmental dependence of the yjeK::Tn5 mutant proteomic alterations suggests that YjeK could be required for aspects of the environmentally dependent regulation of protein translation. YjeK activity may be critical to overcoming stress, including the challenging host environment faced by invading pathogenic bacteria.  相似文献   

7.
8.
9.
10.
Pathogenic Leptospira strains are responsible for leptospirosis, a worldwide emerging zoonotic disease. These spirochetes are unique amongst bacteria because of their corkscrew-like cell morphology and their periplasmic flagella. Motility is reported as an important virulence determinant, probably favoring entry and dissemination of pathogenic Leptospira in the host. However, proteins constituting the periplasmic flagella and their role in cell shape, motility and virulence remain poorly described. In this study, we characterized a spontaneous L. interrogans mutant strain lacking motility, correlated with the loss of the characteristic hook-shaped ends, and virulence in the animal model. Whole genome sequencing allowed the identification of one nucleotide deletion in the fliM gene resulting in a premature stop codon, thereby preventing the production of flagellar motor switch protein FliM. Genetic complementation restored cell morphology, motility and virulence comparable to those of wild type cells. Analyses of purified periplasmic flagella revealed a defect in flagella assembly, resulting in shortened flagella compared to the wild type strain. This also correlated with a lower amount of major filament proteins FlaA and FlaB. Altogether, these findings demonstrate that FliM is required for full and correct assembly of the flagella which is essential for motility and virulence.  相似文献   

11.
Phosphatidylcholine (PC) is a typical eukaryotic phospholipid absent from most prokaryotes. Thus, its presence in some intracellular bacteria is intriguing as it may constitute host mimicry. The role of PC in Brucella abortus was examined by generating mutants in pcs (BApcs) and pmtA (BApmtA), which encode key enzymes of the two bacterial PC biosynthetic routes, the choline and methyl-transferase pathways. In rich medium, BApcs and the double mutant BApcspmtA but not BApmtA displayed reduced growth, increased phosphatidylethanolamine and no PC, showing that Pcs is essential for PC synthesis under these conditions. In minimal medium, the parental strain, BApcs and BApmtA showed reduced but significant amounts of PC suggesting that PmtA may also be functional. Probing with phage Tb, antibiotics, polycations and serum demonstrated that all mutants had altered envelopes. In macrophages, BApcs and BApcspmtA showed reduced ability to evade fusion with lysosomes and establish a replication niche. In mice, BApcs showed attenuation only at early times after infection, BApmtA at later stages and BApcspmtA throughout. The results suggest that Pcs and PmtA have complementary roles in vivo related to nutrient availability and that PC and the membrane properties that depend on this typical eukaryotic phospholipid are essential for Brucella virulence.  相似文献   

12.
13.
Comparison of the proteomes of wild-type Photorhabdus luminescens and its hcaR derivative, grown in insect hemolymph, showed that hcaR disruption decreased the production of toxins (tcdA1, mcf, and pirAB) and proteins involved in oxidative stress response (SodA, AhpC, Gor). The disruption of hcaR did not affect growth rate in insects, but did delay the virulence of P. luminescens in Bombyx mori and Spodoptera littoralis larvae. This delayed virulence was associated with a lower toxemia rather than delay in bacteremia. The disruption of hcaR also increased bacterial sensitivity to hydrogen peroxide. A sodA mutant and an hcaR mutant had similar phenotypes in terms of sensitivity to hydrogen peroxide, virulence, toxin gene expression, and growth rate in insects. Thus, the two processes affected by hcaR disruption - toxemia and oxidative stress response - appear to be related. Besides, expression of toxin genes tcdA1, mcf, and pirAB was decreased by paraquat challenge. We provide here the first demonstration of the importance of toxemia for P. luminescens virulence. Our results also highlight the power of proteomic analysis for detecting unexpected links between different, concomitant processes in bacteria.  相似文献   

14.
The pathogenicity of mycobacteria is closely associated with their ability to export virulence factors. For this purpose, mycobacteria possess different protein secretion systems, including the accessory Sec translocation pathway, SecA2. Although this pathway is associated with intracellular survival and virulence, the SecA2‐dependent effector proteins remain largely undefined. In this work, we studied a Mycobacterium marinum secA2 mutant with an impaired capacity to initiate granuloma formation in zebrafish embryos. By comparing the proteomic profile of cell envelope fractions from the secA2 mutant with wild type M. marinum, we identified putative SecA2‐dependent substrates. Immunoblotting procedures confirmed SecA2‐dependent membrane localization for several of these proteins, including the virulence factor protein kinase G (PknG). Interestingly, phenotypical defects of the secA2 mutant are similar to those described for ΔpknG, including phagosomal maturation. Overexpression of PknG in the secA2 mutant restored its localization to the cell envelope. Importantly, PknG‐overexpression also partially restored the virulence of the secA2 mutant, as indicated by enhanced infectivity in zebrafish embryos and restored inhibition of phagosomal maturation. These results suggest that SecA2‐dependent membrane localization of PknG is an important determinant for M. marinum virulence.  相似文献   

15.
Eukaryotic parasites possess complex life cycles and utilize an assortment of molecular mechanisms to overcome physical barriers, suppress and/or bypass the host immune response, including invading host cells where they can replicate in a protected intracellular niche. Protein S-palmitoylation is a dynamic post-translational modification in which the fatty acid palmitate is covalently linked to cysteine residues on proteins by the enzyme palmitoyl acyltransferase (PAT) and can be removed by lysosomal palmitoyl-protein thioesterase (PPT) or cytosolic acyl-protein thioesterase (APT). In addition to anchoring proteins to intracellular membranes, functions of dynamic palmitoylation include – targeting proteins to specific intracellular compartments via trafficking pathways, regulating the cycling of proteins between membranes, modulating protein function and regulating protein stability. Recent studies in the eukaryotic parasites – Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei, Cryptococcus neoformans and Giardia lamblia – have identified large families of PATs and palmitoylated proteins. Many palmitoylated proteins are important for diverse aspects of pathogenesis, including differentiation into infective life cycle stages, biogenesis and tethering of secretory organelles, assembling the machinery powering motility and targeting virulence factors to the plasma membrane. This review aims to summarize our current knowledge of palmitoylation in eukaryotic parasites, highlighting five exemplary mechanisms of parasite virulence dependent on palmitoylation.  相似文献   

16.
Cyclic di‐GMP [(bis‐(3′–5′)‐cyclic di‐guanosine monophosphate)] is an almost ubiquitous second messenger in bacteria that is implicated in the regulation of a range of functions that include developmental transitions, aggregative behaviour, adhesion, biofilm formation and virulence. Comparatively little is known about the mechanism(s) by which cyclic di‐GMP exerts these various regulatory effects. PilZ has been identified as a cyclic di‐GMP binding protein domain; proteins with this domain are involved in regulation of specific cellular processes, including the virulence of animal pathogens. Here we have examined the role of PilZ domain proteins in virulence and the regulation of virulence factor synthesis in Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot of crucifers. The Xcc genome encodes four proteins (XC0965, XC2249, XC2317 and XC3221) that have a PilZ domain. Mutation of XC0965, XC2249 and XC3221 led to a significant reduction of virulence in Chinese radish. Mutation of XC2249 and XC3221 led to a reduction in motility whereas mutation of XC2249 and XC0965 affected extracellular enzyme production. All mutant strains were unaffected in biofilm formation in vitro. The reduction of virulence following mutation of XC3221 could not be wholly attributed to an effect on motility as mutation of pilA, which abolishes motility, has a lesser effect on virulence.  相似文献   

17.
A proteomic analysis of a wild-type and of a phoB mutant showed that Vibrio cholerae expresses genes of two major regulons in response to phosphate starvation. The Pho regulon, expressed by the wild-type, allowed the cells to adapt to the new environment. Induction of the general stress regulon was mainly observed in the phoB mutant as a strategy to resist stress and survive. Some functions of the adaptative and survival responses play roles in the pathogenicity of the bacteria. Among the members of the Pho regulon, we found a porin described as an important factor for the intestinal colonisation. Other functions not obviously related to phosphate metabolism, expressed preferentially by the wild-type cells, have also been implicated in virulence. These findings might explain the lack of virulence of the phoB mutant. The Pho regulon picture of V. cholerae, however, will not be complete until minor members and membrane proteins are identified. Among the phosphate-starvation induced genes we have found 13 hypothetical ones and for some of them functions have been assigned. The majority of the genes identified here have not been described before, thus they could be used to expand the proteomic reference map of V. cholerae El Tor.  相似文献   

18.
Xanthomonas citri ssp. citri (Xcc) causes canker disease in citrus, and biofilm formation is critical for the disease cycle. OprB (Outer membrane protein B) has been shown previously to be more abundant in Xcc biofilms compared with the planktonic state. In this work, we showed that the loss of OprB in an oprB mutant abolishes bacterial biofilm formation and adherence to the host, and also compromises virulence and efficient epiphytic survival of the bacteria. Moreover, the oprB mutant is impaired in bacterial stress resistance. OprB belongs to a family of carbohydrate transport proteins, and the uptake of glucose is decreased in the mutant strain, indicating that OprB transports glucose. Loss of OprB leads to increased production of xanthan exopolysaccharide, and the carbohydrate intermediates of xanthan biosynthesis are also elevated in the mutant. The xanthan produced by the mutant has a higher viscosity and, unlike wild‐type xanthan, completely lacks pyruvylation. Overall, these results suggest that Xcc reprogrammes its carbon metabolism when it senses a shortage of glucose input. The participation of OprB in the process of biofilm formation and virulence, as well as in metabolic changes to redirect the carbon flux, is discussed. Our results demonstrate the importance of environmental nutrient supply and glucose uptake via OprB for Xcc virulence.  相似文献   

19.
The membrane lipid phosphatidylcholine (PC) is crucial for stress adaptation and virulence of the plant pathogen Agrobacterium tumefaciens. The phospholipid N‐methyltransferase PmtA catalyzes three successive methylations of phosphatidylethanolamine to yield PC. Here, we asked how PmtA is recruited to its site of action, the inner leaflet of the membrane. We found that the enzyme attaches to the membrane via electrostatic interactions with anionic lipids, which do not serve as substrate for PmtA. Increasing PC concentrations trigger membrane dissociation suggesting that membrane binding of PmtA is negatively regulated by its end product PC. Two predicted alpha‐helical regions (αA and αF) contribute to membrane binding of PmtA. The N‐terminal helix αA binds anionic lipids in vitro with higher affinity than the central helix αF. The latter undergoes a structural transition from disordered to α‐helical conformation in the presence of anionic lipids. The basic amino acids R8 and K12 and the hydrophobic amino acid F19 are critical for membrane binding by αA as well as for activity of full‐length PmtA. We conclude that a combination of electrostatic and hydrophobic forces is responsible for membrane association of the phospholipid‐modifying enzyme.  相似文献   

20.
Salmonella virulence depends on an ability to invade host cells, which is in turn dependent on a type III protein secretion system encoded in Salmonella pathogenicity island 1 (SPI1). Several protein targets of the SPI1‐encoded secretion system are translocated into host cells, where they subvert cellular processes that contribute to bacterial invasion, actin rearrangement, membrane ruffling and other aspects of virulence. We examined the role of sipA (encoding the translocated protein SipA) and found that a sipA mutant was significantly less invasive in Madin–Darby canine kidney (MDCK) cells than in its parental strain at the earliest stages of infection (5 min). The invasion defect associated with sipA was no longer apparent after 15 min of infection. Confocal microscopy of F‐actin in tetramethyl rhodamine isothiocyanate (TRITC)–phalloidin‐stained MDCK cells revealed no difference in either the frequency or the morphology of membrane ruffles induced by wild‐type and sipA mutant strains of S. typhimurium. Time‐lapse phase‐contrast microscopy of membrane ruffle propagation in live cells confirmed that the sipA mutant induced membrane ruffles as efficiently as the wild‐type bacteria. These studies also revealed that, after ruffle propagation, individual sipA mutant S. typhimurium either invaded more slowly than wild‐type bacteria or failed to invade at all. Furthermore, although wild‐type S. typhimurium typically maintained a position central to the developing membrane ruffle, sipA mutant bacteria frequently moved initially to the periphery of the spreading ruffle and were sometimes observed to detach from it. A wild‐type pattern of invasion was restored to the sipA mutant after the introduction of sipA on a plasmid. Together, these data indicate that loss of sipA significantly decreases the efficiency of S. typhimurium invasion at the early stages of infection without affecting its ability to induce membrane ruffles. It thus appears that the secreted effector protein SipA promotes invasion by a previously unrecognized mechanism separate from the induction of membrane ruffling per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号