首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
臭氧与其他环境因子对植物的交互作用   总被引:1,自引:0,他引:1  
随着城市化进程加速,近几十年来全球范围内对流层的臭氧(O3)浓度持续增加,臭氧对植物的影响引起广泛关注。植物受到臭氧胁迫后,生理生化和形态上出现一系列变化。但臭氧对植物的影响受大气、土壤和光照条件的影响很大。全球气候变化和极端气候常态化使得臭氧和环境因子的交互作用大大增加,因此,臭氧和其他环境因子交互作用的实验条件更接近自然环境条件。这些交互作用很大程度上取决于植物种类、臭氧浓度、胁迫时间、植物对这些环境因子的敏感性以及具体的气候条件。本文综述了臭氧与二氧化碳(CO2)、二氧化硫(SO2)、酸雨、氮(N)素、干旱、光照和紫外辐射(UV-B)的交互作用对植物的影响,探讨了臭氧与其他环境因子对植物的交互作用机理,并提出未来的研究热点是臭氧与其他环境因子交互作用对植物地下部分及根际影响、植物根系及其功能变化与根际过程相互影响的机制研究,不同气候条件下,各种类型森林对臭氧和其他环境因子交互作用的响应,臭氧与气候、大气和重金属污染物的交互作用,与低温等逆境的交互作用对植物的影响,从而找出逆境状态下生物进化的若干规律,为合理筛选抗臭氧污染的植物提供参考,对于改善生态环境具有重要意义。  相似文献   

2.
臭氧胁迫对植物主要生理功能的影响   总被引:9,自引:0,他引:9  
列淦文  叶龙华  薛立 《生态学报》2014,34(2):294-306
近年来,由于光化学反应的臭氧前体增加,全球植物受对流层臭氧(O3)胁迫的程度越来越严重。臭氧污染被认为是造成东欧、西欧和整个美国的大片森林衰退和枯死的主要原因。臭氧胁迫严重影响植物叶片对光能的利用,通过气孔限制和非气孔限制,导致其光合速率的降低,影响光合产物的产量。臭氧对植物的影响与植物体内代谢物质的积聚量紧密联系。臭氧胁迫引发植物的各种防御保护机制,刺激抗氧化系统,影响膜系统,改变其体内碳和矿质养分的吸收并引起它们的重新分配,诱导其基因表达的深层变化。为了适应臭氧胁迫环境,植物通过生理生化机制的调节来保证其生命活动。如细胞通过调节渗透物质的含量来保持渗透势的平衡;细胞内各种抗氧化酶活性增加,以清除自由基,避免或者减轻细胞受到伤害;改变代谢途径以保持能量储备和降低代谢速率。可见,生态环境对生物进化具有重要影响。这个观点将在臭氧胁迫对植物生理的影响中得到证实,也是生物进化论的另一种证据。综述了臭氧对光合生理、呼吸代谢、抗氧化系统、膜系统、矿质养分的吸收和分配与分子生理等主要生理功能的影响,并提出臭氧胁迫对植物生理影响的今后研究方向与未来研究热点是:(1)加强在植物个体和群落水平上臭氧胁迫对植物生理影响的研究;(2)臭氧影响下植物的基因调控和相关信号传递网络系统的机理;(3)通过分子标记、基因图谱、基因组学和转基因技术等方法研究选育适应臭氧胁迫环境的植物;(4)尽可能在接近自然条件的环境中开展研究;(5)臭氧胁迫对亚热带和热带森林及其树种主要生理功能影响的研究;(6)建立模型评估臭氧对植物的影响。  相似文献   

3.
我国地表臭氧生态环境效应研究进展   总被引:19,自引:1,他引:18  
针对当前我国大部分地区夏季出现的高浓度地表臭氧污染,综述了目前在地表臭氧的生态环境效应方面取得的研究进展及未来的研究展望。主要进展包括地表臭氧的污染水平,及其对植物的影响机制,具体包括地表臭氧对植物叶片的表观伤害、光合固碳能力、植物源挥发性有机化合物(BVOCs)释放、土壤微生物和土壤温室气体排放等方面的影响;在此基础上,提出了减少臭氧生态环境效应的管理措施。此外,对我国未来的研究进行了展望,建议加强在农田和森林布设臭氧浓度监测点、开展多因子同时存在的交互作用、气孔臭氧吸收量-响应(生物量或产量)关系以及臭氧对地下生态过程累积效应的长期定位等方面的研究,以期为我国地表臭氧污染的生态环境效应研究起到一定的推动作用。  相似文献   

4.
崔洪莹  苏建伟  戈峰 《昆虫知识》2011,48(5):1130-1140
臭氧(O3)是最具危害性的空气污染物之一。目前流层中的臭氧水平从100多年前的10ppb到今天的40ppb,预计到2050年将达到68ppb左右。臭氧通过改变植物"质量"而影响植食性昆虫的取食偏嗜性、行为、生长和发育,进而影响天敌昆虫的适合度。臭氧还通过改变化学信息物质而影响昆虫的行为。本文根据国内外研究进展,结合作者的研究,论述了大气臭氧浓度升高对刺吸式昆虫、咀嚼式昆虫和天敌昆虫的影响,展望了未来研究的前景。  相似文献   

5.
列淦文  郭淑红  薛立 《生态科学》2014,33(3):607-612
臭氧(O3)能造成植物叶面损伤、茎缩短[0]甚至植株矮化, 诱发植物细胞脂质过氧化, 损伤叶绿体, 破坏光合色素, 诱导植物叶片气孔关闭, 抑制碳的同化, 减弱植物的净光合作用, 加速植物老化, 最终引起植物生长的下降, 种子和作物的减产。臭氧胁迫对植物生长的影响随臭氧浓度和植物种类而, 也与植物的生长发育阶段相关。不同植物间的竞争影响其对臭氧胁迫的敏感性, 慢性臭氧胁迫能引起枝叶和根之间碳分配的变化。加强自然环境中臭氧对森林影响的研究, 定位研究不同环境条件下植物对臭氧的响应, 开展全球气候变化和臭氧的交叉作用对植物的影响是今后的研究热点。  相似文献   

6.
植物源挥发性有机物的生态意义(综述)   总被引:1,自引:0,他引:1  
植物释放的挥发性有机气体(volatile organic compounds, VOCs)在对流层大气中通过一系列氧化还原反应,改变大气的化学组成,对臭氧合成、一氧化碳生成、甲烷氧化等有重要作用,其氧化物质对区域乃至全球的环境和气候都产生一定的影响。本文综述植物释放的VOCs对大气化学、温室效应、光化学烟雾的影响;介绍VOCs释放机制、合成途径及排放速率;对今后研究方向和大面积种植林木、城市绿化提出建议。  相似文献   

7.
 综述了国内外生物源挥发性有机化合物(Biological volatile organic compounds, BVOCs)研究现状及未来的研究方向,侧重介绍了陆地生态系统中植物排放BVOCs的种类、生物学功能及其对大气化学过程的影响。BVOCs按其化学结构以及在大气中的滞留时间可以分为4类:异戊二烯、单萜、其它活性BVOCs和其它次活性BVOCs。不同的植物类群排放不同的BVOCs种类并具有不同的排放特性,环境条件对植物不同BVOCs的排放影响也不同。BVOCs作为有机物质被排放到体外,从植物能量代谢的角度来讲要消耗一部分植物光合作用产物从而降低植物的生产力,因此推测植物排放BVOCs具有一定的生理学或者生态学的功能。其中比较成熟的假说是抗热胁迫假说,其次是抗氧化假说,也有一些其它假说例如促氮同化假说等。但这些假说都还缺乏直接的有力证据,有待更多的研究来支持。BVOCs被排放到大气中对大气化学过程的影响更是科学家关注的问题,BVOCs对大气的影响一方面是在大气对流层中促进臭氧(O3)的形成,造成环境污染,另一方面BVOCs通过对大气中的OH自由基和臭氧等氧化物浓度的调整而影响到大气中甲烷等温室气体的平衡,对大气温室效应具有间接的贡献。我国在BVOCs的研究上也做了大量的工作,包括分析鉴定了一些植物排放的BVOCs,探讨了环境因子对植物BVOCs排放速率的影响,从不同尺度估测了BVOCs的排放量等等。今后对BVOCs的研究将会集中在以下几个方面:1) 进一步研究不同植物类群释放的BVOCs种类及其它们在大气中的理化性质;2) 继续探讨植物排放BVOCs的合成与代谢途径及其生物学功能;3) 研究BVOCs对大气化学过程的作用,以及区域植被变化对BVOCs排放格局进而对区域乃至全球环境变化的影响; 4) 加强对一些研究比较薄弱的生态系统例如在热带地区所进行的BVOCs研究工作;5) 进一步建立和完善BVOCs排放的理论模型,以模拟不同陆地生态系统BVOCs排放的时空动态。  相似文献   

8.
大气臭氧浓度升高对植物及其昆虫的影响   总被引:6,自引:0,他引:6  
董文霞  陈宗懋 《生态学报》2006,26(11):3878-3884
臭氧是最具危害性的空气污染物之一,从19世纪中叶开始,对流层中的臭氧水平增加了35%,在今后50—100年内还将继续升高。臭氧浓度升高对植物生理基本功能、植物体内信号分子以及挥发物都具有不同程度的影响,并严重影响作物的产量。臭氧也通过改变植物的原生代谢和次生代谢发生数量而影响植食性昆虫的取食偏嗜性、行为、生长和发育,进而影响天敌昆虫的适合度。臭氧还通过改变化学信息物质而影响昆虫的行为。根据国内外研究进展,介绍了大气臭氧浓度升高对植物、昆虫的影响,并讨论了目前存在的问题和研究前景。  相似文献   

9.
植物物种入侵研究   总被引:9,自引:0,他引:9  
详细阐述了生物入侵对生态系统的危害、对社会经济造成的严重损失,重点论述了植物外来种入侵的机制:化学介导机制、植物基因交流机制和干扰机制等;影响入侵的因素:外因、内因,其中外因主要是人为原因和环境因素。总结了植物生态入侵的预防、控制、去除策略及方法,包括机械、化学和生物方法,探讨了今后植物生态入侵的研究重点。  相似文献   

10.
植物热值及其生物生态学属性   总被引:36,自引:2,他引:34  
介绍了热值的定义、表示方法、研究意义和植物热值在生态学中的研究历史与现状;分析了植物热值的时空变异性,包括热值在种间和类群间的变异及热值的种内变异规律;探讨了影响植物热值变化的因子(包括气候、立地条件、胁迫环境和人为干扰等)和热值变异的内在决定因素(包括碳浓度、灰分含量及有机质化学组成等);对植物热值的研究前景和局限性进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号