首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The conversion of latent transforming growth factor beta (LTGF-beta) to the active species, transforming growth factor beta (TGF-beta), has been characterized in heterotypic cultures of bovine aortic endothelial (BAE) cells and bovine smooth muscle cells (SMCs). The formation of TGF-beta in co-cultures of BAE cells and SMCs was documented by a specific radioreceptor competition assay, while medium from homotypic cultures of BAE cells or SMCs contained no active TGF-beta as determined by this assay. The concentration of TGF-beta in the conditioned medium of heterotypic co-cultures was estimated to be 400-1,200 pg/ml using the inhibition of BAE cell migration as an assay. Northern blotting of poly A+ RNA extracted from both homotypic and heterotypic cultures of BAE cells and SMCs revealed that BAE cells produced both TGF-beta 1 and TGF-beta 2, while SMCs produced primarily TGF-beta 1. No change in the expression of these two forms of TGF-beta was apparent after 24 h in heterotypic cultures. Time course studies on the appearance of TGF-beta indicated that most of the active TGF-beta was generated within the first 12 h after the establishment of co-cultures. The generation of TGF-beta in co-cultures stimulated the production of the protease inhibitor plasminogen activator inhibitor-1 (PAI-1). The inclusion of neutralizing antibodies to TGF-beta in the co-culture medium blocked the observed increase in PAI-1 levels. The increased expression of PAI-1 subsequent to TGF-beta formation blocked the activation of the protease required for conversion of LTGF-beta to TGF-beta as the inclusion of neutralizing antibodies to PAI-1 in the co-culture medium resulted in prolonged production of TGF-beta. This effect was lost upon removal of the PAI-1 antibodies. Thus, the activation of LTGF-beta appears to be a self-regulating system.  相似文献   

2.
Morphological studies of developing capillaries and observations of alterations in capillaries associated with pathologic neovascularization indicate that pericytes may act as suppressors of endothelial cell (EC) growth. We have developed systems that enable us to investigate this possibility in vitro. Two models were used: a co-culture system that allowed direct contact between pericytes and ECs and a co-culture system that prevented physical contact but allowed diffusion of soluble factors. For these studies, co-cultures were established between bovine capillary ECs and the following growth-arrested cells (hereafter referred to as modulating cells): pericytes, smooth muscle cells (SMCs), fibroblasts, epithelial cells, and 3T3 cells. The modulating cell type was growth arrested by treatment with mitomycin C before co-culture with ECs. In experiments where cells were co-cultured directly, the effect of co-culture on EC growth was determined by comparing the mean number of cells in the co-cultures to the mean for each cell type (EC and modulating cell) cultured separately. Since pericytes and other modulating cells were growth arrested, any cell number change in co-cultures was due to EC growth. In the co-cultures, pericytes inhibited all EC proliferation throughout the 14-d time course; similar levels of EC inhibition were observed in SMC-EC co-cultures. Co-culture of ECs with fibroblasts, epithelial cells, and 3T3 cells significantly stimulated EC growth over the same time course (30-192% as compared to EC cultured alone). To determine if cell contact was required for inhibition, cells were co-cultured using Millicell chambers (Millipore Corp., Bedford, MA), which separated the cell types by 1-2 mm but allowed the exchange of diffusible materials. There was no inhibition of EC proliferation by pericytes or SMCs in this co-culture system. The influence of the cell ratios on observed inhibition was assessed by co-culturing the cells at EC/pericyte ratios of 1:1, 2:1, 5:1, 10:1, and 20:1. Comparable levels of EC inhibition were observed at ratios from 1:1 to 10:1. When the cells were co-cultured at a ratio of 20 ECs to 1 pericyte, inhibition of EC growth at 3 d was similar to that observed at other ratios. However, at higher ratios, the inhibition diminished so that by the end of the time course the co-cultured ECs were growing at the same rate as the controls. These results suggest that pericytes and SMCs can modulate EC growth by a mechanism that requires contact or proximity. We postulate that similar interactions may operate to modulate vascular growth in vivo.  相似文献   

3.
The dependence of urokinase-type plasminogen activator (uPA) induction on endogenous basic fibroblast growth factor (bFGF) activity during endothelial cell migration was investigated utilizing a combination of wounded endothelial cell monolayers and substrate overlay techniques. Purified polyclonal rabbit immunoglobulin G (IgG) against bFGF blocked the appearance of uPA-dependent lytic activity normally observed at the edge of a wounded bovine aortic endothelial (BAE) cell monolayer. Additionally, the migration of cells into the denuded area was inhibited 30-50% by antibodies either to bFGF or to bovine uPA. Incubation of wounded monolayers with either purified bovine uPA or agents able to induce PA activity, such as phorbol myristate acetate (PMA), vanadate, or bFGF, resulted in enhanced migration of cells (28-50%). Anti-bovine uPA IgG blocked a significant fraction (25%) of BAE cell migration induced by exposure to exogenous bFGF. The role of uPA in migration of wounded BAE cells was not dependent on plasmin generation. Furthermore, the amino terminal fragment (ATF) of human recombinant (hr) uPA, which is enzymatically inactive, stimulated endothelial cell movement in the presence of anti-bFGF IgG. These results suggest that BAE cell migration from the edge of a wounded monolayer is dependent upon local increases of uPA mediated by endogenous bFGF. Moreover, the data support the conclusion that migration is stimulated via a signalling mechanism dependent upon occupancy of the uPA receptor but independent of uPA-mediated proteolysis.  相似文献   

4.
A I Gotlieb  P Boden 《In vitro》1984,20(7):535-542
Organ cultures of porcine thoracic aorta were studied to define the characteristics of this system as a model to study the reaction of endothelial cells (ECs) and the underlying smooth muscle cells (SMCs) to injury. Both nonwounded and wounded cultures, the latter having had part of the endothelial surface gently denuded with a scalpel blade, were studied over a 7 d period by scanning and transmission electron microscopy. The results showed that the nonwounded ECs underwent a shape change from elongated to polygonal within 24 h in culture. In both nonwounded and wounded explants there was cell proliferation beneath the nondenuded endothelium so that by 7 d several layers of cells were present showing features of the secretory type of SMCs. This proliferation, however, did not occur if the endothelium was totally removed from the aorta. There was also evidence of gaps between the surface ECs, and by 7 d lamellipodia of cells beneath the surface were present in these gaps. Occasionally, elongated cells were seen to be present on the surface of the endothelium. In the wounded organ culture, cell migration and proliferation occurred extending from the wound edge and producing a covering of cells on the denuded area. There were also multilayered cells beneath the surface similar to the nonwounded area. Occasional foam cells were seen in the depth of the multilayered proliferating cells. The results indicate that organ culture of porcine thoracic aorta is a good model to study the reaction of ECs and underlying SMCs to injury.  相似文献   

5.
Summary Organ cultures of porcine thoracic aorta were studied to define the characteristics of this system as a model to study the reaction of endothelial cells (ECs) and the underlying smooth muscle cells (SMCs) to injury. Both nonwounded and wounded cultures the latter having had part of the endothelial surface gently denuded with a scalpel blade, were studied over a 7 d period by scanning and transmission electron microscopy. The results showed that the nonwounded ECs underwent a shape change from elongated to polygonal within 24 h in culture. In both nonwounded and wounded explants there was cell proliferation beneath the nondenuded endothelium so that by 7 d several layers of cells were present showing features of the secretory type of SMCs. This proliferation, however, did not occur if the endothelium was totally removed from the aorta. There was also evidence of gaps between the surface ECs, and by 7 d lamellipodia of cells beneath the surface were present in these gaps. Occasionally, elongated cells were seen to be present on the surface of the endothelium. In the wounded organ culture, cell migration and proliferation occurred extending from the wound edge and producing a covering of cells on the denuded area. There were also multilayered cells beneath the surface similar to the nonwounded area. Occasional foam cells were seen in the depth of the multilayered proliferating cells. The results indicate that organ culture of porcine thoracic aorta is a good model to study the reaction of ECs and underlying SMCs to injury. This work was supported by a grant from the Ontario Heart Foundation.  相似文献   

6.
We have found that the spontaneous migration of bovine aortic endothelial cells from the edge of a denuded area in a confluent monolayer is dependent upon the release of endogenous basic fibroblast growth factor (bFGF). Cell movement is blocked by purified polyclonal rabbit IgG to bFGF as well as affinity purified anti-bFGF IgG and anti-bFGF F(ab')2 fragments. The inhibitory effect of the immunoglobulins is dependent upon antibody concentration, is reversible, is overcome by the addition of recombinant bFGF, and is removed by affinity chromatography of the antiserum through a column of bFGF-Sepharose. Cell movement is also reversibly inhibited by the addition of protamine sulfate and suramin; two agents reported to block bFGF binding to its receptor. The addition of recombinant bFGF to wounded monolayers accelerates the movement of cells into the denuded area. Transforming growth factor beta which has been shown to antagonize several other effects of bFGF also inhibits cell movement. The anti-bFGF IgG prevents the movement of bovine capillary endothelial cells, BHK-21, NIH 3T3, and human skin fibroblasts into a denuded area. Antibodies to bFGF, as well as suramin and protamine sulfate also suppress the basal levels of plasminogen activator and DNA synthesis in bovine aortic endothelial cells.  相似文献   

7.
Transforming growth factor-beta 1 (TGF-beta 1) induces a decrease in plasminogen activator (PA) expression in confluent cultures of bovine aortic endothelial (BAE) cells. We describe an assay using the suppression of PA expression in confluent BAE cells by TGF-beta 1 which detects concentrations of the growth factor ranging from 5 to 200 pg/ml and has an ED50 of 15-20 pg/ml. The assay can be performed in 96-well plates and requires a minimum of 35 ul of solution per sample, thereby limiting the amount of reagents required and allowing many samples to be tested in a single assay. Here we demonstrate that the effect of TGF-beta 1 on PA expression in BAE cells depends on the length of time the cells are exposed to the growth factor and the density at which the cells are plated. In cells plated at a high density (3.5 x 10(5) cells/cm2), both 4 h and 24 h exposures to TGF-beta 1 suppress PA expression. However, with cells plated sparsely (3.5 x 10(4) cells/cm2), a 4 h exposure to TGF-beta 1 increases PA expression 2-fold, whereas a 24 h exposure results in an 85% inhibition of basal PA expression. The paradoxical stimulation of PA expression in cells at a sparse density upon 4 h exposure to TGF-beta 1 occurs in a dose-dependent manner with an ED50 of 15-20 pg/ml. This bifunctional response of PA production in cells exposed to TGF-beta 1 may have implications with regard to the role of TGF-beta 1 in angiogenesis.  相似文献   

8.
Thrombospondin (TSP) forms specific complexes with transforming growth factor-beta (TGF-beta) in the alpha granule releasate of platelets and these TSP-TGF-beta complexes inhibit the growth of bovine aortic endothelial cells (BAE). In these studies, we report that TSP stripped of associated TGF-beta (sTSP) retained growth inhibitory activity which was partially reversed by a neutralizing antibody specific for TGF- beta. Since BAE cells secrete latent TGF-beta, we determined whether sTSP activates the latent TGF-beta secreted by BAE cells. Cells were cultured with or without sTSP and then the conditioned medium was tested for the ability to support TGF-beta-dependent normal rat kidney (NRK) colony formation in soft agar. Medium conditioned with sTSP showed a dose- and time-dependent ability to stimulate BAE-secreted TGF- beta activity, reaching maximal activation by 1-2 h with 0.4 micrograms/ml (0.9 nM) sTSP. The sTSP-mediated stimulation of TGF-beta activity is not dependent on serum factors and is not a general property of extracellular matrix molecules. The sTSP-mediated stimulation of TGF-beta activity was blocked by a mAb specific for sTSP and by neutralizing antibodies to TGF-beta. Activation of BAE cell secreted latent TGF-beta by sTSP can occur in the absence of cells and apparently does not require interactions with cell surface molecules, since in conditioned medium removed from cells and then incubated with sTSP, activation occurs with kinetics and at levels similar to what is seen when sTSP is incubated in the presence of cells. Serine proteases such as plasmin are not involved in sTSP-mediated activation of TGF- beta. Factors that regulate the conversion of latent to active TGF-beta are keys to controlling TGF-beta activity. These data suggest that TSP is a potent physiologic regulator of TGF-beta activation.  相似文献   

9.
The vascular wall is mainly composed of endothelial cells (ECs) and smooth muscle cells (SMCs). The crosstalking between these two cell types is critical in the vascular maturation process. Genetic studies suggest that the Tie2/angiopoietin 1 (Ang1) pathway regulates vascular remodeling. However, the molecular mechanism is unclear. PDGF is a potent chemoattractant for SMCs, and TGF-beta regulates SMC differentiation. Here, we examined gene regulation. PDGF-B stimulation upregulated Ang1 expression in SMCs through the PI3K and PKC pathways. PDGF-B stimulation also produced an acute induction of TGF-beta expression in SMCs through the MAPK/ERK pathway. Interestingly, TGF-beta negatively regulated Ang1 expression induced by the PDGF-B stimulation in SMCs. Reciprocally, we observed that stimulation of ECs with either Ang1 or TGF-beta slightly downregulated PDGF expression. A combination of both TGF-beta with Ang1 produced much stronger downregulation of PDGF. Our data showed complex gene regulations that include both positive and negative regulations between ECs and SMCs to maintain vascular homeostasis.  相似文献   

10.
We have constructed an in vitro arterial wall model by coculturing bovine arterial endothelial cells (ECs) and smooth muscle cells (SMCs). When ECs were seeded directly over SMCs and cocultured in an ordinary culture medium, ECs grew sparsely and did not form a confluent monolayer. Addition of ascorbic acid to the culture medium at concentrations greater than 50 μg/ml increased the production of type IV collagen by the SMCs, and ECs formed a confluent monolayer covering the entire surface of SMCs. Histological studies showed that the thickness of the cell layer composed of ECs and SMCs increased with increasing duration of coculture. This arterial wall model, prepared by our method, may serve as a simple and good in vitro model to study the effects of factors such as biological chemicals and shear stress on cell proliferation and other physiological functions of arterial walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号