首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 110 毫秒
1.
Variant surface glycoprotein (VSG) of Trypanosoma brucei brucei AnTat 1.1 was released by means of the procedure described by Baltz et al. ([1976], Ann. Immunol. [Inst. Pasteur] 127C, 761-774). The concanavalin-A chromatography yielded 3 VSG fractions according to the addition, in the elution buffer, of alpha-methyl-D-mannopyranoside, beta-mercaptoethanol, and sodium dodecyl sulfate. These VSG fractions showed heterogeneous behaviour on reverse-phase high performance liquid chromatography. The 3 VSG fractions as well as the myristylated VSG of AnTat 1.1 essentially consist of dimer VSG forms linked through a disulfide bridge, as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis, under reducing and nonreducing conditions.  相似文献   

2.
1. Using the variant surface glycoprotein (VSG) isolation procedure described by Baltz et al. ([1976] Ann. Immunol. (Inst. Pasteur) 127 C, 761-774) which involves suspension of the trypanosomes in a pH 5.5 buffer, the Antwerpen trypanozoon antigenic type (AnTat) 1.1 VSG is mainly obtained as a disulfide linked dimeric form with a trace amount of a monomeric form. 2. The use of a parasite suspension buffer at pH 7.0 results in a slight decrease of the VSG dimer/monomer ratio. 3. pH 5.5 and 7.0 supernatants of centrifuged parasite suspensions were submitted to kinetic incubations at different temperatures and pH, and we found conditions involving transformation of the AnTat 1.1 VSG dimer into the AnTat 1.1 VSG monomer (shifting the pH 5.5 supernatant to pH 7.0 and incubation at room temperature). 4. This transformation of the AnTat 1.1 VSG dimer into the AnTat 1.1 VSG monomer is activated by the addition of 1 mM reduced glutathione, and is inhibited by the addition of 1 mM oxidized glutathione or 0.1 mM N-ethylmaleimide or cadmium acetate.  相似文献   

3.
High performance liquid chromatography (HPLC) procedures have been used to analyze a preparation of the variant surface glycoprotein AnTat 1.1A of Trypanosoma brucei. The native preparation gives several peaks with a high reproducibility both by reverse-phase (RP-) and gel permeation (GP-) HPLC. Under RP-HPLC conditions, nine fractions are fully resolved. The RP-HPLC fractions migrate with the same molecular weight VSG band on polyacrylamide slab gel electrophoresis and no significant differences are observed in amino acid composition among these fractions. The RP-HPLC resolution is found to be related to the ability of the VSG to polymerize as shown using GP-HPLC. These results suggest the existence of a microheterogeneity of the AnTat 1.1A VSG preparation in relation to post-translational modification of the VSG molecule.  相似文献   

4.
In Trypanosoma brucei, the activation of the variant-specific antigen gene AnTat 1.1 proceeds by the synthesis of an additional gene copy, the AnTat 1.1 ELC, which is transposed to a new location, the expression site, where it is transcribed. Using the AnTat 1.1 variant to infect flies, we investigated the fate of the AnTat 1.1 ELC during cyclic transmission of T. brucei. We show here that the AnTat 1.1 ELC is conserved in procyclic trypanosomes, obtained either from the midgut of infected Glossina or from cultures, and in metacyclic trypanosomes, although the AnTat 1.1 serotype is not detected among metacyclic antigen types. This same AnTat 1.1 ELC, which is thus silent as the parasite develops in the insect vector, can be reactivated without duplication during the first parasitemia wave following cyclical transmission. This re-expression of the conserved ELC accounts for the early appearance of the 'ingested' antigenic type after passage through the fly.  相似文献   

5.
1. Variant surface glycoprotein (VSGs) of Trypanosoma brucei-brucei may exist as a disulfide-linked dimer in both forms: myristylated (mfVSG) and non-myristylated (sVSG), as judge by fluorography and immunoblotting of SDS-PAGE under non-reducing conditions. 2. The dimeric VSG form is labeled with [3H]-myristic acid in our incorporation conditions. 3. AnTat 1.1 trypanosomes preincubated with tunicamycin and incubated with [3H]-myristic acid synthesized a labeled molecule that has an apparent molecular weight slightly smaller than the native form, and that also corresponds to a disulfide-linked dimer.  相似文献   

6.
7.
The AnTat 1.1 antigen type typically occurs late in a chronic infection by the EATRO 1125 stock of Trypanosoma brucei. The AnTat 1.1 gene, which is located 24 kb from a chromosome end, seems exclusively expressed by acting as a donor in gene conversion events targeted to the telomeric expression site. We report that this gene is sufficiently provided with the homology blocks required for recombination with the expression site, and is not interrupted by stop codons up to the 3' block of homology. A possible reason for its low probability of activation is an inverse orientation with respect to the proximal chromosome end, since, if correctly positioned, it is readily expressed at an early stage of infection, following gene conversion. This suggests that interactions between chromosome ends may precede and favour the rearrangements leading to antigenic variation.  相似文献   

8.
Release and purification of Trypanosoma brucei variant surface glycoprotein   总被引:5,自引:0,他引:5  
Conditions affecting the solubilization of variant surface glycoprotein (VSG) from Trypanosoma brucei have been investigated. The results obtained form the basis for a convenient and efficient method for VSG purification. VSG release from the cell surface was temperature-dependent, following osmotic lysis at 0 degree C, and was inhibited by low concentrations of Zn2+ but not by tosyl-lysine chloromethyl-ketone (TLCK), phenylmethylsulfonylfluoride (PMSF), or iodoacetamide. These and other results eliminated the possibility that release was due to proteolytic cleavage of the C-terminal hydrophobic tail present on newly synthesized VSG. Bolton and Hunter reagent reacted with several components on living cells.  相似文献   

9.
The boundaries of gene conversion in variant-specific antigen genes have been determined in six clones of Trypanosoma brucei. In each clone, antigenic switching involved interaction between two telomeric members of the AnTat 1.1 multigene family, which share extensive homology throughout their coding regions. All conversion events occurred by substitution of faithful copies of donor sequences. Conversion endpoints were nonrandomly distributed. In four clones, the 5' conversion limit was near the antigen translation initiation codon, while in three clones, the 3' conversion limit was located at the "hinge" between the two major antigen domains. In one case, two segmental conversions were involved in antigen switching. These observations reveal that antigen gene conversion can occur without generating point mutations, and suggest that postrecombinational selection may impose a limit on the number of possible rearrangements within antigen genes.  相似文献   

10.
Intact bloodstream forms of Trypanosoma brucei brucei, T.b. gambiense, and T.b. rhodesiense and procyclic forms of T.b. brucei and T.b. gambiense were incubated in trypsin, solubilized for gel electrophoresis, and analyzed for removal of surface molecules. Silver-stained gels and transfer blots probed with horseradish peroxidase-conjugated or radiolabeled lectins revealed that only three glycoproteins, Gp120p, Gp91p, and Gp23p, were removed from the surface of procyclic forms by trypsin. The variant specific glycoproteins, Gp23b, Gp120b, and in some clones Gp91b were surface molecules cleaved from bloodstream forms. Greater than 90% of the variant specific glycoprotein (VSG) was removed from the surface of all clones studied within 1 hr following the addition of trypsin. The removal of VSG was coincident with appearance of 37 to 50 kDa glycopeptide fragments of VSG with different clones yielding different sized fragments. Detailed kinetic analysis of proteins from whole cell extracts and supernatants of the DuTat 1.1 clone of T.b. rhodesiense using concanavalin A (Con A) and polyclonal antibodies revealed that three major VSG fragments were released during trypsinization. The electrophoretic mobility of the three VSG fragments of DuTat 1.1 was not altered when samples were boiled in sodium dodecyl sulfate to inhibit the endogenous phospholipase C. Antiserum to the cross-reactive determinant bound to intact VSG, but did not bind VSG fragments. Thus, the major Con A binding fragments of DuTat 1.1 VSG and perhaps those of the other clones we studied were probably derived from the N-terminal domain of the molecule. The data suggest that VSG is cleaved by trypsin in situ at the hinge region, but remains attached to the cell surface via weak interaction with neighboring molecules.  相似文献   

11.
The variant surface glycoprotein of African trypanosomes is released after overnight incubation of parasites at 4 degrees C in pH 5.5 phosphate glucose buffer and may be purified by Concanavalin A Sepharose affinity chromatography. The addition of proteinase inhibitors during the parasite incubation is necessary to prevent the proteolysis of the variant surface glycoprotein by the trypanosomal released proteinases. Using this procedure without the addition of proteinase inhibitors, the proteolytic activities, released from the bloodstream forms Trypanosoma brucei brucei variant AnTat 1.1, were separated by Concanavalin-A Sepharose affinity chromatography. The unretained material (F1) shows hydrolytic activity against the two synthetic substrates Z-Phe-Arg-AMC and Z-Arg-Arg-AMC, which is stimulated by dithiothreitol, but not inhibited by E-64, and characterized by an alkaline pH optimum and an estimated molecular mass of 80-100 kDa. The Michaelis constant for the substrates Z-Arg-Arg-AMC and Z-Phe-Arg-AMC was, respectively, 2.8 and 6.7 microM. The retained material eluted by addition of 1% methyl-alpha-D-mannopyranoside (F2) shows hydrolytic activity against the synthetic substrate Z-Phe-Arg-AMC, which is stimulated by dithiothreitol, inhibited by E-64, active between pH 6.0 and 8.0, and could be separated into two peaks of activity by HPLC, one peak of high molecular mass (greater than 70 kDa) and the other peak of lower molecular mass (30-70 kDa). By electrophoresis in gels containing gelatin as substrate, this fraction contains several proteins with gelatinolytic activity, whereas the unretained fraction F1 did not have any gelatinolytic activity.  相似文献   

12.
African trypanosomes of the Trypanosoma brucei species are extracellular protozoan parasites that cause the deadly disease African trypanosomiasis in humans and contribute to the animal counterpart, Nagana. Trypanosome clearance from the bloodstream is mediated by antibodies specific for their Variant Surface Glycoprotein (VSG) coat antigens. However, T. brucei infection induces polyclonal B cell activation, B cell clonal exhaustion, sustained depletion of mature splenic Marginal Zone B (MZB) and Follicular B (FoB) cells, and destruction of the B-cell memory compartment. To determine how trypanosome infection compromises the humoral immune defense system we used a C57BL/6 T. brucei AnTat 1.1 mouse model and multicolor flow cytometry to document B cell development and maturation during infection. Our results show a more than 95% reduction in B cell precursor numbers from the CLP, pre-pro-B, pro-B, pre-B and immature B cell stages in the bone marrow. In the spleen, T. brucei induces extramedullary B lymphopoiesis as evidenced by significant increases in HSC-LMPP, CLP, pre-pro-B, pro-B and pre-B cell populations. However, final B cell maturation is abrogated by infection-induced apoptosis of transitional B cells of both the T1 and T2 populations which is not uniquely dependent on TNF-, Fas-, or prostaglandin-dependent death pathways. Results obtained from ex vivo co-cultures of living bloodstream form trypanosomes and splenocytes demonstrate that trypanosome surface coat-dependent contact with T1/2 B cells triggers their deletion. We conclude that infection-induced and possibly parasite-contact dependent deletion of transitional B cells prevents replenishment of mature B cell compartments during infection thus contributing to a loss of the host's capacity to sustain antibody responses against recurring parasitemic waves.  相似文献   

13.
Trypanosoma brucei bloodstream forms express a densely packed surface coat consisting of identical variant surface glycoprotein (VSG) molecules. This surface coat is subject to antigenic variation by sequential expression of different VSG genes and thus enables the cells to escape the mammalian host's specific immune response. VSG turnover was investigated and compared with the antigen switching rate. Living cells were radiochemically labeled with either 125I-Bolton-Hunter reagent or 35S-methionine, and immunogold-surface labeled for electron microscopy studies. The fate of labeled VSG was studied during subsequent incubation or cultivation of labeled trypanosomes. Our data show that living cells slowly released VSG into the medium with a shedding rate of 2.2 +/- 0.6% h-1 (t1/2 = 33 +/- 9 h). In contrast, VSG degradation accounted for only 0.3 +/- 0.06% h-1 (t1/2 = 237 +/- 45 h) and followed the classical lysosomal pathway as judged by electron microscopy. Since VSG uptake by endocytosis was rather high, our data suggest that most of the endocytosed VSG was recycled to the surface membrane. These results indicate that shedding of VSG at a regular turnover rate is sufficient to remove the old VSG coat within one week, and no increase of the VSG turnover rate seems to be necessary during antigenic variation.  相似文献   

14.
The glycosylphosphatidylinositol-specific phospholipase C or VSG lipase is the enzyme responsible for the cleavage of the glycosylphosphatidylinositol anchor of the variant surface glycoprotein (VSG) and concomitant release of the surface coat in Trypanosoma brucei during osmotic shock or extracellular acidic stress. In Xenopus laevis oocytes the VSG lipase was expressed as a nonacylated and a thioacylated form. This thioacylation occurred within a cluster of three cysteine residues but was not essential for catalytic activity per se. These two forms were also detected in trypanosomes and appeared to be present at roughly equivalent amounts. A reversible shift to the acylated form occurred when cells were triggered to release the VSG by either nonlytic acid stress or osmotic lysis. A wild type VSG lipase or a gene mutated in the three codons for the acylated cysteines were reinserted in the genome of a trypanosome null mutant for this gene. A comparative analysis of these revertant trypanosomes indicated that thioacylation might be involved in regulating enzyme access to the VSG substrate.  相似文献   

15.
ABSTRACT. Trypanosoma brucei bloodstream forms express a densely packed surface coat consisting of identical variant surface glycoprotein (VSG) molecules. This surface coat is subject to antigenic variation by sequential expression of different VSG genes and thus enables the cells to escape the mammalian host's specific immune response. VSG turnover was investigated and compared with the antigen switching rate. Living cells were radiochemically labeled with either 125I-Bolton-Hunter reagent or 35S-methionine, and immunogold-surface labeled for electron microscopy studies. The fate of labeled VSG was studied during subsequent incubation or cultivation of labeled trypanosomes. Our data show that living cells slowly released VSG into the medium with a shedding rate of 2.2 ± 0.6% h−1 (t1/2= 33 ± 9 h). In contrast, VSG degradation accounted for only 0.3 ± 0.06% h−1 (t1/2= 237 ± 45 h) and followed the classical lysosomal pathway as judged by electron microscopy. Since VSG uptake by endocytosis was rather high, our data suggest that most of the endocytosed VSG was recycled to the surface membrane. These results indicate that shedding of VSG at a regular turnover rate is sufficient to remove the old VSG coat within one week, and no increase of the VSG turnover rate seems to be necessary during antigenic variation.  相似文献   

16.
[3H]Myristoyl-labeled variant surface glycoprotein (VSG) has been isolated from Trypanosoma brucei by reverse phase high performance liquid chromatography and used as substrate for the conversion by trypanosomal enzymes of membrane-form VSG to soluble VSG. Conversion is detected by the release of myristoyl-containing lipids. The major lipolytic enzyme of T. brucei, phospholipase A1, is effective for the hydrolysis of myristoyl esters of p-nitrophenol, in a colorimetric assay. However, the phospholipase is unable to cleave the myristoyl ester linkage of VSG. The phospholipase can be separated from the myristoyl-releasing activity of trypanosome homogenate by centrifugation, affinity chromatography, and anion-exchange chromatography. Elution profiles on anion-exchange high performance liquid chromatography also indicate that the phospholipase is inactive against VSG. A small amount of myristoyl-releasing activity associated with the purified phospholipase is probably due to contamination with a phosphodiesterase which releases myristoyl-containing diglyceride from VSG.  相似文献   

17.
Gene conversion as a mechanism for antigenic variation in trypanosomes   总被引:27,自引:0,他引:27  
Expression of the gene coding for the trypanosome AnTat 1.1 surface antigen is linked to the duplicative transposition of a basic copy (BC) of this gene to an expression site. In two trypanosome clones successively derived from AnTat 1.1 (AnTat 1.10 and AnTat 1.1B) we found evidence that gene conversions are involved in the transformation of the AnTat 1.1 transposed element into the two new surface antigen coding sequences. Although the three resultant mRNAs--AnTat 1.1, 1.10, and 1.1B--are different, they still share large homologies. Two of them, AnTat 1.1 and 1.1B, code for surface coats that are indistinguishable by conventional serological techniques, whereas AnTat 1.10 has been found different by the same methods. The three genomic rearrangements involve two of the five members of the AnTat 1.1 gene family. These two members are both located in unstable telomeric regions similar to the expression site, each in a different orientation with respect to the DNA terminus. We have concluded that the duplicative transposition is achieved by a gene conversion that may affect variable lengths of the same silent genes, and that different members of the same surface antigen gene family can contribute to the diversification of the antigen repertoire.  相似文献   

18.
Variant surface glycoproteins (VSG) of Trypanosoma brucei are released in a water soluble form on impairment of membrane integrity. We have previously shown that this release is the result of an enzyme-mediated event which converts the hydrophobic membrane form VSG into the hydrophilic water-soluble form. We now present further details of the methods by which membrane form VSG ( mfVSG ) may be isolated, uncontaminated by water-soluble VSG ( sVSG ). The sensitivity to different metal ions of the enzyme that mediated the conversion event is discussed, and some biochemical characteristics of different mfVSG preparations are presented.  相似文献   

19.
African trypanosomes (Trypanosoma brucei) are digenetic parasites whose lifecycle alternates between the mammalian bloodstream and the midgut of the tsetse fly vector. In mammals, proliferating long slender parasites transform into non-diving short stumpy forms, which differentiate into procyclic forms when ingested by the tsetse fly. A hallmark of differentiation is the replacement of the bloodstream stage surface coat composed of variant surface glycoprotein (VSG) with a new coat composed of procylin. An undefined endoprotease and endogenous glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) have been implicated in releasing the old VSG coat. However, GPI hydrolysis has been considered unimportant because (i) GPI-PLC null mutants are fully viable and (ii) cytosolic GPI-PLC is localized away from cell surface VSG. Utilizing an in vitro differentiation assay with pleomorphic strains we have investigated these modes of VSG release. Shedding is initially by GPI hydrolysis, which ultimately accounts for a substantial portion of total release. Surface biotinylation assays indicate that GPI-PLC does gain access to extracellular VSG, suggesting that this mode is primed in the starting short stumpy population. Proteolytic release is up-regulated during differentiation and is stereoselectively inhibited by peptidomimetic collagenase inhibitors, implicating a zinc metalloprotease. This protease may be related to TbMSP-B, a trypanosomal homologue of Leishmania major surface protease (MSP) described in the accompanying paper (LaCount, D. J., Gruszynski, A. E., Grandgenett, P. M., Bangs, J. D., and Donelson, J. E. (2003) J. Biol. Chem. 278, 24658-24664). Overall, our results demonstrate that surface coat remodeling during differentiation has multiple mechanisms and that GPI-PLC plays a more significant role in VSG release than previously thought.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号