首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Tumor metastasis is a complex and multistep process and its exact molecular mechanisms remain unclear. We attempted to find novel microRNAs (miRNAs) contributing to the migration and invasion of breast cancer cells. In this study, we found that the expression of miR-487a was higher in MDA-MB-231breast cancer cells with high metastasis ability than MCF-7 breast cancer cells with low metastasis ability and the treatment with transforming growth factor β1 (TGF-β1) significantly increased the expression of miR-487a in MCF-7 and MDA-MB-231 breast cancer cells. Subsequently, we found that the transfection of miR-487a inhibitor significantly decreased the expression of vimentin, a mesenchymal marker, while increased the expression of E-cadherin, an epithelial marker, in both MCF-7 cells and MDA-MB-231 cells. Also, the inactivation of miR-487a inhibited the migration and invasion of breast cancer cells. Furthermore, our findings demonstrated that miR-487a directly targeted the MAGI2 involved in the stability of PTEN. The down-regulation of miR-487a increased the expression of p-PTEN and PTEN, and reduced the expression of p-AKT in both cell lines. In addition, the results showed that NF-kappaB (p65) significantly increased the miR-487a promoter activity and expression, and TGF-β1 induced the increased miR-487a promoter activity via p65 in MCF-7 cells and MDA-MB-231 cells. Moreover, we further confirmed the expression of miR-487a was positively correlated with the lymph nodes metastasis and negatively correlated with the expression of MAGI2 in human breast cancer tissues. Overall, our results suggested that miR-487a could promote the TGF-β1-induced EMT, the migration and invasion of breast cancer cells by directly targeting MAGI2.  相似文献   

2.
Abnormal activation of the Wnt/β-catenin signaling pathway and subsequent upregulation of β-catenin driven downstream targets—c-Myc and cyclin D1 is associated with development of breast cancer. The objective of our study was to determine if curcumin could modulate the key elements of Wnt pathway in breast cancer cells; an effect that might underscore its usefulness for chemoprevention/treatment of this malignancy. Curcumin showed a cytotoxic effect on MCF-7 cells with 50% inhibitory concentration (IC50) of 35 μM; while IC50 for MDA-MB-231 cells was 30 μM. Treatment with low cytostatic dose of 20 μM curcumin showed G2/M arrest in both breast cancer cells. The effect of curcumin (20 μM) treatment on expression of Wnt/β-catenin pathway components in breast cancer cells (MCF-7 and MDA-MB-231) was analyzed by immunofluorescence and Western blotting. Curcumin was found to effectively inhibit the expression of several Wnt/β-catenin pathway components—disheveled, β-catenin, cyclin D1 and slug in both MCF-7 and MDA-MB-231. Immunofluorescence analysis showed that curcumin markedly reduced the nuclear expression of disheveled and β-catenin proteins. Further, the protein levels of the positively regulated β-catenin targets—cyclin D1 and slug, were downregulated by curcumin treatment. The expression levels of two integral proteins of Wnt signaling, GSK3β and E-cadherin were also altered by curcumin treatment. In conclusion, our data demonstrated that the efficacy of curcumin in inhibition of cell proliferation and induction of apoptosis might occur through modulation of β-catenin pathway in human breast cancer cells.  相似文献   

3.
Induction of epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) characteristics underlie the development of metastasis, chemoresistance, and tumor recurrence in breast cancer. Downregulation of cytokeratin 18 (CK18) is a critical molecular event of EMT; however, its importance in the induction of EMT and CSC features has not been defined to date. This study aimed to investigate the biological significance and underlying molecular mechanisms of CK18 in inducing EMT phenotype and stemness properties of breast cancer cells. Three breast cancer cell lines (i.e., non-metastatic MCF-7, highly metastatic MDA-MB-231, and mitoxantrone (MX)-selected resistant MCF-7/MX cells) and two CK18-knockdown stable cell clones (MCF-7-shCK18-7D and 3C) were used to determine the association between CK18 and EMT and stemness. CK18 expression was extremely low in highly metastatic, resistant, and transforming growth factor (TGF)-β1/tumor necrosis factor (TNF)-α-treated breast cancer cells with mesenchymal phenotype and increased expression of CSC markers. Depletion of CK18 promoted partial EMT and the acquisition of stemness properties in breast cancer MCF-7 cells. Mechanistically, CK18 interference in MCF-7 cells activated the Wnt/β-catenin signaling, resulting in the up-regulation of epithelial cell adhesion molecule (EpCAM). Consistently, the stemness properties and metastasis can be attenuated by further knockdown of EpCAM in CK18-depleted cells. In conclusion, downregulation of CK18 promotes partial EMT and enhances breast cancer stemness by increasing EpCAM expression partly via the Wnt/β-catenin pathway. These findings indicate that CK18 may serve as a potential treatment target for advanced breast cancer.  相似文献   

4.
Acquisition of resistance to docetaxel (Doc) is one of the most important problems in treatment of breast cancer patients, but the underlying mechanisms are still not fully understood. In present study, Doc-resistant MDA-MB-231 and MCF-7 breast cancer cell lines (MDA-MB-231/Doc and MCF-7/Doc) were successfully established in vitro by gradually increasing Doc concentration on the basis of parental MDA-MB-231 and MCF-7 cell lines (MDA-MB-231/S and MCF-7/S). The potential miRNAs relevant to the Doc resistance were screened by miRNA microarray. We selected 5 upregulated miRNAs (has-miR-3646, has-miR-3658, has-miR-4438, has-miR-1246, and has-miR-574-3p) from the results of microarray for RT-qPCR validation. The results showed that expression level of miR-3646 in MDA-MB-231/Doc cells was significantly higher than in MDA-MB-231/S cells. Compared to MCF-7/S cells, miR-3646 expression was up-regulated in MCF-7/Doc cells. Further studies revealed that transfection of miR-3646 mimics into MDA-MB-231/S or MCF-7/S cells remarkably increased their drug resistance, in contrast, transfection of miR-3646 inhibitors into MDA-MB-231/Doc or MCF-7/Doc cells resulted in significant reduction of the drug resistance. By the pathway enrichment analyses for miR-3646, we found that GSK-3β/β-catenin signaling pathway was a significant pathway, in which GSK-3β was an essential member. RT-qPCR and Western blot results demonstrated that miR-3646 could regulate GSK-3β mRNA and protein expressions. Furthermore, a marked increase of both nuclear and cytoplasmic β-catenin expressions (with phosphorylated-β-catenin decrease) was observed in MDA-MB-231/Doc cells compared with MDA-MB-231/S cells, and their expression were positively related to miR-3646 and negatively correlated with GSK-3β. Taken together, our results suggest that miR-3646-mediated Doc resistance of breast cancer cells maybe, at least in part, through suppressing expression of GSK-3β and resultantly activating GSK-3β/β-catenin signaling pathway.  相似文献   

5.
The molecular mechanisms that regulate the endothelial response during transendothelial migration (TEM) of invasive cancer cells remain elusive. Tyrosine phosphorylation of vascular endothelial cadherin (VE-cad) has been implicated in the disruption of endothelial cell adherens junctions and in the diapedesis of metastatic cancer cells. We sought to determine the signaling mechanisms underlying the disruption of endothelial adherens junctions after the attachment of invasive breast cancer cells. Attachment of invasive breast cancer cells (MDA-MB-231) to human umbilical vein endothelial cells induced tyrosine phosphorylation of VE-cad, dissociation of β-catenin from VE-cad, and retraction of endothelial cells. Breast cancer cell-induced tyrosine phosphorylation of VE-cad was mediated by activation of the H-Ras/Raf/MEK/ERK signaling cascade and depended on the phosphorylation of endothelial myosin light chain (MLC). The inhibition of H-Ras or MLC in endothelial cells inhibited TEM of MDA-MB-231 cells. VE-cad tyrosine phosphorylation in endothelial cells induced by the attachment of MDA-MB-231 cells was mediated by MDA-MB-231 α2β1 integrin. Compared with highly invasive MDA-MB-231 breast cancer cells, weakly invasive MCF-7 breast cancer cells expressed lower levels of α2β1 integrin. TEM of MCF-7 as well as induction of VE-cad tyrosine phosphorylation and dissociation of β-catenin from the VE-cad complex by MCF-7 cells were lower than in MDA-MB-231 cells. These processes were restored when MCF-7 cells were treated with β1-activating antibody. Moreover, the response of endothelial cells to the attachment of prostatic (PC-3) and ovarian (SKOV3) invasive cancer cells resembled the response to MDA-MB-231 cells. Our study showed that the MDA-MB-231 cell-induced disruption of endothelial adherens junction integrity is triggered by MDA-MB-231 cell α2β1 integrin and is mediated by H-Ras/MLC-induced tyrosine phosphorylation of VE-cad.  相似文献   

6.
7.
The serine/threonine protein kinases CDK2 and GSK-3β are key oncotargets in breast cancer cell lines, therefore, in the present study three series of oxindole-benzofuran hybrids were designed and synthesised as dual CDK2/GSK-3β inhibitors targeting breast cancer (5a–g, 7a–h, and 13a–b). The N1-unsubstituted oxindole derivatives, series 5, showed moderate to potent activity on both MCF-7 and T-47D breast cancer cell lines. Compounds 5d–f showed the most potent cytotoxic activity with IC50 of 3.41, 3.45 and 2.27 μM, respectively, on MCF-7 and of 3.82, 4.53 and 7.80 μM, respectively, on T-47D cell lines, in comparison to the used reference standard (staurosporine) IC50 of 4.81 and 4.34 μM, respectively. On the other hand, the N1-substituted oxindole derivatives, series 7 and 13, showed moderate to weak cytotoxic activity on both breast cancer cell lines. CDK2 and GSK-3β enzyme inhibition assay of series 5 revealed that compounds 5d and 5f are showing potent dual CDK2/GSK-3β inhibitory activity with IC50 of 37.77 and 52.75 nM, respectively, on CDK2 and 32.09 and 40.13 nM, respectively, on GSK-3β. The most potent compounds 5d–f caused cell cycle arrest in the G2/M phase in MCF-7 cells inducing cell apoptosis because of the CDK2/GSK-3β inhibition. Molecular docking studies showed that the newly synthesised N1-unsubstituted oxindole hybrids have comparable binding patterns in both CDK2 and GSK-3β. The oxindole ring is accommodated in the hinge region interacting through hydrogen bonding with the backbone CO and NH of the key amino acids Glu81 and Leu83, respectively, in CDK2 and Asp133 and Val135, respectively, in GSK-3β. Whereas, in series 7 and 13, the N1-substitutions on the oxindole nucleus hinder the compounds from achieving these key interactions with hinge region amino acids what rationalises their moderate to low anti-proliferative activity.  相似文献   

8.
9.
Wnt/β‐catenin signaling is frequently activated in advanced prostate cancer and contributes to therapy resistance and metastasis. However, activating mutations in the Wnt/β‐catenin pathway are not common in prostate cancer, suggesting alternative regulations may exist. Here, we report that the expression of endothelial cell‐specific molecule 1 (ESM1), a secretory proteoglycan, is positively associated with prostate cancer stemness and progression by promoting Wnt/β‐catenin signaling. Elevated ESM1 expression correlates with poor overall survival and metastasis. Accumulation of nuclear ESM1, instead of cytosolic or secretory ESM1, supports prostate cancer stemness by interacting with the ARM domain of β‐catenin to stabilize β‐catenin–TCF4 complex and facilitate the transactivation of Wnt/β‐catenin signaling targets. Accordingly, activated β‐catenin in turn mediates the nuclear entry of ESM1. Our results establish the significance of mislocalized ESM1 in driving metastasis in prostate cancer by coordinating the Wnt/β‐catenin pathway, with implications for its potential use as a diagnostic or prognostic biomarker and as a candidate therapeutic target in prostate cancer.  相似文献   

10.
11.
The drug resistance and tumor metastasis have been the main obstacles for the longer-term therapeutic effects of tamoxifen (TAM) on estrogen receptor-positive (ER+) breast cancer, but the mechanisms underlying the TAM resistance are still unclear. Here, we demonstrated that the membrane-associated estrogen receptor ER-α36 signaling, but not the G protein-coupled estrogen receptor 1 (GPER1) signaling, might be involved in the TAM resistance and metastasis of breast cancer cells. In this study, a model of ER+ breast cancer cell MCF-7 that involves the up-regulated expression of ER-α36 and unchanged expression of ER-α66 and GPER1 was established via the removal of insulin from the cell culture medium. The mechanism of TAM resistance in the ER+ breast cancer cell line MCF-7 was investigated, and the results showed that the stimulating effect of insulin on susceptibility of MCF-7 to TAM was mediated by ER-α36 and that the expression level of ER-α36 in TAM-resistant MCF-7 cells was also significantly increased. Both TAM and estradiol (E2) could promote the migration of triple negative (ER-α66?/PR?/HER2?) and ER-α36+/GPER1+ breast cancer cells MDA-MB-231. The migration of MDA-MB-231 cells was inhibited by the down-regulated intracellular expression of ER-α36 by transient transfection of specific small interfering RNA, whereas no effect of GPER1 down-regulation was observed. Meanwhile, the effect of TAM on the migration of ER-α36-down-regulated MDA-MB-231 cells was also reduced. Furthermore, it was found that TAM enhanced the distribution of integrin β1 on the cell surface but did not affect the expression of integrin β1 in MDA-MB-231 cells. Collectively, these data suggested that ER-α36 signaling might play critical roles in acquired and de novo TAM resistance and metastasis of breast cancer, and ER-α36 might present a potential biomarker of TAM resistance in the clinical diagnosis and treatment of ER+ breast cancer.  相似文献   

12.
Metastasis is the leading cause of death by cancer. Non-small-cell lung cancer (NSCLC) represents nearly 85% of primary malignant lung tumours. Recent researches have demonstrated that epithelial-to-mesenchymal transition (EMT) plays a key role in the early process of metastasis of cancer cells. Transforming growth factor-β1 (TGF-β1) is the major inductor of EMT. The aim of this study is to investigate TGF-β1''s effect on cancer stem cells (CSCs) identified as cells positive for CD133, side population (SP) and non-cancer stem cells (non-CSCs) identified as cells negative for CD133, and SP in the A549 cell line. We demonstrate that TGF-β1 induces EMT in both CSC and non-CSC A549 sublines, upregulating the expression of mesenchymal markers such as vimentin and Slug, and downregulating levels of epithelial markers such as e-cadherin and cytokeratins. CSC and non-CSC A549 sublines undergoing EMT show a strong migration and strong levels of MMP9 except for the CD133 cell fraction. OCT4 levels are strongly upregulated in all cell fractions except CD133 cells. On the contrary, wound size reveals that TGF-β1 enhances motility in wild-type A549 as well as CD133+ and SP+ cells. For CD133 and SP cells, TGF-β1 exposure does not change the motility. Finally, assessment of growth kinetics reveals major colony-forming efficiency in CD133+ A549 cells. In particular, SP+ and SP A549 cells show more efficiency to form colonies than untreated corresponding cells, while for CD133 cells no change in colony number was observable after TGF-β1 exposure. We conclude that it is possible to highlight different cell subpopulations with different grades of stemness. Each population seems to be involved in different biological mechanisms such as stemness maintenance, tumorigenicity, invasion and migration.  相似文献   

13.
Nitric oxide (NO) is an essential signaling molecule in biological systems. Soluble guanylate cyclase (sGC), composing of α1 and β1 subunit, is the receptor for NO. Using radioimmunoassay, we discovered that activation of sGC by treatment with bradykinin or sodium nitroprusside (SNP) is impaired in MCF-7 and MDA-MB-231 breast cancer cells as compared to normal breast epithelial 184A1 cells. The 184A1 cells expressed both sGC α1 and sGCβ1 mRNAs. However, levels of sGCβ1 mRNAs were relatively lower in MCF-7 cells while both mRNA of sGC subunits were absent in MDA-MB-231 cells. Treatment with DNA methyltransferase inhibitor 5-aza-2’-deoxycytidine (5-aza-dC) increased mRNA levels of both sGCα1 and sGCβ1 in MDA-MB-231 cells but only sGCβ1 mRNAs in MCF-7 cells. The 5-aza-dC treatment increased the SNP-induced cGMP production in MCF-7 and MDA-MB-231, but not in 184A1 cells. Bisulfite sequencing revealed that the promoter of sGCα1 in MDA-MB-231 cells and promoter of sGCβ1 in MCF-7 cells were methylated. Promoter hypermethylation of sGCα1 and sGCβ1 was found in 1 out of 10 breast cancer patients. Over-expression of both sGC subunits in MDA-MB-231 cells induced apoptosis and growth inhibition in vitro as well as reduced tumor incidence and tumor growth rate of MDA-MB-231 xenografts in nude mice. Elevation of sGC reduced protein abundance of Bcl-2, Bcl-xL, Cdc2, Cdc25A, Cyclin B1, Cyclin D1, Cdk6, c-Myc, and Skp2 while increased protein expression of p53. Our study demonstrated that down-regulation of sGC, partially due to promoter methylation, provides growth and survival advantage in human breast cancer cells.  相似文献   

14.
15.
Tumors contain a small population of cancer stem cells (CSC) proposed to be responsible for tumor maintenance and relapse. Aldehyde dehydrogenase 1 (ALDH1) activity has been used as a functional stem cell marker to isolate CSCs in different cancer types. This study used the Aldefluor® assay and fluorescence-activated cell sorting (FACS) analysis to isolate ALDH1high cells from five human sarcoma cell lines and one primary chordoma cell line. ALDH1high cells range from 0.3% (MUG-Chor1) to 4.1% (SW-1353) of gated cells. Immunohistochemical staining, analysis of the clone formation efficiency, and xCELLigence microelectronic sensor technology revealed that ALDH1high cells from all sarcoma cell lines have an increased proliferation rate compared to ALDH1low cells. By investigating of important regulators of stem cell biology, real-time RT-PCR data showed an increased expression of c-Myc, β-catenin, and SOX-2 in the ALDH1high population and a significant higher level of ABCG2. Statistical analysis of data demonstrated that ALDH1high cells of SW-982 and SW-1353 showed higher resistance to commonly used chemotherapeutic agents like doxorubicin, epirubicin, and cisplatin than ALDH1low cells. This study demonstrates that in different sarcoma cell lines, high ALDH1 activity can be used to identify a subpopulation of cells characterized by a significantly higher proliferation rate, increased colony forming, increased expression of ABC transporter genes and stemness markers compared to control cells. In addition, enhanced drug resistance was demonstrated.  相似文献   

16.
17.
Endocrine sensitivity, assessed by the expression of estrogen receptor (ER), has long been the predict factor to guide therapeutic decisions. Tamoxifen has been the most successful hormonal treatment in endocrine-sensitive breast cancer. However, in estrogen-insensitive cancer tamoxifen showed less effectiveness than in estrogen-sensitive cancer. It is interesting to develop new drugs against both hormone-sensitive and insensitive tumor. In this present study we examined anticancer effects of evodiamine extracted from the Chinese herb, Evodiae fructus, in estrogen-dependent and –independent human breast cancer cells, MCF-7 and MDA-MB-231 cells, respectively. Evodiamine inhibited the proliferation of MCF-7 and MDA-MB-231 cells in a concentration-dependent manner with concentration of 1×10−6 and 1×10−5 M. Evodiamine also induced apoptosis via up-regulation of caspase 7 activation, PARP cleavage (Bik and Bax expression). The expression of ER α and β in protein and mRNA levels was down-regulated by evodiamine according to data from immunoblotting and RT-PCR analysis. Overall, our results indicate that evodiamine mediates degradation of ER and induces caspase-dependent pathway leading to inhibit proliferation of breast cancer cell lines. It suggests that evodiamine may in part mediate through ER-inhibitory pathway to inhibit breast cancer cell proliferation.  相似文献   

18.
We aimed to investigate the potential role and regulatory mechanism of long noncoding RNA tumor-associated lncRNA expressed in chromosome 2 (TALNEC2) in breast cancer. The expression of TALNEC2 in breast cancer tissues and cells were investigated. MCF-7 and MDA-MB-231 cells were transfected with small interfering RNA (siRNA) duplexes for targeting TALNEC2 (si-TALNEC2), enhancer of zeste homolog 2 (EZH2; si-EZH2) and p57KIP2 (si-p57 KIP2), and their corresponding controls (si-NC). The viability, colony forming ability, cell cycle, apoptosis, and autophagy of transfected cells were assessed. The expressions of p-p38 mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathway-related proteins were investigated. The results showed that TALNEC2 was highly expressed in breast cancer tissues and cells. Knockdown of TALNEC2 significantly inhibited the malignant behaviors of MCF-7 and MDA-MB-231 cells, including inhibiting cell viability and colony forming, arresting cell cycle at G0/G1 phase, inducing cell apoptosis, and promoting cell autophagy. EZH2 was a TALNEC2 binding protein, which was upregulated in breast cancer tissues and cells and could negatively regulate p57 KIP2. Effects of TALNEC2 knockdown on malignant behaviors of MCF-7 cells were reversed by p57 KIP2 knockdown. The expressions of p-p38, RelA, and RelB in MCF-7 cells were decreased after knockdown of TALNEC2 or EZH2, which were reversed by knockdown of p57 KIP2 concurrently. In conclusion, TALNEC2 may play an oncogenic role in breast cancer by binding to EZH2 to target p57 KIP2. Activation of p-p38 MAPK and NF-κB pathways may be key mechanisms mediating the oncogenic role of TALNEC2 in breast cancer. TALNEC2 may serve as a promising target in the therapy of breast cancer.  相似文献   

19.
Cancer stem cells are distinguished from normal adult stem cells by their stemness without tissue homeostasis control. Glycosphingolipids (GSLs), particularly globo-series GSLs, are important markers of undifferentiated embryonic stem cells, but little is known about whether or not ceramide glycosylation, which controls glycosphingolipid synthesis, plays a role in modulating stem cells. Here, we report that ceramide glycosylation catalyzed by glucosylceramide synthase, which is enhanced in breast cancer stem cells (BCSCs) but not in normal mammary epithelial stem cells, maintains tumorous pluripotency of BCSCs. Enhanced ceramide glycosylation and globotriosylceramide (Gb3) correlate well with the numbers of BCSCs in breast cancer cell lines. In BCSCs sorted with CD44+/ESA+/CD24 markers, Gb3 activates c-Src/β-catenin signaling and up-regulates the expression of FGF-2, CD44, and Oct-4 enriching tumorigenesis. Conversely, silencing glucosylceramide synthase expression disrupts Gb3 synthesis and selectively kills BCSCs through deactivation of c-Src/β-catenin signaling. These findings highlight the unexploited role of ceramide glycosylation in selectively maintaining the tumorous pluripotency of cancer stem cells. It speculates that disruption of ceramide glycosylation or globo-series GSL is a useful approach to specifically target BCSCs specifically.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号