首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Tyrosinase is the key enzyme in melanin synthesis, and is expressed in the pigment epithelium of the retina, a cell layer derived from the optic cup; and in neural crest-derived melanocytes of skin, hair follicle, choroid, and iris. The tyrosinase gene has been cloned and shown to map to the well-characterized c-locus (albino locus) of the mouse. Subsequent studies demonstrated that a functional tyrosinase minigene was able to rescue the albino phenotype in transgenic mice. The transgene was expressed in a cell type-specific manner in skin and eye. During development of the mouse, the tyrosinase gene is expressed in the pigment epithelium of the retina as early as day 10.5 of gestation. In the hair follicle, tyrosinase gene expression is detected from day 16.5 onwards. This cell-type–specific expression is largely reproduced in transgenic mice. Our results suggest that sequences in the immediate vicinity of the mouse tyrosinase gene are sufficient to provide cell type-specificity and developmental regulation in melanocytes and the pigment epithelium.  相似文献   

2.
In vertebrates, melanin production is restricted to pigment cells. This cell type-specific melanogenesis is considered to involve cell type-specific expression of the tyrosinase gene. Recently, there have been several reports that sequences in the 5’ flanking region of the mouse tyrosinase gene are responsible for cell type-specific expression of the transgene in mice. As the first step in the study of the evolution of the regulatory mechanisms for tyrosinase gene function in vertebrates, we constructed a fused gene, hg-Tyrs-J which includes a 1.0-kb 5’ flanking sequence of the human tyrosinase gene fused with mouse tyrosinase cDNA. By introducing the fused gene into fertilized eggs of albino mice, we obtained two mice that exhibited pigmentation in the skin and eyes and established a transgenic line from one of them. Further analyses revealed that the transgene was expressed cell type-specifically in these transgenic mice. We conclude, therefore, that the 1.0 kb 5’ upstream region of the human tyrosinase gene contains conserved cis-elements essential for cell type-specific expression of the tyrosinase genes in mice and humans. Results of our study may provide a clue to elucidate the evolutionary process of regulatory mechanisms of the tyrosinase gene.  相似文献   

3.
We recently demonstrated that an RNA-DNA oligonucleotide corrected a point mutation in the mouse tyrosinase gene, resulting in permanent and inheritable restoration of tyrosinase enzymatic activity, melanin synthesis, and pigmentation changes in cultured melanocytes. In this study, we extended gene correction of melanocytes from tissue culture to live animals, using a chimeric oligonucleotide designed to correct a point mutation in the tyrosinase gene. Both topical application and intradermal injection of this oligonucleotide to albino BALB/c mouse skin resulted in dark pigmentation of several hairs in a localized area. The restored tyrosinase enzymatic activity was detected by dihydroxyphenylacetic acid (DOPA) staining of hair follicles in the treated skin. Tyrosinase gene correction was also confirmed by restriction fragment length polymorphism analysis and DNA sequencing from skin that was positive for DOPA staining and melanin synthesis. Localized gene correction was maintained three months after the last application of the chimeric oligonucleotides. These results demonstrated correction of the tyrosinase gene point mutation by chimeric oligonucleotides in vivo.  相似文献   

4.
Albinism, due to a lack of melanin pigment, is one of the oldest known mutations in mice. Tyrosinase (monophenol oxygenase, EC 1.14.18.1) is the first enzyme in the pathway for melanin synthesis, and the gene encoding this enzyme has been mapped to the mouse albino (c) locus. We have used mouse tyrosinase cDNA clones and genomic sequencing to study the albino mutation in laboratory mice. Within the tyrosinase gene coding sequences, a G to C transversion at nucleotide 308, causing a cysteine to serine mutation at amino acid 103, is sufficient to abrogate pigment production in transgenic mice. This same base pair change is fully conserved in classical albino strains of laboratory mice. These results indicate that a conserved mutation in the tyrosinase coding sequences is responsible for the classical albino mutation in laboratory mice, and also that most albino laboratory mouse strains have been derived from a common ancestor.  相似文献   

5.
Molecular basis of mouse Himalayan mutation   总被引:9,自引:0,他引:9  
Many different coat-colors result from the c-locus mutation in the mouse. One of these interesting mutants is a Himalayan, which produces temperature sensitive tyrosinase, and the basis of this sensitivity remains unknown. We cultured Himalayan mouse melanocytes from the skin and constructed a cDNA library; then, we isolated the Himalayan tyrosinase cDNAs and determined the nucleotide sequence. The tyrosinase gene in the Himalayan mouse contains an A----G change at nucleotide 1259 that alters a histidine residue to an arginine residue at amino acid 420. This histidine residue and the surrounding amino acids are conserved in their evolution from mouse to human. Interestingly, the residue with its surrounding eight amino acids are aligned between mouse b-protein and human tyrosinase. These results indicate the possibility that the altered residue at amino acid 420 of mouse tyrosinase may be important in stabilization of the tyrosinase molecule, or in interaction with other molecules, such as tyrosinase inhibitors.  相似文献   

6.
The enzyme tyrosinase (monophenol,L-dopa:oxygen oxidoreductase; EC 1.14.18.1) catalyzes the first two steps in the conversion of tyrosine to melanin, the major pigment found in melanocytes. Some forms of oculocutaneous albinism, characterized by the absence of melanin in skin and eyes and by a deficiency of tyrosinase activity, may result from mutations in the tyrosinase structural gene. A recently isolated human tyrosinase cDNA was used to map the human tyrosinase locus (TYR) to chromosome 11, region q14----q21, by Southern blot analysis of somatic cell hybrid DNA and by in situ chromosomal hybridization. A second site of tyrosinase-related sequences was detected on the short arm of chromosome 11 near the centromere (p11.2----cen). Furthermore, we have confirmed the localization of the tyrosinase gene in the mouse at or near the c locus on chromosome 7. Comparison of the genetic maps of human chromosome 11 and mouse chromosome 7 leads to hypotheses regarding the evolution of human chromosome 11.  相似文献   

7.
R Ganss  L Montoliu  A P Monaghan    G Schütz 《The EMBO journal》1994,13(13):3083-3093
The tyrosinase gene encodes the key enzyme of melanin production and is tightly regulated during development. A yeast artificial chromosome covering the mouse tyrosinase gene has been shown to rescue completely the albino phenotype of recipient mouse strains, conferring copy number-dependent, position-independent expression. To investigate the presence of cis-acting regulatory elements responsible for the appropriate expression of the tyrosinase gene, DNase I hypersensitive site mapping was performed. A melanoma cell-specific DNase I hypersensitive site was identified at -12 kb upstream of the tyrosinase gene. Functional analysis of the corresponding cis-acting element in transgenic mice and transient transfection assays revealed properties of a strong cell-specific enhancer. RNA expression levels of the transgene correlate with copy number, which is reflected in coat colour and eye pigmentation of transgenic mice. Full enhancer activity in transient transfections is obtained with a minimal sequence of 200 bp. Protein binding analysis reveals the presence of a melanoma cell-specific complex which might contribute to the faithful expression of the tyrosinase gene.  相似文献   

8.
Murine albinism is characterized by complete lack of melanin pigments in skin and retina. In order to study the molecular basis of albinism, we have cloned and characterized the tyrosinase gene of BALB/c mice (c/c). Sequence analysis of this gene reveals a point mutation at nucleotide residue 387 (G----C transversion) causing a Cys----Ser substitution at position 85 in one of the cysteine-rich domains of the tyrosinase molecule. Since this G----C transversion creates an additional DdeI site, we were able to confirm that this mutation is actually present in BALB/c genomic DNA using DNA amplification techniques. In contrast, both C57BL/6 (C/C) and DBA/2 (C/C) mouse strains carry the G residue at the same position, suggesting that this point mutation is specific for the albino mutation at the c locus. Moreover, we were able to show that the tyrosinase containing Ser-85 is not functional in transient expression of its cDNA. We therefore suggest that a G----C transversion at nucleotide residue 387 of the tyrosinase gene could lead to the albino phenotype of BALB/c mouse.  相似文献   

9.
Strial melanocytes are required for normal development and correct functioning of the cochlea. Hearing deficits have been reported in albino individuals from different species, although melanin appears to be not essential for normal auditory function. We have analyzed the auditory brainstem responses (ABR) of two transgenic mice: YRT2, carrying the entire mouse tyrosinase (Tyr) gene expression-domain and undistinguishable from wild-type pigmented animals; and TyrTH, non-pigmented but ectopically expressing tyrosine hydroxylase (Th) in melanocytes, which generate the precursor metabolite, L-DOPA, but not melanin. We show that young albino mice present a higher prevalence of profound sensorineural deafness and a poorer recovery of auditory thresholds after noise-exposure than transgenic mice. Hearing loss was associated with absence of cochlear melanin or its precursor metabolites and latencies of the central auditory pathway were unaltered. In summary, albino mice show impaired hearing responses during ageing and after noise damage when compared to YRT2 and TyrTH transgenic mice, which do not show the albino-associated ABR alterations. These results demonstrate that melanin precursors, such as L-DOPA, have a protective role in the mammalian cochlea in age-related and noise-induced hearing loss.  相似文献   

10.
We introduced a mouse tyrosinase minigene, mg-Tyrs-J, in which the authentic genomic 5' non-coding flanking sequence was fused to a mouse tyrosinase cDNA, into fertilized egges of albino mice. Of the 25 animals that developed from the injected eggs, four mice exhibited pigmented hair and eyes. Histological analysis of the transgenic mice revealed that the melanogenesis was restricted to hair bulbs and eyes. These results suggest that this minigene encodes active tyrosinase protein and that its 5' flanking region contains the sequences regulating expression of mouse tyrosinase gene. This is the first report of a successful expression of tyrosinase gene and of pigment production in transgenic mice.  相似文献   

11.
Two pigmentation related genes have recently been cloned which map to the brown (b) and albino (c) loci of mice; these loci influence the quality and quantity, respectively, of melanin produced by melanocytes. Both these gene products are biochemically similar and have extensive amino acid sequence similarity to each other and to lower forms of tyrosinase (EC 1.14.18.1), a copper binding enzyme responsible for melanin production. In order to characterize the catalytic activities of these molecules, we have synthesized peptides and prepared antibodies to them which specifically recognize the gene products in question. By use of immune affinity purification protocols, we have isolated the proteins encoded by the brown and albino loci and have determined that both have the catalytic functions ascribed to tyrosinase, i.e. hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine (DOPA) and the oxidation of DOPA to DOPAquinone. These are the critical reactions to melanogenesis since melanin pigment can be spontaneously produced from those products. The specific activity of the albino locus encoded product is considerably higher than that of the protein encoded by the brown locus, although the latter protein is present in higher quantity in melanocytes than is the protein encoded by the albino locus. These results are surprising since it was anticipated that tyrosinase was the product of single gene locus, and suggest that regulation of melanogenesis in mammals is controlled at the enzymatic level by several different gene products.  相似文献   

12.
Syndecan‐2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan‐2 in melanogenesis. Syndecan‐2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA‐mediated knockdown of syndecan‐2 was associated with reduced melanin synthesis, whereas overexpression of syndecan‐2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan‐2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinase CβII. Furthermore, UVB caused increased syndecan‐2 expression, and this up‐regulation of syndecan‐2 was required for UVB‐induced melanin synthesis. Taken together, these data suggest that syndecan‐2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin‐associated diseases.  相似文献   

13.
Melanin is a free-radical scavenger, antioxidant, and broadband absorber of ultraviolet (UV) radiation which protects the skin from environmental carcinogenesis. However, melanin synthesis and UV-induced reactive melanin species are also implicated in melanocyte genotoxicity. Here, we attempted to reconcile these disparate functions of melanin using a UVB-sensitive, NRAS-mutant mouse model, TpN. We crossed TpN mice heterozygous for an inactivating mutation in Tyrosinase to produce albino and black littermates on a C57BL/6J background. These animals were then exposed to a single UVB dose on postnatal day three when keratinocytes in the skin have yet to be melanized. Approximately one-third (35%) of black mice were protected from UVB-accelerated tumor formation. However, melanoma growth rates, tumor mutational burdens, and gene expression profiles were similar in melanomas from black and albino mice. Skin from albino mice contained more cyclobutane pyrimidine dimer (CPD) positive cells than black mice 1-h post-irradiation. However, this trend gradually reversed over time with CPDs becoming more prominent in black than albino melanocytes at 48 h. These results show that in the absence of epidermal pigmentation, melanocytic melanin limits the tumorigenic effects of acute UV exposure but fails to protect melanocytes from UVB-induced mutagenesis.  相似文献   

14.
Tyrosinase, which catalyzes both the hydroxylation of tyrosine and consequent oxidation of L-DOPA to form melanin in melanocytes, is also expressed in the brain, and oxidizes L-DOPA and dopamine. Replacement of dopamine synthesis by tyrosinase was reported in tyrosine hydroxylase null mice. To examine the potential benefits of autograft cell transplantation for patients with Parkinson’s disease, tyrosinase-producing cells including melanocytes, were transplanted into the striatum of hemi-parkinsonian model rats or mice lesioned with 6-hydroxydopamine. Marked improvement in apomorphine-induced rotation was noted at day 40 after intrastriatal melanoma cell transplantation. Transplantation of tyrosinase cDNA-transfected hepatoma cells, which constitutively produce L-DOPA, resulted in marked amelioration of the asymmetric apomorphine-induced rotation in hemi-parkinsonian mice and the effect was present up to 2 months. Moreover, parkinsonian mice transplanted with melanocytes from the back skin of black newborn mice, but not from albino mice, showed marked improvement in the apomorphine-induced rotation behavior up to 3 months after the transplantation. Dopamine-positive signals were seen around the surviving transplants in these experiments. Taken together with previous studies showing dopamine synthesis and metabolism by tyrosinase, these results highlight therapeutic potential of intrastriatal autograft cell transplantation of melanocytes in patients with Parkinson’s disease.  相似文献   

15.
To study the relationship among tyrosinase activity, melanin production, and the routing of retinal ganglion cell (RGC) axons at the optic chiasm, we analysed mice with varying doses of the tyrosinase gene. These include the dark-eyed albino (Tyrc44H), a radiation-induced hypomorphic allele of tyrosinase; and transgenic mice carrying 1 or 2 alleles of a tyrosinase minigene on both wild-type (Tyr+) and albino (Tyrc) backgrounds. Melanization of the retinal pigment epithelium (RPE) occurred gradually even at <2% wild-type tyrosinase activity and was sensitive to tyrosinase activity up to <35% of wild-type levels, beyond which melanin synthesis appeared to be saturated. Overexpression of tyrosinase led to tyrosinase activity above wild type level, but did not increase melanin production. Although a loss of melanin because of a mutation in tyrosinase is associated with a decrease in the number of uncrossed fibers, elevating tyrosinase levels does not appear to cause an increase in the size of the uncrossed retinal projection. Our results suggest that replacing less than 35% of wild-type tyrosinase activity is sufficient to restore normal pigmentation of the RPE, and potentially, to allay visual defects.  相似文献   

16.
17.
Artificial chromosome transgenesis in pigmentary research   总被引:4,自引:0,他引:4  
Pigmentary genes were among the first mammalian genes to be studied, mostly because of the obvious phenotypes associated with their mutations. In 1990, tyrosinase, encoding the limiting enzyme in the melanin synthesis pathway, was eventually assigned to the c (albino) locus by classical rescue experiments driven by functional constructs in transgenic mice. These pioneer reports triggered the study of the regulation of endogenous tyrosinase gene expression by combining different amounts of upstream regulatory and promoter regions and testing their function in vivo in transgenic animals. However, faithful and reproducible transgenic expression was not achieved until the entire tyrosinase expression domain was transferred to the germ-line of mice using artificial-chromosome-type transgenes. The use of these large tyrosinase transgenic constructs and the ease with which they could be manipulated in vitro enabled the discovery of previously unknown but fundamental regulatory regions, such as the tyrosinase locus control region (LCR), whose presence was required in order to guarantee position-independent and copy-number-dependent expression of tyrosinase transgenes, with an expression level, per copy, comparable to that of an endogenous wild-type allele. Subsequently, functional dissection of elements present within this LCR through the generation of new artificial-chromosome type tyrosinase transgenes has revealed the existence of different regulatory activities. The existence of some of these units had been suggested previously by standard-type transgenic analyses. In this review, we will discuss both independent approaches and conclude that optimal tyrosinase transgene expression requires the use of its complete expression domain.  相似文献   

18.
In this study, we have addressed the impact of the mouse tyrosinase enhancer on regulated expression from the mouse tyrosinase promoter during embryonic development. Stable and transient transgenic experiments using the reporter gene lacZ reveal that (1) expression is detected in neural crest-derived melanoblasts from E11.5 onward, (2) the enhancer does not increase transgenic expression in optic cup-derived pigment cells of the retinal pigment epithelium (RPE), and (3) expression in the telencephalon is not any longer detected. The importance of the enhancer for expression in pigment cells of the eye was further investigated in adult mice using an attenuated diphtheria toxin A gene. This demonstrated that in presence of the enhancer the transgene expression is specifically targeted to neural crest-derived melanocytes of the choroid and not, or slightly, to the RPE. This suggests that tyrosinase is differentially regulated in the two pigment cell lineages, and that this promoter can be used to target expression preferentially to the neural crest-derived melanocyte lineage.  相似文献   

19.
Expression of a mouse tyrosinase cDNA in 3T3 Swiss mouse fibroblasts   总被引:2,自引:0,他引:2  
3T3 Swiss mouse fibroblast cell lines expressing tyrosinase, the critical enzyme in melanin synthesis, have been established by co-transfection of a mouse tyrosinase cDNA and a G418-resistance gene. Of sixty-three clones isolated, four are brown in colour, presumably due to synthesis of melanin. Expression of both the tyrosine hydroxylase and dopa oxidase activities of tyrosinase by these pigmented clones has been demonstrated directly by enzyme assays. Electron microscopic studies suggest that the brown pigment is located in membrane-bound cytoplasmic vesicles.  相似文献   

20.
Melanocytes originate from the neural crest in vertebrates and migrate to the body surface where they differentiate into functional cells. Genes involved in melanocyte differentiation can be classified into two groups. One of them consists of the functional genes that control proteins specific to the function of the melanocyte. As the representative gene of this category, albino (c) locus in the mouse is considered to control tyrosinase, the key enzyme in melanogenesis. cDNA for mouse tyrosinase has been cloned and sequenced. The cDNA can be used to detect tyrosinase mRNA synthesized during melanocyte differentiation. On the other hand, genes such as brown (b) or pink-eyed dilution (p) have been assumed to control melanosome proteins. The other category consists of genes that regulate the expression of these functional genes directly or indirectly. In the mouse, so-called white-spotting genes and genes of the agouti series are considered to fall into this category. Based on the fact that mutations at the white-spotting loci result in the absence of melanocytes in a particular area of skin, it is assumed that some of these loci control the factors that promote either differentiation or migration of melanoblasts and are candidates for the classic regulator genes Genes at the agouti (a) locus in the mouse determine the type of melanin synthesized in hair follicle melanocytes, that is eumelanin or pheomelanin. An interesting feature of this locus is that the site of gene action is not within the melanocytes but in the cells surrounding them. The results of our study indicate that the gene product of the a-locus interacts with α-MSH at the α-MSH receptor site, regulates the cellular cAMP level via a signal transduction system and, in turn, determines the type of melanin synthesized in the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号