首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Paleoneurology concerns the study and analysis of fossil endocasts. Together with cranial capacity and discrete anatomical features, shape can be analysed to consider the spatial relationships between structures and to investigate the endocranial structural system. A sample of endocasts from fossil specimens of the genus Homo has been analysed using traditional metrics and 2D geometric morphometrics based on lateral projections of endocranial shape. The maximum and frontal widths show a size-related pattern of variation shared by all the taxa considered. Furthermore, as cranial capacity increases in the non-modern morphotypes there is a general endocranial vertical stretching (mainly centred at the anterior ascending circumvolution) with flattening and relative shortening of the parietal areas. This pattern could have involved some structural stress between brain development and vault bones at the parietal midsagittal profile in the heavy encephalised Neandertals. In contrast, modern humans show a species-specific neomorphic hypertrophy of the parietal volumes, leading to a dorsal growth and ventral flexion (convolution) and consequent globularity of the whole structure. Brain tensors such as the falx cerebri have been hypothesised to represent one of the main physical constraints on morphogenetic trajectories, with additional influences from cranial base structures. The neurofunctional inferences discussed here stress the role of the parietal areas in the visuo-spatial coordination and integration, which can be involved in higher cerebral functions and related to conceptual thinking.  相似文献   

2.
Historically, studies of pachycephalosaurs have recognized plesiomorphically flat-headed taxa and apomorphically domed taxa. More recently, it has been suggested that the expression of the frontoparietal dome is ontogenetic and derived from a flat-headed juvenile morphology. However, strong evidence to support this hypothesis has been lacking. Here we test this hypothesis in a large, stratigraphically constrained sample of specimens assigned to Stegoceras validum, the best known pachycephalosaur, using multiple independent lines of evidence including conserved morphology of ornamentation, landmark-based allometric analyses of frontoparietal shape, and cranial bone histology. New specimens show that the diagnostic ornamentation of the parietosquamosal bar is conserved throughout the size range of the sample, which links flat-headed specimens to domed S. validum. High-resolution CT scans of three frontoparietals reveal that vascularity decreases with size and document a pattern that is consistent with previously proposed histological changes during growth. Furthermore, aspects of dome shape and size are strongly correlated and indicative of ontogenetic growth. These results are complementary and strongly support the hypothesis that the sample represents a growth series of a single taxon. Cranial dome growth is positively allometric, proceeds from a flat-headed to a domed state, and confirms the synonymy of Ornatotholus browni as a juvenile Stegoceras. This dataset serves as the first detailed model of growth and variation in a pachycephalosaur. Flat-headed juveniles possess three characters (externally open cranial sutures, tuberculate dorsal surface texture, and open supratemporal fenestrae) that are reduced or eliminated during ontogeny. These characters also occur in putative flat-headed taxa, suggesting that they may also represent juveniles of domed taxa. However, open cranial sutures and supratemporal fenestrae are plesiomorphic within Ornithischia, and thus should be expected in the adult stage of a primitive pachycephalosaur. Additional lines of evidence will be needed to resolve the taxonomic validity of flat-headed pachycephalosaur taxa.  相似文献   

3.
Recent studies have analyzed and described the endocranial cavities of caviomorph rodents. However, no study has documented the changes in the morphology and relative size of such cavities during ontogeny. Expecting to contribute to the discussion of the endocranial spaces of extinct caviomorphs, we aimed to characterize the cranial endocast morphology and paranasal sinuses of the largest living rodent, Hydrochoerus hydrochaeris, by focusing on its ontogenetic growth patterns. We analyzed 12 specimens of different ontogenetic stages and provided a comparison with other cavioids. Our study demonstrates that the adult cranial endocast of H. hydrochaeris is characterized by olfactory bulbs with an irregular shape, showing an elongated olfactory tract without a clear circular fissure, a marked temporal region that makes the endocast with rhombus outline, and gyrencephaly. Some of these traits change as the brain grows. The cranial pneumatization is present in the frontal and lacrimal bones. We identified two recesses (frontal and lacrimal) and one sinus (frontal). These pneumatic cavities increase their volume as the cranium grows, covering the cranial region of the cranial endocast. The encephalization quotient was calculated for each specimen, demonstrating that it decreases as the individual grows, being much higher in younger specimens than in adults. Our results show that the ontogenetic stage can be a confounding factor when it comes to the general patterns of encephalization of extinct rodents, reinforcing the need for paleobiologists to take the age of the specimens into account in future studies on this subject to avoid age-related biases.  相似文献   

4.
Ontogenetic samples of endocranial volumes (EVs) from great apes and humans are critical for understanding the evolution of the brain growth pattern in the hominin lineage. However, high quality ontogenetic data are scarce, especially for nonhuman primates. Here, we provide original data derived from an osteological collection of a wild population of Pan troglodytes verus from the Taï Forest National Park, Ivory Coast. This sample is unique, because age, sex, and pedigree information are available for many specimens from behavioral observations in the wild. We scanned crania of all 30 immature specimens and 13 adult individuals using high-resolution computed tomography. We then created virtual casts of the bony braincase (endocasts) to measure EVs. We also measured cranial length, width, and height and attempted to relate cranial distances to EV via regression analysis. Our data are consistent with previous studies. The only neonate in the sample has an EV of 127 cm3 or 34% of the adult mean. EV increases rapidly during early ontogeny. The average adult EV in this sample is 378.7 ± 30.1 cm3. We found sexual dimorphism in adults; males seem to be already larger than females before adult EV is attained. Regressions on cranial width and multiple regression provide better estimates for EV than regressions on cranial length or height. Increasing the sample size and compiling more high quality ontogenetic data of EV will help to reconcile ongoing discussions about the evolution of hominin brain growth. Am J Phys Anthropol 147:319–325, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
A crucial component of research on brain evolution has been the comparison of fossil endocranial surfaces with modern human and primate endocrania. The latter have generally been obtained by creating endocasts out of rubber latex shells filled with plaster. The extent to which the method of production introduces errors in endocast replicas is unknown. We demonstrate a powerful method of comparing complex shapes in 3-dimensions (3D) that is broadly applicable to a wide range of paleoanthropological questions. Pairs of virtual endocasts (VEs) created from high-resolution CT scans of corresponding latex/plaster endocasts and their associated crania were rigidly registered (aligned) in 3D space for two Homo sapiens and two Pan troglodytes specimens. Distances between each cranial VE and its corresponding latex/plaster VE were then mapped on a voxel-by-voxel basis. The results show that between 79.7% and 91.0% of the voxels in the four latex/plaster VEs are within 2 mm of their corresponding cranial VEs surfaces. The average error is relatively small, and variation in the pattern of error across the surfaces appears to be generally random overall. However, inferior areas around the cranial base and the temporal poles were somewhat overestimated in both human and chimpanzee specimens, and the area overlaying Broca's area in humans was somewhat underestimated. This study gives an idea of the size of possible error inherent in latex/plaster endocasts, indicating the level of confidence we can have with studies relying on comparisons between them and, e.g., hominid fossil endocasts.  相似文献   

6.
7.
By comparing species-specific developmental patterns, we can approach the question of how development shapes adult morphology and contributes to the evolution of novel forms. Studies of evolutionary changes to brain development in primates can provide important clues about the emergence of human cognition, but are hindered by the lack of preserved neural tissue in the fossil record. As a proxy, we study the shape of endocasts, virtual imprints of the endocranial cavity, using 3D geometric morphometrics. We have previously demonstrated that the pattern of endocranial shape development is shared by modern humans, chimpanzees and Neanderthals after the first year of life until adulthood. However, whether this represents a common hominoid mode of development is unknown. Here, we present the first characterization and comparison of ontogenetic endocranial shape changes in a cross-sectional sample of modern humans, chimpanzees, gorillas, orangutans and gibbons. Using developmental simulations, we demonstrate that from late infancy to adulthood ontogenetic trajectories are similar among all hominoid species, but differ in the amount of shape change. Furthermore, we show that during early ontogeny gorillas undergo more pronounced shape changes along this shared trajectory than do chimpanzees, indicative of a dissociation of size and shape change. As shape differences between species are apparent in even our youngest samples, our results indicate that the ontogenetic trajectories of extant hominoids diverged at an earlier stage of ontogeny but subsequently converge following the eruption of the deciduous dentition.  相似文献   

8.
Understanding ontogenetic and developmental patterns is critical for reconstructing the life history of fossil vertebrates. In dinosaurs, ontogenetic studies have nearly exclusively focused on changes in the cranial and post‐cranial skeleton, whereas ontogenetic changes in the endocranium have received little attention. Here, we present digital reconstructions of the brain and inner ear anatomy of two ontogenetic stages of the Jurassic ornithischian dinosaur Dysalotosaurus lettowvorbecki. Results show that the endocranial anatomy underwent considerable changes during growth, including a rostrocaudal elongation of the olfactory apparatus, a reduction in the cephalic and pontine flexure and an increase in cerebellum size. Functional elements, such as the cerebral hemispheres and the inner ear, were already well developed in early ontogenetic stages, indicating a large degree of precociality. The anisotropic pattern of size and shape changes in the endocranium further indicates that ontogenetic trajectories may be controlled by functional and environmental demands in the different growth stages in Dysalotosaurus lettowvorbecki. The occurrence of similar ontogenetic patterns in the endocranial anatomy of derived ornithopod dinosaurs suggests a more widespread distribution of this growth trajectory.  相似文献   

9.
Reliable brain volume measurements are crucial in identifying factors that influence the course of brain evolution. Here, we demonstrate the potential for using virtual endocasts (VEs) to examine inter- and intraspecific variation in brain volume in members of the family Hyaenidae. Total endocranial volume (adjusted for body size) and anterior cerebrum volume (adjusted for endocranial volume) were greater in the spotted hyena, the most gregarious of the species, than in the other hyaenids, all of which are less gregarious. An intraspecific analysis of spotted hyenas revealed that anterior cerebrum volume is significantly larger in males than females, although total endocranial volume does not differ between the sexes. Greater total endocranial and anterior cerebrum volume of spotted hyenas, relative to those of other hyena species, may be related to increased neural processing mediating cognitive demands associated with a complex social life. These data demonstrate that computed tomographic (CT) technology can be used to create VEs in species for which actual brains are rare or unavailable, and suggest that this approach can be applied systematically to explore intra- and interspecies brain variations in studies of brain evolution.  相似文献   

10.

Background

In comparative neurobiology, major transitions in behavior are thought to be associated with proportional size changes in brain regions. Bird-line theropod dinosaurs underwent a drastic locomotory shift from terrestrial to volant forms, accompanied by a suite of well-documented postcranial adaptations. To elucidate the potential impact of this locomotor shift on neuroanatomy, we first tested for a correlation between loss of flight in extant birds and whether the brain morphology of these birds resembles that of their flightless, non-avian dinosaurian ancestors. We constructed virtual endocasts of the braincase for 80 individuals of non-avian and avian theropods, including 25 flying and 19 flightless species of crown group birds. The endocasts were analyzed using a three-dimensional (3-D) geometric morphometric approach to assess changes in brain shape along the dinosaur-bird transition and secondary losses of flight in crown-group birds (Aves).

Results

While non-avian dinosaurs and crown-group birds are clearly distinct in endocranial shape, volant and flightless birds overlap considerably in brain morphology. Phylogenetically informed analyses show that locomotory mode does not significantly account for neuroanatomical variation in crown-group birds. Linear discriminant analysis (LDA) also indicates poor predictive power of neuroanatomical shape for inferring locomotory mode. Given current sampling, Archaeopteryx, typically considered the oldest known bird, is inferred to be terrestrial based on its endocranial morphology.

Conclusion

The results demonstrate that loss of flight does not correlate with an appreciable amount of neuroanatomical changes across Aves, but rather is partially constrained due to phylogenetic inertia, evident from sister taxa having similarly shaped endocasts. Although the present study does not explicitly test whether endocranial changes along the dinosaur-bird transition are due to the acquisition of powered flight, the prominent relative expansion of the cerebrum, in areas associated with flight-related cognitive capacity, suggests that the acquisition of flight may have been an important initial driver of brain shape evolution in theropods.
  相似文献   

11.
We present a compilation of endocranial volumes (ECV) for 176 non-human primate species based on individual data collected from 3813 museum specimens, at least 88% being wild-caught. In combination with body mass data from wild individuals, strong correlations between endocranial volume and body mass within taxonomic groups were found. Errors attributable to different techniques for measuring cranial capacity were negligible and unbiased. The overall slopes for regressions of log ECV on log body mass in primates are 0.773 for least-squares regression and 0.793 for reduced major axis regression. The least-squares slope is reduced to 0.565 when independent contrasts are substituted for species means (branch lengths from molecular studies). A common slope of 0.646 is obtained with logged species means when grade shifts between major groups are taken into account using ANCOVA. In addition to providing a comprehensive and reliable database for comparative analyses of primate brain size, we show that the scaling relationship between brain mass and ECV does not differ significantly from isometry in primates. We also demonstrate that ECV does not differ substantially between captive and wild samples of the same species. ECV may be a more reliable indicator of brain size than brain mass, because considerably larger samples can be collected to better represent the full range of intraspecific variation. We also provide support for the maternal energy hypothesis by showing that basal metabolic rate (BMR) and gestation period are both positively correlated with brain size in primates, after controlling for the influence of body mass and potential effects of phylogenetic relatedness.  相似文献   

12.
Lemurs are notable for encompassing the range of body‐size variation for all primates past and present—close to four orders of magnitude. Benefiting from the phylogenetic proximity of subfossil lemurs to smaller‐bodied living forms, we employ allometric data from the skull to probe the ontogenetic bases of size differentiation and morphological diversity across these clades. Building upon prior pairwise comparisons between sister taxa, we performed the first clade‐wide analyses of craniomandibular growth allometries in 359 specimens from 10 lemuroids and 176 specimens from 8 indrioids. Ontogenetic trajectories for extant forms were used as a criterion of subtraction to evaluate morphological variation, and putative adaptations among sister taxa. In other words, do species‐level differences in skull form result from the differential extension of common patterns of relative growth? In lemuroids, a pervasive pattern of ontogenetic scaling is observed for facial dimensions in all genera, with three genera also sharing relative growth trajectories for jaw proportions (Lemur, Eulemur, Varecia). Differences in masticatory growth and form characterizing Hapalemur and fossil Pachylemur likely reflect dietary factors. Pervasive ontogenetic scaling characterizes the facial skull in extant Indri, Avahi, and Propithecus, as well as their larger, extinct sister taxa Mesopropithecus and Babakotia. Significant interspecific differences are observed in the allometry of indrioid masticatory proportions, with variation in the mechanical advantage of the jaw adductors and stress‐resisting elements correlated with diet. As the growth series and adult data are largely coincidental in each clade, interspecific variation in facial form may result from selection for body‐size differentiation among sister taxa. Those cases where trajectories are discordant identify potential dietary adaptations linked to variation in masticatory forces during chewing and biting. Although such dissociations highlight selection to uncouple shared ancestral growth patterns, they occur largely via transpositions and retention of primitive size‐shape covariation patterns or relative growth coefficients. Am. J. Primatol. 72:161–172, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
14.
M Michejda 《Acta anatomica》1975,91(1):110-117
Cross-sectional studies of the degree of the cranial base flexion were carried out in infant, juvenile and adult skulls in four genera of nonhuman primates (P. paniscus, H. lar, P. urinus, and M. mullatta). The cephalometric observations of the cranial base included linear and angular measurements of each specimen. The data obtained in this study showed that the anterior portion of the cranial base exhibits a significant shortening trend as the mammalian evolutionary scale ascends. Moreover, the growth pattern of the anterior portion of the skull base follows that of the facial bony structures. The ontogenic growth changes of the posterior portion of the skull base follows the growth pattern of the endocranial cavity. The significant trend of elongation in this area directly contributes to the posterior migration of the foramen magnum. The magnitude of these growth changes decreases as the evolutionary scale ascends. The angular measurements of the cranial flexion showed a less obtuse cranial base angle in young specimens and the ones higher on the mammalian scale. The skull kyphosis was less pronounced in these specimens and the anatomical features of the cranial base were more humanlike, including the balance of the head expressed by the position of the foramen magnum.  相似文献   

15.
The synthesis of both ontogenetic and phylogenetic data should provide the ideal explanation of morphologic variation, but for the primate dentition, this has not yet occurred. Information concerning growth and development of primate teeth is lacking, in part because of the paucity of specimens. We have therefore examined the deciduous second molars (dm2) and tooth buds of the permanent first molar (M1) of 12 chimpanzees (Pan troglodytes), aged 6.5 months of gestation to 4 postnatal months. The ordering of cusp calcification was identical to that of other primates. By regression analysis, correlations of mesial and distal widths with buccal, lingual, and mesiodistal lengths were low, most probably because of decreased rates of change (slopes) and the relatively small sample size. Correlations were, however, greater for mandibular than for maxillary dentition and higher for age than for body weight; for both the dm2 and M1, distal moieties increased faster and were more highly correlated with other dental variables and age than were mesial ones. Comparison with data from humans revealed both differences and similarities in the absolute size and growth rate of dental moieties during the perinatal period. As the reasons for ontogenetic variation become understood for individuals, species, and higher taxa, the phylogenetic implications of differential growth should become clearer as well.  相似文献   

16.
Just as skeletal characteristics provide clues regarding behavior of extinct vertebrates, phylogenetically-informed evaluation of endocranial morphology facilitates comparisons among extinct taxa and extant taxa with known behavioral characteristics. Previous research has established that endocranial morphology varies across Aves; however, variation of those systems among closely related species remains largely unexplored. The Charadriiformes (shorebirds and allies) are an ecologically diverse clade with a comparatively rich fossil record, and therefore, are well suited for investigating interspecies variation, and potential links between endocranial morphology, phylogeny, ecology and other life history attributes. Endocranial endocasts were rendered from high resolution X-ray computed tomography data for 17 charadriiforms (15 extant and two flightless extinct species). Evaluation of endocranial character state changes on a phylogeny for Charadriiformes resulted in identification of characters that vary in taxa with distinct feeding and locomotor ecologies. In comparison with all other charadriiforms, stem and crown clade wing-propelled diving Pan-Alcidae displayed compressed semicircular canals, and indistinct occipital sinuses and cerebellar fissures. Flightless wing-propelled divers have relatively smaller brains for their body mass and smaller optic lobes than volant pan-alcids. Observed differences between volant and flightless wing-propelled sister taxa are striking given that flightless pan-alcids continue to rely on the flight stroke for underwater propulsion. Additionally, the brain of the Black Skimmer Rynchops niger, a taxon with a unique feeding ecology that involves continuous forward aerial motion and touch-based prey detection used both at day and night, is discovered to be unlike that of any other sampled charadriiform in having an extremely large wulst as well as a small optic lobe and distinct occipital sinus. Notably, the differences between the Black Skimmer and other charadriiforms are more pronounced than between wing-propelled divers and other charadriiforms. Finally, aspects of endosseous labyrinth morphology are remarkably similar between divers and non-divers, and may deserve further evaluation.  相似文献   

17.
The cranial anatomy of the helmet‐crested lambeosaurine Hypacrosaurus altispinus (Ornithischia: Hadrosauridae) is described, with a focus on ontogenetic and individual variation in phylogenetically significant characters of the cranial crest, braincase, and facial skeleton. Cranial material of H. altispinus represents a relatively complete growth series that includes crestless juveniles of less than half the size of large individuals with fully developed crests. Cranial ontogeny is compared with other lambeosaurines using bivariate morphometrics and through qualitative comparison of a size‐standardized cranial growth series. Bivariate analyses reveal that the relative growth of the skull and cranial crest of H. altispinus and H. stebingeri are similar, and that Hypacrosaurus more closely resembles Corythosaurus than Lambeosaurus. Hypacrosaurus altispinus is systematically revised. The taxon is characterized by five autapomorphies, most of which are concentrated in the skull, as well as an enlarged terminal ischial foot. Maximum parsimony and Bayesian likelihood (Mk+gamma) phylogenetic analyses were conducted to test the monophyly of the genus. Hypacrosaurus monophyly is corroborated in light of new anatomical data. Although H. stebingeri and H. altispinus share few derived characters of the skull, the hypothesis that H. stebingeri is a metaspecies that represents the ancestor of H. altispinus cannot be rejected. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159 , 398–434.  相似文献   

18.
The magnitude and ontogenetic patterns of intraspecific variation can provide important insights into the evolution and development of organisms. Understanding the intraspecific variation of organisms is also a key to correctly pursuing studies in major fields of palaeontology. However, intraspecific variation has been largely overlooked in ectocochleate cephalopods, particularly nautilids. Furthermore, little is known regarding the evolutionary pattern. Here, we present morphological data for the Cretaceous nautilid Eutrephoceras dekayi (Morton) and the modern nautilid Nautilus pompilius Linnaeus through ontogeny. The data are used to describe conch morphology and to elucidate the evolutionary patterns of intraspecific variation. We discovered a similar overall pattern of growth trajectories and the presence of morphological changes at hatching and maturity in both taxa. We also found that intraspecific variation is higher in earlier ontogeny than in later ontogeny in both taxa. The high variation in earlier ontogeny may imply increased flexibility in changing the timing of developmental events, which probably played an important role in nautilid evolution. We assume that the decrease in variation in later ontogeny reflects developmental constraints. Lastly, we compared the similarity/dissimilarity of ontogenetic patterns of variation between taxa. Results reveal that the similarity/dissimilarity of the ontogenetic pattern differs between E. dekayi and N. pompilius. We conclude that this shift in the ontogenetic pattern of variation may be rooted in changes in the developmental programme of nautilids through time. We propose that studying ontogenetic patterns of intraspecific variation can provide new insights into the evolution and development of organisms.  相似文献   

19.
This research resulted from the determination that MCZ 8791 is a specimen of Deinonychus antirrhopus between one and two years of age and that the morphological variations within particular growth stages of this taxon have yet to be described. The primary goal of the research is to identify ontogenetic variations in this taxon. Histological analyses determined that the Deinonychus specimens AMNH 3015 and MOR 1178 were adults. Comparisons are made between MCZ 8791 and these adult specimens. The holotype, YPM 5205, and the other associated specimens of this taxon within the YPM collection are similar in size and morphology to AMNH 3015. Further comparisons were made with the three partial specimens OMNH 50268, MCZ 4371, and MOR 1182. Although these specimens represent only a partial ontogenetic series, a number of morphological variations can be described. One secondary goal of this research is to compare the known pattern of variable, informative, ontogenetic characters in MCZ 8791 to a similar pattern of morphological characters in the sub-adult dromaeosaurid specimen Bambiraptor feinbergorum, AMNH FR: 30556. If the characters that have been determined to represent variable juvenile morphology in the ontogeny of Deinonychus are exhibited in Bambiraptor, this study will begin the process of determining whether a similar, conservative, ontogenetic pattern exists throughout the rest of Dromaeosauridae. If defensible, it may reduce the number of sympatric taxa within this clade. The other secondary goal relates to the forelimb function. The approximate body size, forelimb length, wrist development, and the presence of a more prominent olecranon on the ulna of MCZ 8791 support the hypothesis that juveniles of this taxon possessed some form of flight capability.  相似文献   

20.
A new Homo erectus endocast, Zhoukoudian (ZKD) V, is assessed by comparing it with ZKD II, ZKD III, ZKD X, ZKD XI, ZKD XII, Hexian, Trinil II, Sambungmacan (Sm) 3, Sangiran 2, Sangiran 17, KNM-ER 3733, KNM-WT 15 000, Kabwe, Liujiang and 31 modern Chinese. The endocast of ZKD V has an estimated endocranial volume of 1140 ml. As the geological age of ZKD V is younger than the other ZKD H. erectus, evolutionary changes in brain morphology are evaluated. The brain size of the ZKD specimens increases slightly over time. Compared with the other ZKD endocasts, ZKD V shows important differences, including broader frontal and occipital lobes, some indication of fuller parietal lobes, and relatively large brain size that reflect significant trends documented in later hominin brain evolution. Bivariate and principal component analyses indicate that geographical variation does not characterize the ZKD, African and other Asian specimens. The ZKD endocasts share some common morphological and morphometric features with other H. erectus endocasts that distinguish them from Homo sapiens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号