首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The biotic response of ecological systems to disturbances has traditionally been explained by attributes of the disturbance event itself, such as its intensity, the distribution of traits within a community related to resistance (e.g. physiological, morphological or life‐history) or their interaction. Another less investigated mechanism explaining variation in response to disturbance is microtopographic heterogeneity, which might modify survival rates unevenly. We tested the hypothesis that forest floor microtopography creates small‐scale refugia for bryophytes following conventional clear‐cut logging by comparing a) survival of transplanted bryophytes and b) compositional changes of forest floor bryophytes among three different positions: on the northern side of boulders and stumps and on unsheltered forest floor. The investigation was carried out as a before‐and‐after study in 12 Swedish boreal forests (eight stands subjected to clear‐cutting and four reference stands). Significantly more bryophyte transplants survived where they were sheltered by boulders and stumps (30 and 29% respectively) compared to on level forest floor (10%) and less compositional changes occurred in sheltered microtopographic positions than on level forest floor. Shelter from boulders and stumps increased survival from both microclimatic stress and mechanical disturbance but not from burial by logging residues. Our findings provide evidence that microtopography can modify initial responses to disturbances by creating small‐scale refugia. Further studies are needed to determine whether this phenomenon is commonly occurring among other organisms and in other ecosystems and to what extent scattered in‐situ survivors can increase the recovery rate following disturbances.  相似文献   

2.
Selective logging with natural regeneration is advocated as a near‐to‐nature strategy and has been implemented in many forested systems during the last decades. However, the efficiency of such practices for the maintenance of forest species are poorly understood. We compared the species richness, abundance and composition of ground‐dwelling beetles between selectively logged and unlogged forests to evaluate the possible effects of selective logging in a subtropical broad‐leafed forest in southeastern China. Using pitfall traps, beetles were sampled in two naturally regenerating stands after clearcuts (ca. 50 years old, stem‐exclusion stage: selectively logged 20 years ago) and two mature stands (> 80 years old, understory re‐initiation stage: selectively logged 50 years ago) during 2009 and 2010. Overall, selective logging had no significant effects on total beetle richness and abundance, but saproxylic species group and some abundant forest species significantly decreased in abundance in selectively logged plots compared with unlogged plots in mature stands. Beetle assemblages showed significant differences between selectively logged and unlogged plots in mature stands. Some environmental characteristics associated with selective logging (e.g., logging strategy, stand age, and cover of shrub and moss layers) were the most important variables explaining beetle assemblage structure. Our results conclude that selective logging has no significant impacts on overall richness and abundance of ground‐dwelling beetles. However, the negative effects of selective logging on saproxylic species group and some unlogged forest specialists highlight the need for large intact forested areas for sustaining the existence of forest specialist beetles.  相似文献   

3.
Although forest stands represent 47% of the total land area in Europe, alterations to the forest habitat through logging and plantation of exotic trees has led to significant changes in forest biocenoses. Due to their peculiar biology and life history, epiphytic bryophytes, which include a number of species of high conservation value, are especially concerned. Ordinal logit regression was used to test whether trends in diversity and abundance of obligate epiphytic bryophytes are explained by forest cover and spruce plantation and determine specific optima and degree of reliance to these factors at the landscape scale. Spruce plantations had a negative impact on both species diversity and abundance. Although large forest patches were important for a set of species exclusively or more frequently occurring under the forest cover, the abundance of a number of species previously identified as woodland bryophytes decreased or was uncorrelated with increasing forest cover. Furthermore, the species pool adapted to edge-related abiotic conditions was important. The global epiphytic diversity did consequently not decrease with decreasing forest cover at the landscape scale. If large forest patches are important for the conservation of a set of species exclusively or more frequently occurring under the forest cover, the conservation of epiphytic bryophytes thus also involves the conservation of pioneer trees in open landscapes. A series of management measures, which may help maximize the species diversity and probability of occurrence of key-species of high conservation interest, are proposed.  相似文献   

4.
In boreal spruce forests that rarely experience extensive disturbances, fine-scale vegetation gaps are important for succession dynamics and species diversity. We examined the community implications of fine-scale gap disturbances by selective removal of vegetation layers in a pristine boreal spruce forest in Northern Finland. The aim was to investigate how the speed of recovery depends on the type of disturbance and the species growth form. We also wanted to know if there appeared changes in species composition after disturbance. Five different treatments were applied in the study: Control, removal of the ground layer (bryophytes and lichens), removal of the understorey layer (dwarf shrubs, herbs and graminoids), removal of both the ground and understorey layers, and complete removal of the vegetation and humus layers above the mineral soil. The vegetation recovery was monitored in terms of cover and species numbers over a 5-year period. Understorey layer cover, composed mainly of clonal dwarf shrubs, recovered completely in 4 years in treatments where the humus layer remained intact, whereas ground layer cover did not reach the control level in plots from where bryophytes and lichens were removed. Recovery was faster in terms of species number than species cover. Bryophytes, graminoids and dominant dwarf shrubs appeared in all disturbed plots quickly after disturbance. Seedlings of trees appeared exclusively in disturbed plots. Graminoids dominated after the removal of humus layer. The results indicate that the regeneration of forest floor after small gap disturbance occurs mainly by re-establishment of the dominant species. Although destruction of the humus layer leaves a long-lasting scar to the forest floor, exposing of mineral soil may enhance the sexual reproduction of dominant species and the colonization of weaker competitors.  相似文献   

5.
Aim Our two main goals are first to evaluate the resilience of the boreal forest according to latitude across the closed‐crown forest zone using the post‐disturbance distribution and cover of lichen woodlands and closed‐crown forests as a metric, and second to identify the disturbance factors responsible for the regeneration and degradation of the closed‐crown forest according to latitude since the 1950s. Location The study area extends between 70°00′ and 72°00′ W and throughout the closed‐crown forest zone, from its southern limit near 47°30′ N to its northern limit at the contact with the lichen woodland zone at around 52°40′ N. Methods Recent (1972–2002) and old (1954–1956) aerial photos were used to map the distribution of lichen woodlands across the closed‐crown forest zone. Forest disturbances such as fire, spruce budworm (Choristoneura fumiferana (Clemens)) outbreak, and logging were recorded on each set of aerial photos. Each lichen woodland and stand disturbance was validated by air‐borne surveys and digitized using GIS software. Results Over the last 50 years, the area occupied by lichen woodlands has increased according to latitude; that is, 9% of the area that was occupied by closed‐crown forests has shifted to lichen woodlands. Although logging activities have been concentrated in the same areas during the last 50 years, the area covered by logging has increased significantly. Outbreaks by the spruce budworm occurred predominantly in the southern (47°30′ N to 48°30′ N) and central (48°53′ N to 50°42′ N) parts of the study area, where balsam fir stands are extensive. In the northern part of the study area (51°–52°40′ N), extensive fires affected the distribution and cover of closed‐crown forests and lichen woodlands. Main conclusions Over the last 50 years, the area occupied by closed‐crown forests has decreased dramatically, and the ecological conditions that allow closed‐crown forests to establish and develop are currently less prevalent. Fire is by far the main disturbance, reducing the ability of natural closed‐crown forests to self‐regenerate whatever the latitude. Given the current biogeographical shift from dense to open forests, the northern part of the closed‐crown forest zone is in a process of dramatic change towards the dominance of northern woodlands.  相似文献   

6.
Potassium (K), calcium (Ca), iron (Fe) and aluminium (Al) release from Norway spruce (Picea abies Karsten), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth.) logging residues (fine roots, foliage and small branches) were studied by means of litterbags over a period of three years in clear-cut area and adjacent uncut Norway spruce dominated mixed boreal forest in eastern Finland (63°51′ N, 28°58′ E, 220 m a.s.l) to determine the amounts and rates of release for these elements and to evaluate whether clear-cutting accelerates mineralization. Almost all K was released from logging residues already during the first year. Calcium was released from foliage and roots but accumulated in branches. Most of the roots Fe and Al content were released during three years while the absolute amounts of Fe and Al in branches and foliage generally increased with decomposition. The results indicate that mineralization is slightly accelerated as a result of clear-cutting since K from foliage and branches of all studied tree species and Ca from pine and spruce roots was released significantly faster at the clear-cut plot than at the forest plot. In three years the initial K pool in the logging residues declined by 90%, Ca by 8%, Fe by 55% and Al by 61% in the clear-cut area. These results indicate that Ca is retained a long time; but Fe, Al and in particular, K are soon released from logging residues. Fine roots of the logged trees release large amounts of Fe and Al and can significantly affect Fe and Al fluxes.  相似文献   

7.
Question: Species can persist in landscapes with recurring disturbances either by migrating to places suitable for the moment or by enduring the threatening conditions. We investigated to what extent boreal forest bryophytes survived an intense forest fire in situ and whether bryophytes had started to recolonize the area 7‐8 years later. Location: Tyresta National Park, eastern Sweden. Methods: We recorded bryophytes in 14 burnt and 12 forest reference plots (50 × 50 m). In each plot we investigated 15 random 1‐m2 micro‐plots. In plots in the burnt area we also examined micro‐plots at locations of all fire refugia, and in case of the forest references, of 10 potential refugia. Results: We found on average three small refugia per 50 × 50‐m plot; each containing on average 4.8 forest bryophytes, a level similar to that of micro‐plots in the references, but significantly higher than in random micro‐plots in the burnt plots (1.5 species). Many refugia were located in rocky areas, but few were in wet sites. The burnt area remained dominated by a few fire‐favoured species, even if recolonization of forest bryophytes had begun. There was, however, no significant correlation between number of refugia and number of forest species in random micro‐plots, leaving open the question of the importance of refugia as regulators of early succession. Conclusion: We conclude that small‐scale refugia can also occur for sensitive species such as forest bryophytes, and that the refugia in our case were frequently found on rocky or mesic rather than wet sites. The role of such refugia in recolonization, however, warrants further investigation.  相似文献   

8.
1. Leaf litter breakdown and associated invertebrates were compared among three logged and three reference stream reaches 2–3 years before and 3–4 years after logging to assess the environmental impacts of partial‐harvest logging as a novel riparian management strategy for boreal forest streams. 2. Partial‐harvest logging at three sites resulted in 10, 21 and 28% average basal area removal from riparian buffers adjacent to upland clear‐cut areas. 3. Leaf litter breakdown rates were not significantly different between reference and logged sites after logging, but litter breakdown was significantly different from year to year at all sites. 4. Significant post‐logging differences in aquatic invertebrate communities were detected at only one of the three logged sites. These differences were largely the result of increases in some leaf‐shredding stoneflies and a detritivorous mayfly and a decrease in a chironomid group 2–4 years after logging. This site where significant change was detected had the lowest intensity of riparian logging (average 10% removal) but the highest proportion of the catchment area that was clear cut (85%). 5.The post‐logging differences in invertebrate communities at this site were more related to catchment‐wide influences (e.g. weather patterns, water yield, possibly upland clearcutting) than to reach‐level disturbances from riparian logging. 6.The study indicates that partial‐harvest logging in riparian buffers at up to 50% removal should pose little risk of harm to leaf litter breakdown processes or aquatic invertebrate communities beyond any impacts that might arise from upland logging disturbance or catchment‐wide influences. However, the results should be viewed in the context of the natural disturbance (summer drought conditions) through the post‐logging assessment period of this study. Post‐logging summer drought conditions may have masked or confounded logging impacts on streams.  相似文献   

9.
苔藓植物对森林生态界面指示作用的研究   总被引:17,自引:4,他引:13  
对长白山长白松林林缘、暗针叶林林缘以及笃斯越桔灌丛落叶松林间3个生态过渡带上苔藓植物分布特点的研究表明,苔藓植物盖度与多样性指数可以作为判别林缘生态界面客观性的指标,这些指标均能以y=b·ax进行拟合。通过生态界面系统信息量公式计算了这些指标在生态界面上的信息量,并讨论它们的生态学意义。  相似文献   

10.
The understorey vegetation in a lichen–Scots pine forest was monitored during 20 years before and after clear-felling. Plots with and without logging residues were compared concerning the general pattern of the vegetation dynamics and changes in species composition, dominance, richness, evenness and diversity. The succession of both treatments had a clear principal component analysis (PCA) pattern of a 'stepwise arch-shaped diverging' trend mainly driven by 'pioneer' lichens, 'reindeer' lichens and Calluna vulgaris. The difference between the residue treatments was significant regarding succession of vascular plants, bryophytes and 'reindeer' lichens. The nitrogen indicators Epilobium angustifolium and Deschampsia flexuosa were favoured on plots with logging residues.  相似文献   

11.
Abstract 1 To maintain biodiversity in managed spruce forests in Sweden more wind‐felled trees must be retained. However, there is concern among forest owners that this may result in higher tree mortality caused by the spruce bark beetle, Ips typographus (L.) (Col. Scolytidae). 2 To simulate wind‐felled trees, living spruce trees were cut at spruce stand edges bordering fresh clear‐cuttings. Treatments comprised edges with zero, one or five cut trees colonized by I. typographus. Edges with naturally wind‐felled trees colonized by I. typographus were also included in the analyses. 3 During the two following summers, the number of trees killed by I. typographus did not differ between edges with and without felled trees, or between edges with one or five felled trees. 4 Within edges with felled trees, there were more killed trees close to the felled trees than at other parts of the edges. Thus, felled trees provided focal points for attacks within edges. 5 It is concluded that small numbers of wind‐felled trees colonized by I. typographus may be left near spruce stand edges without increasing the risk of beetle‐induced tree mortality.  相似文献   

12.
Forest harvest residues are important raw materials for bioenergy in regions practicing forestry. Removing these residues from a harvest site reduces the carbon stock of the forest compared with conventional stem‐only harvest because less litter in left on the site. The indirect carbon dioxide (CO2) emission from producing bioenergy occur when carbon in the logging residues is emitted into the atmosphere at once through combustion, instead of being released little by little as a result of decomposition at the harvest sites. In this study (1) we introduce an approach to calculate this indirect emission from using logging residues for bioenergy production, and (2) estimate this emission at a typical target of harvest residue removal, i.e. boreal Norway spruce forest in Finland. The removal of stumps caused a larger indirect emission per unit of energy produced than the removal of branches because of a lower decomposition rate of the stumps. The indirect emission per unit of energy produced decreased with time since starting to collect the harvest residues as a result of decomposition at older harvest sites. During the 100 years of conducting this practice, the indirect emission from average‐sized branches (diameter 2 cm) decreased from 340 to 70 kg CO2 eq. MWh?1 and that from stumps (diameter 26 cm) from 340 to 160 kg CO2 eq. MWh?1. These emissions are an order of magnitude larger than the other emissions (collecting, transporting, etc.) from the bioenergy production chain. When the bioenergy production was started, the total emissions were comparable to fossil fuels. The practice had to be carried out for 22 (stumps) or four (branches) years until the total emissions dropped below the emissions of natural gas. Our results emphasize the importance of accounting for land‐use‐related indirect emissions to correctly estimate the efficiency of bioenergy in reducing CO2 emission into the atmosphere.  相似文献   

13.
Red spruce forests have declined considerably throughout their range in the past decades. As agricultural fields are abandoned and land becomes available for reforestation, the possibility arises for red spruce forests to expand onto them. This study addresses the potential for red spruce forests to expand onto adjacent old fields in Greenwich, Prince Edward Island National Park, Canada. We examined red spruce distribution and abundance, plant species diversity and changes in community composition along a gradient from the interior of red spruce forests out towards the centre of adjacent old fields. Examining the patterns of red spruce distribution and abundance revealed that, where cultivation and logging have been abandoned recently in the fields and forests, regeneration is limited to the forest stands, but in the sites with older fields and forests, regeneration extends into and is more vigorous in the fields. Although species diversity varied from forest to field only for the tree and shrub layers, important changes occurred in the ground species composition. There is no evidence yet that the herbaceous species present in the forest stands will colonise the old fields. The results suggest that both environmental differences among sites and length of time since the fields were abandoned explain red spruce regeneration patterns. In order to more accurately assess the potential for red spruce regeneration in old fields, long-term monitoring of the production, dispersal and viability of red spruce seeds from adjacent forests and of the constraints to seedling establishment and survival in old fields will be needed.  相似文献   

14.
Selective logging is a dominant form of land use in the Amazon basin and throughout the humid tropics, yet little is known about the spatial variability of forest canopy gap formation and closure following timber harvests. We established chronosequences of large‐area (14–158 ha) selective logging sites spanning a 3.5‐year period of forest regeneration and two distinct harvest methods: conventional logging (CL) and reduced‐impact logging (RIL). Our goals were to: (1) determine the spatial characteristics of canopy gap fraction immediately following selective logging in the eastern Amazon; (2) determine the degree and rate of canopy closure in early years following harvest among the major landscape features associated with logging – tree falls, roads, skid trails and log decks; and (3) quantify spatial and temporal differences in canopy opening and closure in high‐ and low‐damage harvests (CL vs. RIL). Across a wide range of harvest intensities (2.6–6.4 felled trees ha?1), the majority of ground damage occurred as skid trails (4–12%), whereas log decks and roads were only a small contributor to the total ground damage (<2%). Despite similar timber harvest intensities, CL resulted in more ground damage than RIL. Neither the number of log decks nor their individual or total area was correlated with the number of trees removed or intensity of tree harvesting (trees ha?1). The area of skids was well correlated with the ground area damaged (m2) per tree felled. In recently logged forest (0.5 years postharvest), gap fractions were highest in log decks (mean RIL=0.83, CL=0.99) and lowest in tree‐fall areas (RIL: 0.26, CL: 0.41). However, the small surface area of log decks made their contribution to the total area‐integrated forest gap fraction minor. In contrast, tree falls accounted for more than two‐thirds of the area disturbed, but the canopy gaps associated with felled trees were much smaller than for log decks, roads and skids. Canopy openings decreased in size with distance from each felled tree crown. At 0.5 years postharvest, the area initially affected by the felling of each tree was approximately 100 m in radius for CL and 50 m for RIL. Initial decreases in gap fraction during the first 1.5 years of regrowth diminished in subsequent years. Throughout the 3.5‐year period of forest recovery, tree‐fall gap fractions remained higher in CL than in RIL treatments, but canopy gap closure rates were higher in CL than in RIL areas. During the observed recovery period, the canopy gap area affected by harvesting decreased in radius around each felled tree from 100 to 40 m in CL, and from 50 to 10 m in RIL. The results suggest that the full spatial and temporal dynamics of canopy gap fraction must be understood and monitored to predict the effects of selective logging on regional energy balance and climate regimes, biogeochemical processes including carbon cycling, and plant and faunal population dynamics. This paper also shows that remote sensing of log decks alone will not provide an accurate assessment of total forest area impacted by selective logging, nor will it be closely correlated to damage levels and canopy gap closure rates.  相似文献   

15.
Zielonka  Tomasz  Piątek  Grzegorz 《Plant Ecology》2004,172(1):63-72
This is a study of the colonization pattern of herbs and dwarf shrubs on rotten logs in subalpine spruce forests (Plagiothecio Piceetum) in the Tatra Mountains. On four study plots (total area 1.43 ha.) all dead logs were measured and the decomposition stage was estimated using the 8-degree scale. For each log the cover of all vascular species, bryophytes and lichens was determined according to the methods of classical phytosociology. Constancy and an index of coverage were calculated for all vascular species growing on logs. The total volume of logs was relatively high (93 m3 ha–1) and constituted 22% of the volume of living trees. Logs and stumps covered 411 m2 ha–1. These values are similar to those known from natural spruce forest from Carpathians and Scandinavia. The 8 stages of decomposition were equally represented, which indicates a constant supply of dead wood to the forest floor over time. The colonization of dead wood starts with lichens, followed by bryophytes and finally herbs and tree saplings. The first vascular plant colonists of dead logs appear at decay stage nr. 3 at least 20 years after tree death. The most suitable condition for most of the herb species corresponds to decay stage nr. 6 ca. 50 years after tree death. The herb cover is distinctively dominated by Vaccinium myrtillus. Simultaneously with herb species, tree seedlings colonize the logs. Constancy and abundance of Norway spruce saplings increases with advanced decomposition. It seems that the herb cover of logs does not hinder the regeneration of spruce.  相似文献   

16.
The aim of this work was to study the sensitivity of carbon dioxide (CO2) emissions from wood energy to different forest management regimes when aiming at an integrated production of timber and energy biomass. For this purpose, the production of timber and energy biomass in Norway spruce [Picea abies (L.) Karst] and Scots pine (Pinus sylvestris L.) stands was simulated using an ecosystem model (SIMA) on sites of varying fertility under different management regimes, including various thinning and fertilization treatments over a fixed simulation period of 80 years. The simulations included timber (sawlogs, pulp), energy biomass (small‐sized stem wood) and/or logging residues (top part of stem, branches and needles) from first thinning, and logging residues and stumps from final felling for energy production. In this context, a life cycle analysis/emission calculation tool was used to assess the CO2 emissions per unit of energy (kg CO2 MWh?1) which was produced based on the use of wood energy. The energy balance (GJ ha?1) of the supply chain was also calculated. The evaluation of CO2 emissions and energy balance of the supply chain considered the whole forest bioenergy production chain, representing all operations needed to grow and harvest biomass and transport it to a power plant for energy production. Fertilization and high precommercial stand density clearly increased stem wood production (i.e. sawlogs, pulp and small‐sized stem wood), but also the amount of logging residues, stump wood and roots for energy use. Similarly, the lowest CO2 emissions per unit of energy were obtained, regardless of tree species and site fertility, when applying extremely or very dense precommercial stand density, as well as fertilization three times during the rotation. For Norway spruce such management also provided a high energy balance (GJ ha?1). On the other hand, the highest energy balance for Scots pine was obtained concurrently with extremely dense precommercial stands without fertilization on the medium‐fertility site, while on the low‐fertility site fertilization three times during the rotation was needed to attain this balance. Thus, clear differences existed between species and sites. In general, the forest bioenergy supply chain seemed to be effective; i.e. the fossil fuel energy consumption varied between 2.2% and 2.8% of the energy produced based on the forest biomass. To conclude, the primary energy use and CO2 emissions related to the forest operations, including the production and application of fertilizer, were small in relation to the increased potential of energy biomass.  相似文献   

17.
系统研究了南方5个亚热带森林生态系统地表植被的动态变化情况.研究方法是:在每个研究区域内,按照地形梯度分别布设50个1m2 的样方,记录样方内所有物种的频度及相关的环境变量,5个研究区域共设250个样方,每个样方分别调查两次.通过单元及多元统计方法分析表明:维管植物物种频度在一个区域明显下降,另二个区域显著增加;苔藓物种频度在一个区域有明显下降,另一个区域明显增加;苔藓物种数量在3个区域显著增加,另二个区域显著下降;维管植物物种数量显著增加在二个区域;物种组成沿着第一个植被梯度轴DCA 1没有显著变化,沿着第二个植被梯度轴DCA 2在二个区域有显著变化.综合分析表明,苔藓对气候变化及其波动反映敏感,是较好的气候变化及气候波动生物指示因子,而管植物数量及频度的变化没有明显证据显示与土壤酸化和大气污染有紧密关系.  相似文献   

18.
The goal of this study was to investigate the effects of 'ecologically orientated' forest transformation on forest floor vegetation. Forest transformation, as defined by the BMBF southern Black Forest project group, is the process which converts even-aged spruce forest into structured continuous-cover forest, consisting principally of spruce (Picea abies), fir (Abies alba) and beech (Fagus sylvatica). In order to analyse the transformation process, four transformation stages were defined as part of a 'conceptual forest development model' (pure even-aged, species enrichment, structuring and continuous cover forest stage). Four forest districts representative of the southern Black Forest were selected for the study. The analysis included the separate classification of structures, sites, and ground vegetation. In a second step, the relationships between the three complexes were analysed. The influence of forest structure on ground vegetation was investigated by examining the relationships between so-called substructure types and ground vegetation types. The substructure types associated with the pure spruce stand, species enrichment and continuous cover forest stages exhibited a ground vegetation resembling that of the Luzulo-Fagetum and Luzulo-Abietetum, whereas the structuring stages exhibited a ground vegetation of the Galio-Fagetum type. Transformation of pure, even-aged spruce forest into mixed, uneven-aged continuous cover forest is considered an important silvicultural tool to combine the demands of sustainable timber production and nature conservation. Transformation brings about greater diversity in stand structure and tree species composition. The frequencies of acidophytic mosses and vascular plants in spruce forest decrease during the transformation process. The species requiring moderate base supply increase over the transitional stages. The continuous cover forest, the final stage of transformation, increasingly contains ground species of both, i.e., species normally associated with both conifer and deciduous forest.  相似文献   

19.
Elevated dissolved carbon (C), nitrogen (N) and phosphorus (P) concentrations are frequently observed in surface water soon after clear-cutting of boreal coniferous forests. It has been suggested that they originate from the fine logging residues whose decomposition may be accelerated as a result of changes in soil temperature and moisture conditions. In the present study, the decomposition rate and release of C, N, and P from Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies Karsten) and silver birch (Betula pendula Roth.) logging residues (fine roots 2 mm, branches 10 mm and foliage) were investigated during three years with the litterbag method in a clear-cut area and in an adjacent Norway spruce dominated, mixed boreal forest in eastern Finland (63°51 N, 28°58 E, 220 m asl). The mass loss of the logging residues decreased in the order: foliage > roots > branches. Birch leaves were the only fraction that showed significantly higher losses of mass and C at the clear-cut plot than at the forest plot; otherwise there was no tendency for accelerated decomposition or mineralization at the clear-cut plot. After three years the initial C pool in the logging residues had declined by 33% and that of P by 49% but there was no net release of N as more N accumulated in roots and branches than was released from foliage. The results indicate that 1) logging residues release relatively large and rapid fluxes of CO2 to the atmosphere 2) are potential source of elevated P in surface waters soon after clear-cutting 3) are not a net source of N immediately after clear-cutting.  相似文献   

20.
The epiphytes of the trunks and branches of mature Sitka spruce (Picea sitchensis) trees were studied in twelve plantations containing open spaces (glades, rides and roads) in the east and southwest of Ireland. A pair of trees was studied at each site: one tree at the south-facing edge of an open space and one in the forest interior. Spruce trees were found to support a moderately diverse range of bryophytes and lichens, including two relatively rare bryophyte species. Clear patterns in vertical distribution were identified, with bryophyte richness and cover decreasing and lichen richness and cover increasing from the tree base to the upper trunk. The open spaces themselves did not appear to affect overall epiphyte diversity, with no significant differences in any of the diversity measures between edge and interior trees. The main effect of open spaces was on the epiphyte cover of the edge trees. This was related to increased light levels combined with the presence of live branches from close to ground level on the south sides of the edge trees, which produced optimum conditions for bryophytes at the tree base and lichens in the upper plots. However, this dense side-canopy negatively affected epiphyte diversity on the north sides of the edge trees. Further research is required to assess the effects of open spaces within forestry plantations on epiphyte diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号