首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The loxP-Cre site-specific recombination system of phage P1 was used to develop a novel strategy to construct cointegrate vectors for Agrobacterium-mediated plant transformation. A pTi disarmed helper plasmid (pAL1166) was constructed by replacing the oncogenic T-DNA by a loxP sequence and a spectinomycin resistance marker in the octopine-type pTiB6 plasmid. The cre gene was cloned into an unstable incP plasmid. A third plasmid, which did not replicate in Agrobacterium and contained another loxP sequence together with a kanamycin resistance marker, was used to test the system. Electroporation of this third plasmid into an Agrobacterium strain harbouring both pAL1166 and the Cre-encoding plasmid resulted in kanamycin-resistant cells containing a cointegrate between pAL1166 and the incoming plasmid. Cointegration occurred by Cre-mediated recombination at the loxP sites, and the cointegrate was stabilized in the Agrobacterium cells by the loss of the Cre-encoding plasmid shortly after the recombination event had taken place.  相似文献   

2.
The presence of antibiotic-resistant genes in genetically engineered crops together with the target gene has generated a number of environmental and consumer concerns. In order to alleviate public concerns over the safety of food derived from transgenic crops, marker gene elimination is desirable. Marker-free transgenic tomato plants were obtained by using a salicylic-acid-regulated Cre–loxP-mediated site-specific DNA recombination system in which the selectable marker neomycin phosphotransferase nptII and cre genes were flanked by two directly oriented loxP sites. Upon induction by salicylic acid, the cre gene produced a recombinase that eliminated sequences encoding nptII and cre genes, sandwiched by two loxP sites from the tomato genome. Regenerant plants with the Cre–loxP system were obtained by selection on kanamycin media and polymerase chain reaction (PCR) screening. Transgenic plants were screened for excision by PCR using nptII, cre, and PR-1a promoter primers following treatment with salicylic acid. The footprint of the excision was determined by sequencing the T-DNA borders after a perfect recombination event. The excision efficiency was 38.7%. A new plant transformation vector, pBLNSC (Genbank accession number EU327497), was developed, containing six cloning sites and the self-excision system. This provided an effective approach to eliminate the selectable marker gene from transgenic tomato, thus expediting public acceptance of genetically modified tomato.  相似文献   

3.
The Cre/loxP site-specific recombination system has been applied in various plant species including maize (Zea mays) for marker gene removal, gene targeting, and functional genomics. A BIBAC vector system was adapted for maize transformation with a large fragment of genetic material including a herbicide resistance marker gene, a 30 kb yeast genomic fragment as a marker for fluorescence in situ hybridization (FISH), and a 35S-lox-cre recombination cassette. Seventy-five transgenic lines were generated from Agrobacterium-mediated transformation of a maize Hi II line with multiple B chromosomes. Eighty-four inserts have been localized among all 10 A chromosome pairs by FISH using the yeast DNA probe together with a karyotyping cocktail. No inserts were found on the B chromosomes; thus a bias against the B chromosomes by the Agrobacterium-mediated transformation was revealed. The expression of a cre gene was confirmed in 68 of the 75 transgenic lines by a reporter construct for cre/lox mediated recombination. The placement of the cre/lox site-specific recombination system in many locations in the maize genome will be valuable materials for gene targeting and chromosome engineering.  相似文献   

4.
Agroinfiltration was used to express transiently cre recombinase from bacteriophage P1 in planta. Activation of gfp expression after cre-mediated excision of a bar intervening sequence served as a marker to monitor site-specific recombination events in lox-target N. benthamiana plants. Gfp expressing regenerants from A. tumefaciens infiltrated leaves were obtained with an efficiency of about 34%. In 20% of the regenerants bar gene excision was due to the expression of stably integrated cre gene, whereas in 14% of plants site-specific recombination was a consequence of transient cre expression. Phenotypic and molecular data indicated that the recombined state has been transferred to the T1 generation. These results demonstrate the suitability of agroinfiltration for the expression of cre recombinase in vivo.  相似文献   

5.
The excision of specific DNA sequences from integrated transgenes in insects permits the dissection in situ of structural elements that may be important in controlling gene expression. Furthermore, manipulation of potential control elements in the context of a single integration site mitigates against insertion site influences of the surrounding genome. The cre–loxP site-specific recombination system has been used successfully to remove a marker gene from transgenic yellow fever mosquitoes, Aedes aegypti. A total of 33.3% of all fertile families resulting from excision protocols showed evidence of cre–loxP-mediated site-specific excision. Excision frequencies were as high as 99.4% within individual families. The cre recombinase was shown to precisely recognize loxP sites in the mosquito genome and catalyze excision. Similar experiments with the FLP/FRT site-specific recombination system failed to demonstrate excision of the marker gene from the mosquito chromosomes.  相似文献   

6.
Directed excision of a transgene from the plant genome   总被引:40,自引:0,他引:40  
Summary The effectiveness of loxP-Cre directed excision of a transgene was examined using phenotypic and molecular analyses. Two methods of combining the elements of this system, re-transformation and cross pollination, were found to produce different degrees of excision in the resulting plants. Two linked traits, -glucuronidase (GUS) and a gene encoding sulfonylurea-resistant acetolactate synthase (ALSr), were integrated into the genome of tobacco and Arabidopsis. The ALSr gene, bounded by loxP sites, was used as the selectable marker for transformation. The directed loss of the ALST gene through Cre-mediated excision was demonstrated by the loss of resistance to sulfonylurea herbicides and by Southern blot analysis. The -glucuronidase gene remained active. The excision efficiency varied in F1 progeny of different lox and Cre parents and was correlated with the Cre parent. Many of the lox × Cre F1 progeny were chimeric and some F2 progeny retained resistance to sulfonylureas. Re-transformation of lox/ALS/lox/GUS tobacco plants with cre led to much higher efficiency of excision. Lines of tobacco transformants carrying the GUS gene but producing only sulfonylurea-sensitive progeny were obtained using both approaches for introducing cre. Similarly, Arabidopsis lines with GUS activity but no sulfonylurea resistance were generated using cross pollinations.  相似文献   

7.
Zhang Y  Li H  Ouyang B  Lu Y  Ye Z 《Biotechnology letters》2006,28(16):1247-1253
Marker-free transgenic tomato plants harboring a synthetic Bacillus thuringiensis endotoxin gene, cryIAc, were obtained by using a chemically regulated, Cre/loxP-mediated site-specific DNA recombination system, in which the selectable marker neomycin phosphotransferase gene flanked by two directly oriented loxP sites was located between the cauliflower mosaic virus 35S promoter and a promoterless cryIAc. Upon induction by 2 μM β-estradiol, sequences encoding the selectable marker and cre sandwiched by two loxP sites were excised from the tomato genome, leading to activation of the downstream endotoxin gene cryIAc with high expression levels as shown by Northern blot and ELISA assay (250–790 ng g−1 fresh wt) in T1 generation. For transgenic line with single transgenic loci, 15% of T1 progenies were revealed marker-free. This autoexcision strategy provides an effective approach to eliminate a selectable marker gene from transgenic tomato, thus expediting the public acceptance of genetically modified crop.  相似文献   

8.
Resistance to antibiotics mediated by selectable marker genes remains a powerful selection tool for transgenic event production. However, regulatory agencies and consumer concerns favor these to be eliminated from food crops. Several excision systems exist but none have been optimized or shown to be functional for clonally propagated crops. The excision of the nptII gene conferring resistance to kanamycin has been achieved here using a gene construct based on a heat-inducible cre gene producing a recombinase that eliminates cre and nptII genes flanked by two loxP sites. First-generation regenerants with the Cre-loxP system were obtained by selection on kanamycin media. Following a heat treatment, second generation regenerants were screened for excision by PCR using nptII, cre, and T-DNA borders primers. Excision efficiency appeared to be at 4.7% depending on the heat treatment. The footprint of the excision was shown by sequencing between T-DNA borders to correspond to a perfect recombination event. Selectable marker-free sprouts were also obtained from tubers of transgenic events when submitted to similar heat treatment at 4% frequency. Spontaneous excision was not observed out of 196 regenerants from untreated transgenic explants. Biosafety concerns are minimized because the expression of cre gene driven by the hsp70 promoter of Drosophila melanogaster was remarkably low even under heat activation and no functional loxP site were found in published Solanum sequence database. A new plant transformation vector pCIP54/55 was developed including a multiple cloning site and the self-excision system which should be a useful tool not only for marker genes in potato but for any gene or sequence removal in any plant.  相似文献   

9.
FLP/FRT-mediated site-specific recombination was studied with a recombination-reporter gene system which allows visualization of -glucuronidase (GUS) expression after site-specific excisional activation of a silent gusA gene. This system was used for characterization of the functional activity of the Saccharomyces cerevisiae native FLP recombinase driven by the cauliflower mosaic virus (CaMV) 35s promoter [linked to the tobacco mosaic virus (TMV) omega translational leader] in mediating site-specific recombination of chromosomal FRT sites in tobacco FLP x FRT-reporter hybrids. Six hybrids were generated from crosses of lines containing either a stably integrated recombination-reporter or a FLP-expression construct. The activated gusA phenotype was specific to hybrid progenies and was not observed in either parental plants or their selfed progenies. Recombination efficiency in whole seedlings was estimated by the percent of radioactivity on a Southern blot which was incorporated into the recombined DNA product. Estimated efficiency mean values for the six crosses ranged from 5.2 to 52.0%. Histochemical analysis in hybrid plants visualized GUS activity with variable chimeric patterns and intensities. Recombination efficiency and GUS expression varied both among and within crosses, while higher recombination efficiency coincided with larger and more intense patterns of GUS activity. These data suggest that recombination is induced randomly during somatic developmental stages and that the pattern and intensity generated in a given plant are affected by factors imposing varibility not only between but also within crosses. Additionally, while recombination in a population of FLP/FRT hybrids may occur in all plants, recombination efficiency may still be low in any given plant. The activity of the native, as compared to a modified, FLP (Kilby et al. 1995) in the activation of transgenic traits in tobacco is discussed.  相似文献   

10.
The Cre–loxP site-specific recombination system was deployed for removal of marker genes from Brassica juncea (Indian mustard). Excision frequencies, monitored by removal of nptII or gfp genes in F1 plants of crosses between LOX and CRE lines, were high in quiescent, differentiated somatic tissues but extremely poor in the meristematic regions (and consequently the germinal cells) thus preventing identification and selection of marker-free transgenic events which are devoid of both the marker gene as well as the cre gene, in F2 progeny. We show that a passage through in vitro culture of F1 leaf explants allows efficient development of marker-free transgenics in the F2 generation addressing current limitations associated with efficient use of the Cre/loxP technology for marker gene removal. N. Arumugam and Vibha Gupta have contributed equally to this work.  相似文献   

11.
We developed a novel system for gene activation in plastids that uses the CRE/loxP site-specific recombination system to create a translatable reading frame by excision of a blocking sequence. To test the system, we introduced an inactive gfp* gene into the tobacco plastid genome downstream of the selectable spectinomcyin resistance (aadA) marker gene. The aadA gene is the blocking sequence, and is flanked by directly oriented loxP sites for excision by the CRE. In the non-activated state, gfp* is transcribed from the aadA promoter, but the mRNA is not translated due to the lack of an AUG translation initiation codon. Green Fluorescent Protein (GFP) expression is activated by excision of the aadA coding segment to link up the gfp* coding region with the translation initiation codon of aadA. Tobacco plants that carry the inactive gfp* gene do not contain detectable levels of GFP. However, activation of gfp* resulted in GFP accumulation, proving the utility of CRE-induced protein expression in tobacco chloroplasts. The gene activation system described here will be useful to probe plastid gene function and for the production of recombinant proteins in chloroplasts.  相似文献   

12.
13.
The bacteriophage P1 Cre—lox site-specific recombination system has been used to integrate DNA specifically at lox sites previously placed in the tobacco genome. As integrated molecules flanked by wild-type lox sites can readily excise in the presence of Cre recombinase, screening for mutant lox sites that can resist excisional recombination was performed. In gene integration experiments, wild-type and mutant lox sites were used in conjunction with two strategies for abolishing post-integration Cre activity: (i) promoter displacement of a cre-expression construct present in the target genome; and (ii) transient expression of cre. When the promoter displacement strategy was used, integrant plants were recovered after transformation with constructs containing mutant lox sequences, but not with constructs containing wild-type lox sites. When cre was transiently expressed, integrant plants were obtained after transformation with either mutant or wild-type lox sites. DNA rearrangements at the target locus were less frequent when mutant lox sites were used. DNA integration at the genomic lox site was usually without additional insertions in the genome. Thus, the Cre—lox site-specific recombination system is useful for the single-copy integration of DNA into a chromosomal lox site.  相似文献   

14.
Plastid marker gene excision by the phiC31 phage site-specific recombinase   总被引:5,自引:0,他引:5  
Marker genes are essential for selective amplification of rare transformed plastid genome copies to obtain genetically stable transplastomic plants. However, the marker gene becomes dispensable when homoplastomic plants are obtained. Here we report excision of plastid marker genes by the phiC31 phage site-specific integrase (Int) that mediates recombination between bacterial (attB) and phage (attP) attachment sites. We tested marker gene excision in a two-step process. First we transformed the tobacco plastid genome with the pCK2 vector in which the spectinomycin resistance (aadA) marker gene is flanked with suitably oriented attB and attP sites. The transformed plastid genomes were stable in the absence of Int. We then transformed the nucleus with a gene encoding a plastid-targeted Int that led to efficient marker gene excision. The aadA marker free Nt-pCK2-Int plants were resistant to phosphinothricin herbicides since the pCK2 plastid vector also carried a bar herbicide resistance gene that, due to the choice of its promoter, causes a yellowish-golden (aurea) phenotype. Int-mediated marker excision reported here is an alternative to the currently used CRE/loxP plastid marker excision system and expands the repertoire of the tools available for the manipulation of the plastid genome.  相似文献   

15.
The aim of this research was to generate selectable marker-free transgenic tomato plants with improved tolerance to abiotic stress. An estradiol-induced site-specific DNA excision of a selectable marker gene using the Cre/loxP DNA recombination system was employed to develop transgenic tomato constitutively expressing AtIpk2β, an inositol polyphosphate 6-/3-kinase gene from Arabidopsis thaliana. Transgenic tomato plants containing a selectable marker were also produced as controls. The expression of AtIpk2β conferred improved resistance to drought, cold and oxidative stress in both sets of transgenic tomato plants. These results demonstrate the feasibility of using this Cre/loxP-based marker elimination strategy to generate marker-free transgenic crops with improved stress tolerance.  相似文献   

16.
To study the impact of different DNA configurations on the stability of transgene expression, a variant of the cre gene was developed. This variant allows for the highly efficient in planta removal of its own loxP-flanked coding sequence as well as other DNAs flanked by ectopic heterospecific lox sites, either lox511 or lox2272 or both, in trans. The plant intron-containing cre gene, cre INT , was configured in such a way that self-excision generated an intact hygromycin resistance selectable marker gene. In this combination, all selected transformants showed highly efficient excision. Plants obtained showed no indication of any chimerism, indicating a cell autonomous nature of the hygromycin selection during transformation and regeneration. The highly efficient concomitant removal of wildtype and heterospecific lox site-flanked DNA demonstrated that upon retransformation with the self-excising cre INT , sufficient amounts of Cre enzyme were produced prior to its removal. Plants obtained with cre INT showed much less frequently the Cre-associated phenomenon of reduced fertility than plants obtained with a continuous presence of Cre recombinase. The cre INT system has therefore advantages over systems with a continuously present Cre. The cre INT system was successfully used for removal of two chromatin boundary elements from transgene cassettes in tobacco. Analysis of plants with and without boundary elements on the same chromosomal location will contribute to a better evaluation of the role of such elements in the regulation of transgene expression in plants.  相似文献   

17.
A newly designed site-specific recombination system is presented which allows multiple targeted markerless deletions. The most frequently used tool for removing selection markers or to introduce genes by recombination-mediated cassette exchange is the Cre/loxP system. Many mutant loxP sites have been created for this purpose. However, this study presents a chimeric mutant loxP site denoted mroxP-site. The mroxP site consists of one Cre (loxP/2) and one MrpA (mrpS/2) binding site separated by a palindromic 6-bp spacer sequence. Two mroxP-sites can be recombined by Cre recombinase in head-to-tail as well as in head-to-head orientation. In the head-to-head orientation and the loxP half-sites inside, Cre removes the loxP half-sites during site-specific recombination, creating a new site, mrmrP. The new site is essentially a mrpS site with a palindromic spacer and cannot be used by Cre for recombination anymore. It does, however, present a substrate for the recombinase MrpA. This new system has been successfully applied introducing multiple targeted gene deletions into the Escherichia coli genome. Similar to Cre/loxP and FLP/FRT, this system may be adapted for genetic engineering of other pro- and eukaryotes.  相似文献   

18.
Summary We developed an inactivated DNA replicon of Turnip Mosaic Virus (TuMV), which was reactivated by a recombination event based on the Cre-loxP system. Viral replication was prevented by the insertion of a translation terminator sequence flanked by two loxP sites at the junction of the P1–HCPro-coding genes. In vitro recombination was tested with purified Cre, which excised the floxed sequence from the TuMV DNA, leaving a single loxP site in the reactivated viral genome, and restored the open reading frame of the replicon. Arabidopsis thaliana plants were made transgenic for the inactivated TuMV replicon. Removal of the translation terminator sequence was achieved by the controlled expression of Cre. Delivery of the Cre recombinase to the transgenic plants was obtained by three methods: agroinfiltration, PVX-based production, or transgenic chemical-inducible expression. In each case, reactivation of TuMV replication was observed.  相似文献   

19.
Rice, the major food crop of world is severely affected by homopteran sucking pests. We introduced coding sequence of Allium sativum leaf agglutinin, ASAL, in rice cultivar IR64 to develop sustainable resistance against sap-sucking planthoppers as well as eliminated the selectable antibiotic-resistant marker gene hygromycin phosphotransferase (hpt) exploiting cre/lox site-specific recombination system. An expression vector was constructed containing the coding sequence of ASAL, a potent controlling agent against green leafhoppers (GLH, Nephotettix virescens) and brown planthopper (BPH, Nilaparvata lugens). The selectable marker (hpt) gene cassette was cloned within two lox sites of the same vector. Alongside, another vector was developed with chimeric cre recombinase gene cassette. Reciprocal crosses were performed between three single-copy T0 plants with ASAL- lox-hpt-lox T-DNA and three single-copy T0 plants with cre-bar T-DNA. Marker gene excisions were detected in T1 hybrids through hygromycin sensitivity assay. Molecular analysis of T1 plants exhibited 27.4% recombination efficiency. T2 progenies of L03C04(1) hybrid parent showed 25% cre negative ASAL-expressing plants. Northern blot, western blot and ELISA showed significant level of ASAL expression in five marker-free T2 progeny plants. In planta bioassay of GLH and BPH performed on these T2 progenies exhibited radical reduction in survivability and fecundity compared with the untransformed control plants.  相似文献   

20.
Gene replacement by homologous recombination in plants   总被引:15,自引:0,他引:15  
After the elucidation of the sequence of the yeast genome a major effort was started to elucidate the biological function of all open reading frames of this organisms by targeted gene replacement via homologous recombination. The establishment of the complete sequence of the genome of Arabidopsis thaliana would principally allow a similar approach. However, over the past dozen years all attempts to establish an efficient gene targeting technique in flowering plants were in the end not successful. In contrast, in Physcomitrella patens an efficient gene targeting procedure has been set up, making the moss a valuable model system for plant molecular biologists. But also for flowering plants recently several new approaches – some of them based on the availability of the genomic sequence of Arabidopsis – were initiated that might finally result on the set up of a general applicable technique. Beside the production of hyper-recombinogenic plants either via expression or suppression of specific gene functions or via undirected mutagenesis, the application of chimeric oligonucleotides might result in major progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号