首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaché AD  Cole CJ 《Molecular ecology》2007,16(5):1035-1054
We investigated a hybrid zone between two major lineages of fence lizards (Sceloporus cowlesi and Sceloporus tristichus) in the Sceloporus undulatus species complex in eastern Arizona. This zone occurs in an ecotone between Great Basin Grassland and Conifer Woodland habitats. We analysed spatial variation in mtDNA (N=401; 969 bp), chromosomes (N=217), and morphology (N=312; 11 characters) to characterize the hybrid zone and assess species limits. A fine-scale population level phylogenetic analysis refined the boundaries between these species and indicated that four nonsister mtDNA clades (three belonging to S. tristichus and one to S. cowlesi) are sympatric at the centre of the zone. Estimates of cytonuclear disequilibria in the population closest to the centre of the hybrid zone suggest that the S. tristichus clades are randomly mating, but that the S. cowlesi haplotype has a significant nonrandom association with nuclear alleles. Maximum-likelihood cline-fitting analyses suggest that the karyotype, morphology, and dorsal colour pattern clines are all coincident, but the mtDNA cline is skewed significantly to the south. A temporal comparison of cline centres utilizing karyotype data collected in the early 1970s and in 2002 suggests that the cline may have shifted by approximately 1.5 km to the north over a 30-year period. The recent northward expansion of juniper trees into the Little Colorado River Basin resulting from intense cattle overgrazing provides a plausible mechanism for a shifting hybrid zone and the introgression of the mtDNA haplotypes, which appear to be selectively neutral. It is clear that complex interactions are operating simultaneously in this contact zone, including the formation of hybrids between populations within S. tristichus having diagnostic mtDNA, morphology, karyotypes, and dorsal colour patterns, and secondary contact between these and a distantly related yet morphologically cryptic mtDNA lineage (S. cowlesi).  相似文献   

2.
Molecular approaches have proven efficient to identify cryptic lineages within single taxonomic entities. Sometimes these cryptic lineages maybe previously unreported or unknown invasive taxa. The genetic structure of the marine gastropod Stramonita haemastoma has been examined in the Western Mediterranean and North‐Eastern Atlantic populations with mtDNA COI sequences and three newly developed microsatellite markers. We identified two cryptic lineages, differentially fixed for alternative mtDNA COI haplogroups and significantly differentiated at microsatellite loci. The mosaic distribution of the two lineages is unusual for a warm‐temperate marine invertebrate with a teleplanic larval stage. The Atlantic lineage was unexpectedly observed as a patch enclosed in the north of the Western Mediterranean Sea between eastern Spain and the French Riviera, and the Mediterranean lineage was found in Macronesian Islands. Although cyto‐nuclear disequilibrium is globally maintained, asymmetric introgression occurs in the Spanish region where the two lineages co‐occur in a hybrid zone. A first interpretation of our results is mito‐nuclear discordance in a stable postglacial hybrid zone. Under this hypothesis, though, the location of genetic discontinuities would be unusual among planktonic dispersers. An alternative interpretation is that the Atlantic lineage, also found in Senegal and Venezuela, has been introduced by human activities in the Mediterranean area and is introgressing Mediterranean genes during its propagation, as theoretically expected. This second hypothesis would add an additional example to the growing list of cryptic marine invasions revealed by molecular studies.  相似文献   

3.
Characterizing hybrid zones and their dynamics is a central goal in evolutionary biology, but this is particularly challenging for morphologically cryptic species. The lack of conspicuous divergence between parental types means intermediate hybrid forms often go undetected. We aimed to detect and characterize a suspected hybrid zone between a pair of morphologically cryptic lineages of the freshwater snail, Radix. We sampled Radix from across a contact zone between two mitochondrial lineages (Radix balthica and an undescribed lineage termed ‘MOTU3’) and detected admixture between two nuclear genotype clusters, which were significantly but not categorically associated with the mitochondrial lineages. Using a model selection approach, we show that the admixture cline is best explained by an interaction between precipitation and temperature gradients over the area, rather than geographic distance. We thus hypothesize that the correlation with climatic gradients suggests environmental selection has played a role in maintaining the hybrid zone. In a 2050 climate change scenario, we furthermore predict an expansion of one of the nuclear clusters and a widening of the hybrid zone as the climate warms and dries.  相似文献   

4.
Previous studies have reported the occurrence of three differentiated mtDNA lineages within Patella rustica in the Mediterranean Sea. Two hypotheses have been proposed to explain these observations: (1) the maintenance of ancestral polymorphism within a single species; (2) the occurrence of cryptic species not identified previously. To distinguish between these hypotheses, we screened the genetic variability at nine allozyme loci, an intron from the α‐amylase gene and a mitochondrial gene for 187 individuals of P. rustica sampled from seven Mediterranean localities. Eight additional localities were screened for the last two markers to place the differentiated lineages in a clear geographic context. Our results demonstrate that the three mtDNA lineages correspond to three distinct nuclear genotype clusters and provide further details on their distribution: the cluster corresponding to the mtDNA lineage from the Atlantic and western Mediterranean extends as far as the south coast of Italy, whereas the remaining two clusters occur in sympatry in the eastern Mediterranean. One of the eastern Mediterranean clusters is highly differentiated and seems to be reproductively isolated from the codistributed form; we therefore suggest that it corresponds to a new species. The remaining two clusters are less differentiated and form a contact zone across south Italian shores. This three‐way contact zone constitutes an interesting model for the study of speciation in the marine realm. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 154–169.  相似文献   

5.
The genetic structure and dynamics of hybrid zones provide crucial information for understanding the processes and mechanisms of evolutionary divergence and speciation. In general, higher levels of evolutionary divergence between taxa are more likely to be associated with reproductive isolation and may result in suppressed or strongly restricted hybridization. In this study, we examined two secondary contact zones between three deep evolutionary lineages in the common vole (Microtus arvalis). Differences in divergence times between the lineages can shed light on different stages of reproductive isolation and thus provide information on the ongoing speciation process in M. arvalis. We examined more than 800 individuals for mitochondrial (mtDNA), Y‐chromosome and autosomal markers and used assignment and cline analysis methods to characterize the extent and direction of gene flow in the contact zones. Introgression of both autosomal and mtDNA markers in a relatively broad area of admixture indicates selectively neutral hybridization between the least‐divergent lineages (Central and Eastern) without evidence for partial reproductive isolation. In contrast, a very narrow area of hybridization, shifts in marker clines and the quasi‐absence of Y‐chromosome introgression support a moving hybrid zone and unidirectional selection against male hybrids between the lineages with older divergence (Central and Western). Data from a replicate transect further support non‐neutral processes in this hybrid zone and also suggest a role for landscape history in the movement and shaping of geneflow profiles.  相似文献   

6.
Spatio‐temporal studies of hybrid zones provide an opportunity to test evolutionary hypotheses of hybrid zone maintenance and movement. We conducted a landscape genetics study on a classic hybrid zone of the south‐eastern Australian frogs, Litoria ewingii and Litoria paraewingi. This hybrid zone has been comprehensively studied since the 1960s, providing the unique opportunity to directly assess changes in hybrid zone structure across time. We compared both mtDNA and male advertisement call data from two time periods (present and 1960s). Clinal analysis of the coincidence (same center) and concordance (same width) of these traits indicated that the center of the hybrid zone has shifted 1 km south over the last 40 years, although the width of the zone and the rate of introgression remained unchanged. The low frequency of hybrids, the strong concordance of clines within a time period, and the small but significant movement across the study period despite significant anthropogenic changes through the region, suggest the hybrid zone is a tension zone located within a low‐density trough. Hybrid zone movement has not been considered common in the past but our findings highlight that it should be considered a crucial component to our understanding of evolution.  相似文献   

7.
Speciation is the result of an accumulation of reproductive barriers between populations, but pinpointing the factors involved is often difficult. However, hybrid zones can form when these barriers are not complete, especially when lineages come into contact in intermediate or modified habitats. We examine a hybrid zone between two closely related riverine turtle species, Sternotherus depressus and S. peltifer, and use dual‐digest RAD sequencing to understand how this hybrid zone formed and elucidate genomic patterns of reproductive isolation. First, the geographical extent and timing of formation of the hybrid zone is established to provide context for understanding the role of extrinsic and intrinsic reproductive isolating mechanisms in this system. The strength of selection on taxon‐specific contributions to maintenance of the hybrid zone is then inferred using a Bayesian genomic cline model. These analyses identify a role for selection inhibiting introgression in some genomic regions at one end of the hybrid zone and promoting introgression in many loci at the other. When selective pressures necessary to generate outliers to the genomic cline are considered with the geographical and temporal context of this hybrid zone, we conclude that habitat‐specific selection probably limits introgression from S. depressus to S. peltifer in the direction of river flow. However, selection is mediating rapid, unidirectional introgression from S. peltifer to S. depressus, which is probably facilitated by anthropogenic habitat alteration. These findings indicate a potentially imminent threat of population‐level genomic extinction for an already imperiled species due to ongoing human‐caused habitat alteration.  相似文献   

8.
Moving hybrid zones provide compelling examples of evolution in action, yet long‐term studies that test the assumptions of hybrid zone stability are rare. Using replicated transect samples collected over a 10‐year interval from 2002 to 2012, we find evidence for concerted movement of genetic clines in a plateau fence lizard hybrid zone (Sceloporus tristichus) in Arizona. Cline‐fitting analyses of SNP and mtDNA data both provide evidence that the hybrid zone shifted northward by approximately 2 km during the 10‐year interval. For each sampling period, the mtDNA cline centre is displaced from the SNP cline centre and maintaining an introgression distance of approximately 3 km. The northward expansion of juniper trees into the Little Colorado River Basin in the early 1900s provides a plausible mechanism for hybrid zone formation and movement, and a broadscale quantification of recent land cover change provides support for increased woody species encroachment at the southern end of the hybrid zone. However, population processes can also contribute to hybrid zone movement, and the current stability of the ecotone habitats in the centre of the hybrid zone suggests that movement could decelerate in the future.  相似文献   

9.
Despite the potential for long-distance gene flow in the sea, there is growing evidence of cryptic genetic diversity in many marine taxa. Understanding the geographic distribution of cryptic lineages, as well as the spatial patterns of admixture among them, can have important implications for conservation planning. Here, we explore patterns of divergence in a coral reef fish, the neon goby Elacatinus lori, across the species’ range. First, we use targeted amplicon sequencing to describe the spatial pattern of genetic divergence using two marker types (57 anonymous ddRAD-derived loci and mtDNA cytb). Second, we quantify the degree of admixture and hybridization between two previously-unidentified divergent lineages within Belize. Third, we assess whether the existing group of marine protected areas (MPAs) in Belize protects this cryptic genetic diversity. The results provide strong evidence for two divergent genetic lineages of E. lori within Belize, separated geographically by only 30 km of low-suitability habitat. There is a sharp genetic cline across these 30 km, and evidence of admixture and introgression at the boundary regions of the habitat break. We also show that the broadly-distributed arrangement of MPAs within Belize protects both major lineages as well as subtle structure within-lineages, and therefore may confer protection to co-distributed species that exhibit similar spatial patterns of divergence.  相似文献   

10.
Gompert Z  Buerkle CA 《Molecular ecology》2011,20(10):2111-2127
We developed a Bayesian genomic cline model to study the genetic architecture of adaptive divergence and reproductive isolation between hybridizing lineages. This model quantifies locus‐specific patterns of introgression with two cline parameters that describe the probability of locus‐specific ancestry as a function of genome‐wide admixture. ‘Outlier’ loci with extreme patterns of introgression relative to most of the genome can be identified. These loci are potentially associated with adaptive divergence or reproductive isolation. We simulated genetic data for admixed populations that included neutral introgression, as well as loci that were subject to directional, epistatic or underdominant selection, and analysed these data using the Bayesian genomic cline model. Under many demographic conditions, underdominance or directional selection had detectable and predictable effects on cline parameters, and ‘outlier’ loci were greatly enriched for genetic regions affected by selection. We also analysed previously published genetic data from two transects through a hybrid zone between Mus domesticus and M. musculus. We found considerable variation in rates of introgression across the genome and particularly low rates of introgression for two X‐linked markers. There were similarities and differences in patterns of introgression between the two transects, which likely reflects a combination of stochastic variability because of genetic drift and geographic variation in the genetic architecture of reproductive isolation. By providing a robust framework to quantify and compare patterns of introgression among genetic regions and populations, the Bayesian genomic cline model will advance our understanding of the genetics of reproductive isolation and the speciation process.  相似文献   

11.
Genomic heterogeneity of divergence between hybridizing species may reflect heterogeneity of introgression, but also processes unrelated to hybridization. Heterogeneous introgression and its repeatability can be directly tested in natural hybrid zones by examining multiple transects. Here, we studied hybrid zones between the European newts Lissotriton montandoni and two lineages of Lissotriton vulgaris, with replicate transects within each zone. Over 1,000 nuclear genes located on a linkage map and mitochondrial DNA were investigated using geographical and genomic clines. Overall, the five transects were all similar, showing hallmarks of strong reproductive isolation: bimodal distribution of genotypes in central populations and narrow allele frequency clines. However, the extent of introgression differed between the zones, possibly as a consequence of their different ages, as suggested by the analysis of heterozygosity runs in diagnostic markers. In three transects genomic signatures of small‐scale (~2 km) zone movements were detected. We found limited overlap of cline outliers between transects, and only weak evidence of stronger differentiation of introgression between zones than between transects within zones. Introgression was heterogeneous across linkage groups, with patterns of heterogeneity similar between transects and zones. Predefined candidates for increased or reduced introgression exhibited only a subtle tendency in the expected direction, suggesting that interspecific differentiation is not a reliable indicator for the strength of introgression. These hierarchically sampled hybrid zones of apparently different ages show how introgression unfolds with time and offer an excellent opportunity to dissect the dynamics of hybridization and architecture of reproductive isolation at advanced stages of speciation.  相似文献   

12.
Hybrid zones between species provide natural systems for the study of processes involved in divergence, reproductive isolation and speciation. Townsend's Dendroica townsendi and black‐throated green D. virens warblers are phenotypically and genetically divergent groups that occur in western and eastern North America respectively, with potential for range contact in the Rocky Mountains of British Columbia, where other west–east avian pairs come into contact. Although one potential hybrid (a phenotypic Townsend's warbler with the black‐throated green mitochondrial DNA) has been previously reported, there have been no studies of interactions between the taxa in potential areas of sympatry. To determine whether interbreeding between these species is a regular occurrence we examined variation in individuals across the area of putative range overlap. Analysis of plumage, morphology, and mitochondrial (COI) and nuclear molecular markers (CHD1Z and numt‐Dco1) shows surprisingly extensive hybridization between these species, with at least 38% of individuals in the hybrid zone being either hybrids or backcrosses. Each of the traits displays a sigmoidal cline centred along the eastern slope of the Rocky Mountains (molecular cline centres averaging 50 km east of the crest of the Rockies, ranging from 41 to 56 km). The clines are narrow (average molecular cline width is 60 km, ranging from 40 to 87 km) relative to the dispersal distance of related warbler species, suggesting that selection is maintaining the hybrid zone; we discuss possible sources of selection. Given the narrowness of the zone we recommend the two forms should continue to be treated as separate taxonomic species. Townsend's warblers also form an extensively studied hybrid zone with their more closely related southern relative, the hermit warbler D. occidentalis. The combined system of three discrete forms separated by narrow hybrid zones provides an excellent system for the study of hybridization, reproductive isolation and speciation.  相似文献   

13.
How species evolve reproductive isolation in the species-rich Amazon basin is poorly understood in vertebrates. Here, we sequenced a reference genome and used a genome-wide sample of SNPs to analyze a hybrid zone between two highly cryptic species of Hypocnemis warbling-antbirds—the Rondonia warbling-antbird (H. ochrogyna) and Spix's warbling-antbird (H. striata)—in a headwater region of southern Amazonia. We found that both species commonly hybridize, producing F1s and a variety of backcrosses with each species but we detected only one F2-like hybrid. Patterns of heterozygosity, hybrid index, and interchromosomal linkage disequilibrium in hybrid populations closely match expectations under strong postzygotic isolation. Hybrid zone width (15.4 km) was much narrower than expected (211 km) indicating strong selection against hybrids. A remarkably high degree of concordance in cline centers and widths across loci, and a lack of reduced interspecific Fst between populations close to versus far from the contact zone, suggest that genetic incompatibilities have rendered most of the genome immune to introgression. These results support intrinsic postzygotic isolation as a driver of speciation in a moderately young cryptic species pair from the Amazon and suggest that species richness of the Amazon may be grossly underestimated.  相似文献   

14.
We studied mtDNA introgression across the contact zone between Mus musculus musculus and M. m. domesticus in two independent transects in the Czech Republic and Bavaria, Germany. A total of 1270 mice from 98 localities in the Czech transect and 456 mice from 41 localities in the Bavarian transect were examined for presence or absence of a Bam HI restriction site in the mt-Nd1 gene. Using this simple mtDNA marker, variants that belonged to the M. m. domesticus lineage (presence of restriction site) could be unequivocally distinguished from those belonging to the M. m. musculus lineage (absence of restriction site). The extent of introgression of mtDNA, three autosomal allozymes and the X chromosome was compared. The introgression of X markers was more limited than was that of the allozymes and mtDNA. In the Czech transect, the centre for the mtDNA cline was shifted about 3.6 km to the west relative to the X chromosome cline, with asymmetric introgression from M. m. musculus to M. m. domesticus . Interestingly, in the Bavarian transect, the centre of the mtDNA cline was shifted about 10.9 km to the east relative to the X chromosome cline, with asymmetric introgression from M. m. domesticus to M. m. musculus, opposite in direction to that observed in the Czech transect.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 363–378.  相似文献   

15.
The role of hybridization in animal speciation is controversial and recent research has challenged the long-standing criterion of complete reproductive isolation to attain species status. The speciation-with-gene-flow model posits that the genome is semi-permeable and hybridization may be a phase in the process of divergence. Here, we apply these concepts to a previously identified zone of mtDNA introgression between the two strongly morphologically differentiated subspecies of red-tailed chipmunk ( Tamias ruficaudus ) in the US Inland Northwest. Using multilocus genotype data from the southern, older contact zone, we demonstrate that neutral gene flow is unusually low between the subspecies across the Lochsa River. This is geographically congruent with the discontinuity in bacular morphology, indicating that the cline of mitochondrial DNA (mtDNA) haplotypes is displaced. Furthermore, we elucidate the evolutionary forces responsible by testing hypotheses of lineage sorting and hybridization. We determined that introgressive hybridization is the cause of mtDNA/morphology incongruence because there are non-zero levels of migration and gene flow. Although our estimate of the age of the hybrid zone has wide credibility intervals, the hybridization events occurred in the Late Pleistocene and the divergence occurred in the Middle Pleistocene. Finally, we assessed substructure within and adjacent to the hybrid zone and found that the hybrid zone constitutes a set of populations that are genetically differentiated from parental sets of populations; therefore, hybridization in this system is not likely an evolutionary sink, but has generated novel combinations of genotypes.  相似文献   

16.
Sex-chromosomes are thought to play an important role in speciation, but few studies of non-model organisms have investigated the relative influence of multiple sex-linked markers on reproductive isolation. We collected 222 individuals along a geographical transect spanning the hybrid zone between Passerina amoena and P. cyanea (Aves: Cardinalidae). Using maximum-likelihood cline fitting methods, we estimated locus-specific introgression rates for 10 z-linked markers. Although the cline width estimates ranged from 2.8 to 584 km, eight of 10 loci had cline widths between 224 and 271 km. We also used coalescent-based estimates of locus-specific divergence times between P. amoena and P. cyanea to test a recently proposed hypothesis of an inverse relationship between divergence time and cline width but did not find a significant association. The narrow width (2.8 km) of the cline estimated from the VLDLR9 locus indicates strong selection retarding introgression of alleles at this locus across the hybrid zone. Interestingly, a mutation in the very low density lipoprotein receptor ( VLDLR ) gene, in which VLDLR9 is an intron, is known to reduce the egg-laying ability of some chickens, suggesting a possible link between this gene region and reproductive isolation between P. amoena and P. cyanea . These results underscore the importance of sampling multiple loci to investigate introgression patterns across a chromosome or genome and support previous findings of the importance of sex-linked genes in speciation.  相似文献   

17.
Chloroplast DNA (cpDNA) markers were developed that provided markers unique to a species or that delimited a large area within a species. These markers were then followed across two hybrid zones: Iris douglasiana/Iris∗∗∗ innominata, and Iris chrysophylla/Iris tenax. In each case the cline in haplotype frequency was compared to the cline for a morphologically based hybrid index. In all three transects across the I. douglasianall. innominata hybrid zone, the cpDNA cline was displaced 1-2 km relative to the morphologically defined hybrid zone; the displacement was not found in the other hybrid zone. The observed displacement represents introgression of cpDNA from ∗∗∗I. douglasiana into ∗∗∗I. innominata. It may be that the I. douglasiana/I.∗∗∗ innominata hybrid zone has shifted in recent time, leaving the slowly dispersing chloroplast DNA behind. The populations known as Iris thompsonii do not form a phylogenetic species and are best viewed as products of hybridization between ∗∗∗I. douglasiana and ∗∗∗I. innominata.  相似文献   

18.
Hybrid zones provide a rare opportunity to explore the processes involved in reproductive isolation and speciation. The southern hybrid zone between the southeastern Australian tree frogs Litoria ewingii and L. paraewingi has been comprehensively studied over the last 40 years, primarily using reproductive compatibility experiments and male advertisement calls. We used mitochondrial DNA (mtDNA) and eight nuclear microsatellite markers to characterize this hybrid zone along a historically studied transect and to test various dispersal‐dependent and dispersal‐independent hybrid zone models. The species are genetically distinct and the level of hybridization within the contact zone is low, with the majority of admixed individuals representing later‐generation hybrids. Based on previous experimental genetic compatibility studies, we predicted that hybrids with L. paraewingi mtDNA would be more frequent than hybrids with L. ewingii mtDNA. Surprisingly, a greater proportion of the identified hybrids had L. ewingii mtDNA. Geographical cline analyses showed a sharp transition in allele frequencies across the transect, and both the mtDNA and microsatellite data showed concordant cline centres, but were best supported by a model that allowed width to vary. Overall, the L. ewingiiL. paraewingi hybrid zone is best characterized as a tension zone, due to the narrow cline width, concordant genetic clines and low levels of hybridization.  相似文献   

19.
Phenotypically cryptic lineages comprise an important yet understudied part of biodiversity; in particular, we have much to learn about how these lineages are formed and maintained. To better understand the evolutionary significance of such lineages, we studied a hybrid zone between two morphologically cryptic phylogeographic lineages in the rainforest lizard, Lampropholis coggeri. Analyzing a multilocus genetic dataset through cline inference, individual-based methods and population measures of disequilibrium and using simulations to explore our genetic results in context of theoretical expectations, we inferred the processes maintaining this hybrid zone. We find that these lineages meet in a hybrid zone that is narrow (≈400 m) relative to inferred dispersal rate. Further, the hybrid zone exhibits substantial genetic disequilibrium and sharply coincident and largely concordant clines. Based on our knowledge about the region's biogeography, the species' natural history, and our simulation results, we suggest that strong selection against hybrids structures this system. As all clines show a relatively narrow range of introgression, we posit that this hybrid zone might not yet be in equilibrium. Nonetheless, our results clearly show that phylogeographic lineages can evolve substantial reproductive isolation without concomitant morphological diversification, suggesting that such lineages can constitute a significant component of evolutionary diversity.  相似文献   

20.
There has been considerable discussion on the origin of the red wolf and eastern wolf and their evolution independent of the gray wolf. We analyzed mitochondrial DNA (mtDNA) and a Y‐chromosome intron sequence in combination with Y‐chromosome microsatellites from wolves and coyotes within the range of extensive wolf–coyote hybridization, that is, eastern North America. The detection of divergent Y‐chromosome haplotypes in the historic range of the eastern wolf is concordant with earlier mtDNA findings, and the absence of these haplotypes in western coyotes supports the existence of the North American evolved eastern wolf (Canis lycaon). Having haplotypes observed exclusively in eastern North America as a result of insufficient sampling in the historic range of the coyote or that these lineages subsequently went extinct in western geographies is unlikely given that eastern‐specific mtDNA and Y‐chromosome haplotypes represent lineages divergent from those observed in extant western coyotes. By combining Y‐chromosome and mtDNA distributional patterns, we identified hybrid genomes of eastern wolf, coyote, gray wolf, and potentially dog origin in Canis populations of central and eastern North America. The natural contemporary eastern Canis populations represent an important example of widespread introgression resulting in hybrid genomes across the original C. lycaon range that appears to be facilitated by the eastern wolf acting as a conduit for hybridization. Applying conventional taxonomic nomenclature and species‐based conservation initiatives, particularly in human‐modified landscapes, may be counterproductive to the effective management of these hybrids and fails to consider their evolutionary potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号