首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Insulin‐like growth factor (IGF)‐binding protein‐1 (IGFBP‐1), the main secretory protein of decidua that binds to IGFs and has been shown to inhibit or stimulate IGFs' bioactivities. Polymerization, one of the posttranslational modifications of IGFBP‐1, has been shown to lead to loss of inhibiting effect of IGFBP‐1 on IGF‐I actions. The current studies were undertaken to elucidate the effects of steroid hormones on IGFBP‐1 polymerization in trophoblast cell cultures. Placental tissues were obtained during legal, elective procedures of termination of pregnancy performed between 7 and 10 weeks of gestation, and primary trophoblast cells were separated. IGFBP‐1 polymerization was analyzed by SDS–PAGE and immunoblotting. IGFBP‐1 was polymerized when IGFBP‐1 was added to trophoblast cell cultures. Polymerization of IGFBP‐1 was inhibited by the addition of anti‐tissue transglutaminase antibody into the culture media. There was an increase in the intensity of polymerized IGFBP‐1 bands with the addition of medroxyprogesterone acetate (MPA), while no such difference was observed upon treatment with estradiol. MPA also increased the expression of tissue transglutaminase on trophoblast cell membranes. IGF‐I stimulated trophoblast cell migration, while IGFBP‐1 inhibited this IGF‐I‐induced trophoblast response. Addition of MPA attenuated the inhibitory effects of IGFBP‐1 on IGF‐I‐induced trophoblast cell migration. IGFBP‐1 was polymerized by tissue transglutaminase on the cell surface of trophoblasts, and MPA increased tissue transglutaminase expression on the cell surface and facilitated IGFBP‐1 polymerization. These results suggest that progesterone might facilitate polymerization of decidua‐secreted IGFBP‐1 and increase IGF‐I actions at feto‐maternal interface, thereby stimulating trophoblast invasion of maternal uterus. J. Cell. Physiol. 226: 434–439, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Young‐onset calorie restriction (CR) in rodents decreases serum IGF‐1 concentration and increases serum corticosterone levels, which have been hypothesized to play major roles in mediating its anticancer and anti‐aging effects. However, little is known on the effects of CR on the IGF‐1 system and cortisol in humans. To test the sustained effects of CR on these key hormonal adaptations, we performed a multicenter randomized trial of a 2‐year 25% CR intervention in 218 nonobese (body mass index between 22 and 27.8 kg m?2) young and middle‐aged (20–50 years age range) men and women. Average CR during the first 6 months was 19.5 ± 0.8% and 9.1 ± 0.7% over the next 18 months of the study. Weight loss averaged 7.6 ± 0.3 kg over the 2‐years period of which 71% was fat mass loss (P < 0.0001). Average CR during the CR caused a significant 21% increase in serum IGFBP‐1 and a 42% reduction in IGF‐1:IGFBP‐1 ratio at 2 years (P < 0.008), but did not change IGF‐1 and IGF‐1:IGFBP‐3 ratio levels. Serum cortisol concentrations were slightly but significantly increased by CR at 1 year only (P = 0.003). Calorie restriction had no effect on serum concentrations of PDGF‐AB and TGFβ‐1. We conclude, on the basis of the present and previous findings, that, in contrast to rodents, humans do not respond to CR with a decrease in serum IGF‐1 concentration or with a sustained and biological relevant increase in serum cortisol. However, long‐term CR in humans significantly and persistently increases serum IGFBP‐1 concentration.  相似文献   

3.
Objective: Different facts suggest that the insulin growth factor (IGF)/ insulin growth factor‐binding protein (IGFBP) system may be regulated by factors other than growth hormone. It has been proposed that, in healthy subjects, free IGF‐I plays a role in glucose metabolism. The role of free IGF‐I in glucose homeostasis in insulin resistance is poorly understood. This study was undertaken to evaluate the effects of acute changes in plasma glucose and insulin levels on free IGF‐I and IGFBP‐1 in obese and non‐obese subjects. Research Methods and Procedures: Nineteen lean and 24 obese subjects were investigated. A frequently sampled intravenous glucose tolerance test was performed. Free IGF‐I and IGFBP‐1 were determined at 0, 19, 22, 50, 100, and 180 minutes. Results: Basal free IGF‐I levels tended to be higher and IGFBP‐1 lower in obese than in lean subjects. IGFBP‐1 levels inversely correlated with basal insulin concentration. To determine the effects of insulin on the availability of free IGF‐I and IGFBP‐1, changes in their plasma concentrations were measured during a frequently sampled intravenous glucose tolerance test. After insulin administration, a significant suppression of free IGF‐I at 22% was observed in lean subjects. In contrast, plasma‐free IGF‐I levels remained essentially unchanged in the obese group. The differences between both groups were statistically significant at 100 minutes (p < 0.01) and 180 minutes (p < 0.05). Serum IGFBP‐1 was suppressed to a similar extent in both groups. Discussion: These data suggest that the concentrations of free IGF‐I and IGFBP‐1 are differentially regulated by obesity. Obesity‐related insulin resistance leads to unsuppressed free IGF‐I levels.  相似文献   

4.
Mammary epithelial cell (MEC) number is an important determinant of milk production in lactating dairy cows. IGF‐I increases IGF binding protein‐3 (IGFBP‐3) production in these cells, which plays a role in its ability to enhance proliferation. In the present study, we show that the apoptotic factor anisomycin (ANS) also increases IGFBP‐3 mRNA and protein in a dose‐ and concentration‐dependent manner that mirrors activation of caspase‐3 and ‐7, with significant increases in both IGFBP‐3 protein and caspase activation observed by 3 h. Knock‐down of IGFBP‐3 with small interfering (si) RNA attenuated the ability of ANS to induce apoptosis, while knock‐down of IGFBP‐2, the other major IGFBP made by bovine MEC, had no effect. Reducing IGFBP‐3 also decreased the ability of ANS to induce mitochondrial cytochrome c release, indicating its involvement in the intrinsic apoptotic pathway. In contrast, transfection with IGFBP‐3 in the absence of ANS failed to induce apoptosis. Since both the mitogen IGF‐I and the apoptotic inducer ANS increase IGFBP‐3 production in MEC, we proposed that cellular localization might determine IGFBP‐3 action. While both IGF‐I and ANS stimulated the release of IGFBP‐3 into conditioned media, only ANS induced nuclear localization of IGFBP‐3. A pan‐caspase inhibitor had no effect on ANS‐induced nuclear localization of IGFBP‐3, indicating that nuclear entry of IGFBP‐3 precedes caspase activation. Treatment with IGF‐I had no effect on ANS‐induced nuclear localization, but did block ANS‐induced apoptosis. In summary, our data indicate that IGFBP‐3 plays a role in stress‐induced apoptosis that may require nuclear localization in non‐transformed MEC. J. Cell. Physiol. 228: 734–742, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The somatotropic axis, which includes growth hormone, insulin‐like growth factor (IGF)‐I, and IGF binding proteins (IGFBP), is involved in the regulation of growth and metabolism. Measures of the somatotropic axis can be predictive of nutritional status and growth rate that can be utilized to identify nutritional status of individual animals. Before the somatotropic axis can be a predictive tool, concentrations of hormones of the somatotropic axis need to be established in healthy individuals. To begin to establish these data, we quantified IGF‐I, IGFBP‐2, and IGFBP‐3 in males and females of eight threatened hoofstock species at various ages. Opportunistic blood samples were collected from Bos javanicus (Java banteng), Tragelaphus eurycerus isaaci (bongo), Gazella dama ruficollis (addra gazelle), Taurotragus derbianus gigas (giant eland), Kobus megaceros (Nile lechwe), Hippotragus equines cottoni (roan antelope), Ceratotherium simum simum (white rhinoceros), and Elephas maximus (Asian elephant). Serum IGF‐I and IGFBPs were determined by radioimmunoassay and ligand blot, respectively. Generally, IGF‐I and IGFBP‐3 were greater in males, and IGFBP‐2 was greater in females. In banteng (P = 0.08) and male Nile lechwe (P<0.05), IGF‐I increased with age, but decreased in rhinoceros (P = 0.07) and female Nile lechwe (P<0.05). In banteng, IGFBP‐3 was greater (P<0.01) in males. In elephants (P<0.05) and antelope (P = 0.08), IGFBP‐2 were greater in females. Determination of concentrations of hormones in the somatotropic axis in healthy animals makes it possible to develop models that can identify the nutritional status of these threatened hoofstock species. Zoo Biol 30:275–284, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
Objective: Recent studies have suggested that a relationship between adiponectin and sex hormone, prolactin, and insulin‐like growth factor levels could be important for breast cancer risk and insulin sensitivity. Therefore, we assessed the relationship of adiponectin with plasma concentrations of estrone; estradiol; estrone sulfate; testosterone; androstenedione; dehydroepiandrosterone (DHEA); dehydroepiandrosterone sulfate (DHEAS); sex hormone binding globulin (SHBG); prolactin; insulin‐like growth factor (IGF‐1); its binding protein, IGF binding protein 3 (IGFBP‐3); c‐peptide; and IGF binding protein 1 (IGFBP‐1) among 360 postmenopausal women not taking postmenopausal hormones from the Nurses’ Health Study. Research Methods and Procedures: Multivariate models were adjusted for physical activity, alcohol consumption, age at blood draw, age at first birth/parity, fasting status, and time of day of blood draw; a separate model was additionally adjusted for BMI at blood draw. Results: Estrogens were inversely associated with adiponectin levels; however, except for free estradiol, these associations were substantially attenuated after adjustment for BMI. Free estradiol levels were 27% lower among women in the top vs. bottom quartile of adiponectin levels. No consistent associations were observed for the androgens, prolactin, IGF‐1, and IGFBP‐3. However, SHBG, c‐peptide, and IGFBP‐1 were strongly and independently associated with adiponectin levels (r = 0.29, ?0.30, 0.24, respectively). Conclusion: With the exceptions of SHBG, c‐peptide, and IGFBP‐1, the studied analytes were modestly associated with adiponectin and the associations were, in large part, mediated by body fat.  相似文献   

8.
Fibroblast growth factor 21 (FGF21) acts as an anti‐atherosclerotic agent. However, the specific mechanisms governing this regulatory activity are unclear. Autophagy is a highly conserved cell stress response which regulates atherosclerosis (AS) by reducing lipid droplet degradation in foam cells. We sought to assess whether FGF21 could inhibit AS by regulating cholesterol metabolism in foam cells via autophagy and to elucidate the underlying molecular mechanisms. In this study, ApoE?/? mice were fed a high‐fat diet (HFD) with or without FGF21 and FGF21 + 3‐Methyladenine (3MA) for 12 weeks. Our results showed that FGF21 inhibited AS in HFD‐fed ApoE?/? mice, which was reversed by 3MA treatment. Moreover, FGF21 increased plaque RACK1 and autophagy‐related protein (LC3 and beclin‐1) expression in ApoE?/? mice, thus preventing AS. However, these proteins were inhibited by LV‐RACK1 shRNA injection. Foam cell development is a crucial determinant of AS, and cholesterol efflux from foam cells represents an important defensive measure of AS. In this study, foam cells were treated with FGF21 for 24 hours after a pre‐treatment with 3MA, ATG5 siRNA or RACK1 siRNA. Our results indicated that FGF21‐induced autophagy promoted cholesterol efflux to reduce cholesterol accumulation in foam cells by up‐regulating RACK1 expression. Interestingly, immunoprecipitation results showed that RACK1 was able to activate AMPK and interact with ATG5. Taken together, our results indicated that FGF21 induces autophagy to promote cholesterol efflux and reduce cholesterol accumulation in foam cells through RACK1‐mediated AMPK activation and ATG5 interaction. These results provided new insights into the molecular mechanisms of FGF21 in the treatment of AS.  相似文献   

9.
Fibroblast growth factor‐2 (FGF2) plays a major role in angiogenesis. The pattern recognition receptor long‐pentraxin 3 (PTX3) inhibits the angiogenic activity of FGF2. To identify novel FGF2‐antagonistic peptide(s), four acetylated (Ac) synthetic peptides overlapping the FGF2‐binding region PTX3‐(97–110) were assessed for their FGF2‐binding capacity. Among them, the shortest pentapeptide Ac‐ARPCA‐NH2 (PTX3‐[100–104]) inhibits the interaction of FGF2 with PTX3 immobilized to a BIAcore sensorchip and suppresses FGF2‐dependent proliferation in endothelial cells, without affecting the activity of unrelated mitogens. Also, Ac‐ARPCA‐NH2 inhibits angiogenesis triggered by FGF2 or by tumorigenic FGF2‐overexpressing murine endothelial cells in chick and zebrafish embryos, respectively. Accordingly, the peptide hampers the binding of FGF2 to Chinese Hamster ovary cells overexpressing the tyrosine‐kinase FGF receptor‐1 (FGFR1) and to recombinant FGFR1 immobilized to a BIAcore sensorchip without affecting heparin interaction. In all the assays the mutated Ac‐ARPS A‐NH2 peptide was ineffective. In keeping with the observation that hydrophobic interactions dominate the interface between FGF2 and the FGF‐binding domain of the Ig‐like loop D2 of FGFR1, amino acid substitutions in Ac‐ARPCA‐NH2 and saturation transfer difference‐nuclear magnetic resonance analysis of its mode of interaction with FGF2 implicate the hydrophobic methyl groups of the pentapeptide in FGF2 binding. These results will provide the basis for the design of novel PTX3‐derived anti‐angiogenic FGF2 antagonists.  相似文献   

10.
Aims of the study were to measure insulin‐like growth factor‐binding protein‐2 (IGFBP‐2) expression by abdominal subcutaneous adipocytes and to assess the relationship between IGFBP‐2 expression, circulating IGFBP‐2, obesity, and insulin sensitivity in obese children. Thirty‐eight obese children were recruited. Insulin sensitivity was assessed by intravenous glucose tolerance test and body composition by total‐body dual‐energy X‐ray absorptiometry. Serum free and total IGF‐I, IGFBP‐2, adiponectin, and leptin were measured. Relative quantification of IGFBP‐2 mRNA by subcutaneous adipose tissue biopsies was obtained using real‐time PCR. Circulating IGFBP‐2 was positively associated with insulin sensitivity, in agreement with previous studies. IGFBP‐2 expression was associated with fat mass percentage (r = 0.656; P < 0.02), insulin sensitivity (r = ?0.604; P < 0.05), free IGF‐I (r = 0.646; P < 0.05), and leptin (r = 0.603; P < 0.05), but not with circulating IGFBP‐2 (r = 0.003, P = ns). The association between IGFBP‐2 expression and adiposity (r = 0.648; P < 0.05) was independent of insulin sensitivity (covariate). In conclusion, circulating IGFBP‐2 was positively associated with insulin sensitivity. IGFBP‐2 was expressed by subcutaneous abdominal adipocytes of obese children and increased with adiposity, independently from the level of insulin sensitivity. IGFBP‐2 expression may potentially be one of the local mechanisms used by adipocytes to limit further fat gain.  相似文献   

11.
Estimating the ability of bone marrow‐derived mesenchymal stem cells (BM‐MSCs) to alleviate pulmonary injury induced via isoproterenol (ISP). ISP was injected in a dose of (100 mg/kg, subcutaneously twice at an interval of 24 h). One month post BM‐MSCs transplantation by intravenous injection, pulmonary oxidative stress was assessed, and Western blot analyses and histopathological investigations were conducted. Compared with the normal control group, BM‐MSCs transplantation significantly decreased the expression of pulmonary anti‐oxidative stress marker. Western blot analysis revealed that ISP significantly reduced the protein expression of the anti‐oxidative stress marker nuclear related factor‐2 (Nrf2). However, the apoptotic marker (caspase‐3) and collagen content marker (8‐hydroxyproline) were markedly elevated. These biochemical markers were confirmed by histopathological investigations. Finally, it was demonstrated that BM‐MSCs transplantation showed a superior effect in improving pulmonary function through alleviating oxidative stress, apoptosis, and collagen content.  相似文献   

12.
Insulin‐like growth factor‐I (IGF‐I) is a low molecular weight peptide that mediates the cell proliferating actions of growth hormone. Evidence exists indicating that IGF‐I is produced by various cell types and this growth factor has been implicated in a variety of reproductive processes. To investigate the effect of IGF‐I over‐expression on reproductive systems, we generated three independent lines of transgenic mice harbouring a human IGF‐I cDNA (hIGF‐I) under the control of a Cytomegalovirus immediate early (CMV) promoter. The CMV promoter was used in an attempt to direct expression of IGF‐I into a variety of tissues both reproductive and non‐reproductive. Yet expression of the foreign hIGF‐I gene, determined by Northern blot, was found to occur only in the testicular tissues of the male mice, apparently due to methylation of the transgene in all the tissues tested except the testes, which demonstrate transgene hypomethylation. Evaluation of the transgene expression during testicular development revealed that expression begins between 10 and 15 days of development, coinciding with the appearance of the zygotene and pachytene primary spermatocytes during early spermatogenesis, therefore indicating germ line expression of the transgene. Extensive study of the CMV‐hIGF‐I transgenic lines of mice has revealed that the effects of the transgene expression do not extend beyond the testicular tissues. No significant differences (P > 0.05) in the IGF‐I serum levels, growth rates, or testicular histology have been observed between transgenic and non‐transgenic male siblings. The ability of transgenic males to produce offspring also appears unaffected. Evaluation of the IGF binding protein (IGFBP) levels in the testicular tissues of CMV‐hIGF‐I transgenic mice by Western ligand blot revealed an increase in the concentration of testicular proteins with molecular weights corresponding to IGFBP‐2 and IGFBP‐3. These results suggest that the testicular over‐expression of IGF‐I induces increased IGFBP localization in this tissue. Inhibition of IGF activity by the IGFBPs would explain the lack of a dramatic physiological effect in the CMV‐hIGF‐I transgenic mice, despite the presence of elevated testicular IGF‐I. The observation that testis specific IGF‐I overexpression induces localization of IGFBPs in this tissue confirms the existence of a well regulated testicular IGF system and supports the convention that this growth factor plays an important role in testicular function. Mol. Reprod. Dev. 54:32–42, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

13.
TNF‐α and IGF‐I exert opposing effects on mammary epithelial cell (MEC) growth and survival. However, both increase IGF binding protein‐3 (IGFBP‐3) expression, a multifunctional protein that plays both IGF‐dependent as well as independent roles in these processes. We have reported that IGF‐I utilizes the PI3‐K and MAPK pathways to induce IGFBP‐3 expression in bovine MEC. Here we show that TNF‐α requires the SAPK pathway p38, but not JNK, to induce IGFBP‐3 expression. Contrary to reports in cancer cell lines, TNF‐α retained its ability to decrease DNA synthesis in cells transfected with IGFBP‐3 siRNA. It also retained its ability to inhibit IGF‐I‐stimulated DNA synthesis in these cells. In contrast, the ability of IGF‐I to increase DNA synthesis was attenuated with IGFBP‐3 knockdown. IGFBP‐3 knockdown also decreased basal DNA synthesis, indicating that a certain level of IGFBP‐3 may be required for cell proliferation. While TNF‐α alone failed to induce apoptosis, it increased cell death when added with the JNK agonist anisomycin (ANS). TNF‐α and ANS were unable to induce apoptosis when either IGFBP‐3 or JNK‐2 was knocked‐down, suggesting that both JNK and IGFBP‐3 may interact with a downstream molecule central to apoptosis. There are reports that IGFBP‐3 promotes either cell proliferation or apoptosis in different cell systems. However, this is the first report that endogenous IGFBP‐3 is required for the action of both stimulatory and inhibitory factors within the same cell line. Therefore, the actions of IGFBP‐3 are not pre‐determined, but instead governed by cellular context such as JNK activation. J. Cell. Physiol. 220: 182–188, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Insulin‐like growth factor binding protein‐6 (IGFBP‐6) inhibits the tumorigenic properties of IGF‐II‐dependent cancer cells by directly inhibiting IGF‐II actions. However, in some cases, IGFBP‐6 is associated with increased cancer cell tumorigenicity, which is unlikely to be due to IGF‐II inhibition. The mechanisms underlying the contradictory actions of IGFBP‐6 remain unclear. We recently generated an IGFBP‐6 mutant that does not bind IGFs (mIGFBP‐6) to address this issue. Although RD rhabdomyosarcoma cells express IGF‐II, we previously showed that mIGFBP‐6 promoted migration through an IGF‐independent, p38‐dependent pathway. We further studied the role of MAP kinases in IGFBP‐6‐induced migration of Rh30 rhabdomyosarcoma cells, which also express IGF‐II. In these cells, mIGFBP‐6 induced chemotaxis rather than chemokinesis. Both wild‐type (wt) and mIGFBP‐6 transiently induced phosphorylation of ERK1/2 and JNK1, but not p38. Inhibition of ERK1/2 phosphorylation completely prevented mIGFBP‐6‐induced ERK1/2 activation and cell migration, whereas a JNK inhibitor partially prevented migration. Interestingly, p38 pathway inhibition completely prevented mIGFBP‐6‐induced ERK1/2 and JNK1 activation and migration despite mIGFBP‐6 not activating p38. Furthermore, blocking the ERK1/2 pathway also inhibited mIGFBP‐6‐induced JNK1 activation. In contrast, IGFBP‐6 had no effect on Akt phosphorylation and an Akt inhibitor had no effect on migration. These results indicate that IGFBP‐6 promotes Rh30 rhabdomyosarcoma chemotaxis in an IGF‐independent manner, and that MAPK signaling pathways and their cross‐talk play an important role in this process. Therefore, besides decreasing Rh30 cell proliferation by inhibiting IGF‐II, IGFBP‐6 promotes their migration via a distinct pathway. Understanding these disparate actions of IGFBP‐6 may lead to the development of novel cancer therapeutics. J. Cell. Physiol. 224: 636–643, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Action mechanisms underlying various biological activities of collagen peptides (CPs) remained to be elucidated. Cytokines may play an important role in mediating these health benefits of CPs. This study aimed to systemically examine the cytokines in skin and blood regulated by CPs intake. Thirteen‐month‐old female Kunming mice were administered with CPs for 2 months (0 or 400 mg/kg bodyweight/day). The cytokines in skin and plasma were analysed using a 53‐cytokine array and corresponding ELISA kits. In skin, CPs intake significantly down‐regulated placenta growth factor (PIGF‐2), insulin‐like growth factor (IGF)‐binding protein (IGFBP) ‐2 and IGFBP‐3, and up‐regulated platelet factor 4 (PF4), serpin E1 and transforming growth factor (TGF)‐β1. CPs treatment also increased the type I collagen mRNA and protein levels and improved the aged skin collagen fibres. In plasma, nine cytokines were significantly down‐regulated by CPs intake compared to the model group: fibroblast growth factor (FGF)‐2, heparin‐binding (HB) epidermal growth factor (EGF)‐like growth factor (HB‐EGF), hepatocyte growth factor (HGF), platelet‐derived growth factor (PDGF)‐AB/BB, vascular endothelial growth factor (VEGF), chemokine (C‐X‐C motif) ligand 1 (KC), matrix metalloproteinase (MMP)‐9, interleukin (IL)‐1α and IL‐10; 2 cytokines were significantly up‐regulated, including TGF‐β1 and serpin F1. Furthermore, CPs intake significantly decreased the level of platelet release indicators in the plasma and washed platelets, including PF4, granule membrane protein (GMP)‐140, β‐thromboglobulin and serotonin. These results provide a mechanism underlying anti‐skin ageing by CPs intake and highlight potential application of CPs as a healthcare supplement to combat cancer and cardiovascular disease by inhibiting platelet release.  相似文献   

16.
The formation mechanism of Maillard peptides was explored in Maillard reaction through diglycine/glutathione(GSH)/(Cys‐Glu‐Lys‐His‐Ile‐Met)–xlyose systems by heating at 120 °C for 30–120 min. Maximum fluorescence intensity of Maillard reaction products (MRPs) with an emission wavelength of 420~430 nm in all systems was observed, and the intensity values were proportional to the heating time. Taken diglycine/GSH–[13C5]xylose systems as a control, it was proposed that the compounds with high m/z values of 379 and 616 have the high molecular weight (HMW) products formed by cross‐linking of peptides and sugar. In (Cys‐Glu‐Lys‐His‐Ile‐Met)–xylose system, the m/z value of HMW MRPs was not observed, which might be due to the weak signals of these products. According to the results of gel permeation chromatography, HMW MRPs were formed by Maillard reaction, especially in (Cys‐Glu‐Lys‐His‐Ile‐Met)–xylose system, the percentage of Maillard peptides reached 52.90%. It was concluded that Maillard peptides can be prepared through the cross‐linking of sugar and small peptides with a certain MW range. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Clinical and experimental studies show that aging exacerbates hypertension‐induced cerebral microhemorrhages (CMHs), which progressively impair neuronal function. There is growing evidence that aging promotes insulin‐like growth factor 1 (IGF‐1) deficiency, which compromises multiple aspects of cerebromicrovascular and brain health. To determine the role of IGF‐1 deficiency in the pathogenesis of CMHs, we induced hypertension in mice with liver‐specific knockdown of IGF‐1 (Igf1f/f + TBG‐Cre‐AAV8) and control mice by angiotensin II plus l ‐NAME treatment. In IGF‐1‐deficient mice, the same level of hypertension led to significantly earlier onset and increased incidence and neurological consequences of CMHs, as compared to control mice, as shown by neurological examination, gait analysis, and histological assessment of CMHs in serial brain sections. Previous studies showed that in aging, increased oxidative stress‐mediated matrix metalloprotease (MMP) activation importantly contributes to the pathogenesis of CMHs. Thus, it is significant that hypertension‐induced cerebrovascular oxidative stress and MMP activation were increased in IGF‐1‐deficient mice. We found that IGF‐1 deficiency impaired hypertension‐induced adaptive media hypertrophy and extracellular matrix remodeling, which together with the increased MMP activation likely also contributes to increased fragility of intracerebral arterioles. Collectively, IGF‐1 deficiency promotes the pathogenesis of CMHs, mimicking the aging phenotype, which likely contribute to its deleterious effect on cognitive function. Therapeutic strategies that upregulate IGF‐1 signaling in the cerebral vessels and/or reduce microvascular oxidative stress, and MMP activation may be useful for the prevention of CMHs, protecting cognitive function in high‐risk elderly patients.  相似文献   

18.
19.
Vascular endothelial growth factor (VEGF) is a well‐known angiogenic factor, however its ability in promoting therapeutic angiogenesis following myocardial infarction (MI) is limited. Here, we aimed to investigate whether dual treatment with insulin‐like growth factor binding protein‐4 (IGFBP‐4), an agent that protects against early oxidative damage, can be effective in enhancing the therapeutic effect of VEGF following MI. Combined treatment with IGFBP‐4 enhanced VEGF‐induced angiogenesis and prevented cell damage via enhancing the expression of a key angiogenic factor angiopoietin‐1. Dual treatment with the two agents synergistically decreased cardiac fibrosis markers collagen‐I and collagen‐III following MI. Importantly, while the protective action of IGFBP‐4 occurs at an early stage of ischemic injury, the action of VEGF occurs at a later stage, at the onset angiogenesis. Our findings demonstrate that VEGF treatment alone is often not enough to protect against oxidative stress and promote post‐ischemic angiogenesis, whereas the combined treatment with IGFBP4 and VEGF can utilize the dual roles of these agents to effectively protect against ischemic and oxidative injury, and promote angiogenesis. These findings provide important insights into the roles of these agents in the clinical setting, and suggest new strategies in the treatment of ischemic heart disease.  相似文献   

20.
Glutathione transferases (GSTs) are essential enzymes in many organisms due their diverse functions and, in helminths they are the main detoxification system. For Taenia solium, two cytosolic GSTs with molecular masses of 25.5 and 26.5 kDa (Ts26GST) have been found. Ts26GST was cloned to be studied in its recombinant form (recTs26GST). Although the primary structure is related to the mu class, the kinetic parameters for CDNB (Vmax = 51.5 μmol min−1 mg−1; Km = 1.06 mM; kcat = 22.2 s−1) are related with some alpha GSTs. The substrate and inhibitor class markers reaffirmed these bimodal characteristics. Inhibition studies with anthelminthics indicate that recTs26GST is sensitive to mebendazole, displaying a non competitive inhibition pattern suggesting that at least two molecules are binding to recTs26GST. On the other hand, the kinetic curves for CDNB and GSH showed a positive cooperativity that was corroborated using fluorometric assays. Those assays indicate that CDNB binding is highly influenced by GSH, probably by modulation of the Ts26GST conformational ensamble.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号