首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
植物修复是一种前景广阔的重金属污染土壤的主要修复技术,在微生物的协助下效果更为显著。植物根际促生菌可通过分泌吲哚-3-乙酸(IAA)、产铁载体、固氮溶磷等方式促进植物生长、改善植物重金属耐受性,从而有效提高重金属污染土壤的植物修复效率。菌根真菌是土壤-植物系统中重要的功能菌群之一,可侵染植物根系改变根系形态和矿质营养状况,通过菌丝体吸附重金属,也可产生球囊霉素、有机酸、植物生长素等次生代谢产物改变重金属生物有效性。植物根际促生菌与丛枝菌根真菌可对植物产生协同促生作用,在重金属污染土壤修复中具有一定应用潜力。目前,国内外关于植物根际促生菌和丛枝菌根真菌互作已有大量研究,而二者的相互作用机理仍处于探索阶段。本文综述了近年来国内外植物根际促生菌和丛枝菌根真菌在重金属污染土壤植物修复中的作用机制,并对其研究前景进行展望。  相似文献   

2.
VA菌根降低植物对重金属镉的吸收   总被引:5,自引:0,他引:5  
高等植物在漫长的进化过程中对环境产生种种适应机制。菌根的形成即是对自然土壤中有效磷不足的一种适应。菌根真菌与寄主根系共生形成菌根后,真菌的菌丝可以远远伸出根际范围从而扩大了植物对土壤中难以移动的磷元素的吸收范围而改善植物的磷素营养。因此,地球上90%的陆生植物都可形成菌根。菌根的形成,不仅促进了植物对磷的吸收,而且也影响到植物对其它元素包括重金属的吸收。在重金属污染的土壤中,菌根对植物重金属的吸收将影响到植物对重金属的抗性和农产品品质。本文拟研究在添加镉的土壤上菌根对植物吸收Cd的影响。  相似文献   

3.
AM真菌对重金属污染土壤生物修复的应用与机理   总被引:15,自引:0,他引:15  
罗巧玉  王晓娟  林双双  李媛媛  孙莉  金樑 《生态学报》2013,33(13):3898-3906
土壤重金属污染威胁人类健康和整个生态系统,而高效、低耗、安全的生物修复技术显示出了极大的应用潜力,特别是利用植物-微生物共生体增强生物修复效应的应用.丛枝菌根(Arbuscular Mycorrhizae,AM)真菌是一类广泛分布于土壤生态系统中的有益微生物,能与90%以上的陆生高等植物形成共生体.研究发现,AM真菌能够增强宿主植物对土壤中重金属胁迫的耐受性.当前,利用AM真菌开展重金属污染土壤的生物修复已经引起环境学家和生态学家的广泛关注.基于此,围绕AM真菌在重金属污染土壤生物修复作用中的最新研究进展,从物理性防御体系的形成、对植物生理代谢的调控、生化拮抗物质的产生、基因表达的调控等角度探究AM真菌在重金属污染土壤生物修复中的作用机理,以期为利用AM真菌开展重金属污染的生物修复提供理论依据,并对本领域未来的发展和应用前景进行了展望.  相似文献   

4.
环境污染物对丛枝菌根(AM)形成及功能的影响   总被引:4,自引:2,他引:2  
丛枝菌根(AM)具有植物和微生物的双重特性,在污染土壤修复中受到越来越多的重视.AM在修复污染土壤的同时,也深受污染物毒害的影响,从而降低AM在污染土壤修复中的作用.如何减少环境污染物对AM的不利影响,是AM应用中需要考虑的问题.从有机和无机污染物角度, 综述了不同污染物对AM形成及功能的影响,并分析了可能的影响机理.大量研究表明,无论是有机污染物还是无机污染物,都会对AM的结构、形成和功能产生破坏性影响,主要表现在孢子萌发、侵染率、菌丝伸长受抑制等.有机污染物可能通过影响光合产物向AM真菌的分配, 间接影响AM真菌的活性,而重金属则通过抑制AM真菌活性, 直接对其产生影响.  相似文献   

5.
【背景】电子废弃物拆解造成的土壤重金属污染引发的环境问题日益突出,丛枝菌根(arbuscular mycorrhizal,AM)真菌能侵染植物根系并增强植物抵御环境胁迫的能力,具有重要的生态功能和应用潜力。【目的】探究电子废弃物拆解区土壤重金属污染对AM真菌群落结构与多样性的影响,甄别可耐受重金属污染的AM真菌类群。【方法】从浙江台州某典型电子废弃物拆解场地及其周边区域共采集土壤样品12份,针对土壤中AM真菌的18S rRNA基因进行高通量测序以及可操作分类单元(operational taxonomic unit,OTU)相对丰度和多样性指数计算。【结果】该区土壤中AM真菌由原囊霉目(Archaeosporales)、球囊霉目(Glomerales)和多孢囊霉目(Diversisporales)组成,其中球囊霉目占据优势地位。土壤AM真菌多样性指数与重金属的浓度、综合污染指数和潜在生态风险指数间均无显著相关性,但疑似泡囊根生囊霉(Rhizophagus vesiculiferus)的OTU相对丰度与上述重金属污染指标之间均呈显著正相关关系。【结论】R. vesiculiferus可能对重金属污染有极强耐受性,可为今后电子废弃物拆解污染土壤治理提供技术基础。  相似文献   

6.
植物-菌根真菌联合修复重金属污染土壤   总被引:4,自引:0,他引:4  
菌根是菌根真菌侵染植物根系后在植物根部形成的共生结构。菌根技术作为一种生物强化技术应用于重金属污染土壤的植物修复已引起研究者的广泛关注。目前大量研究表明菌根能强化植物对重金属的转运、富集及根系稳定化过程,并通过促进营养物质的吸收利用、稳定细胞内氧化还原平衡、调控抗逆性相关基因的表达以及改善根际微生态环境等方式提升寄主植物的抗逆性。本文在介绍菌根真菌在植物修复重金属污染的联合过程中的作用效应及机制的基础上,分析了目前限制该技术应用的瓶颈问题以及未来的研究方向,为植物-菌根真菌联合修复的推广应用提供理论基础。  相似文献   

7.
根际圈在污染土壤修复中的作用与机理分析   总被引:71,自引:9,他引:62  
根际圈以植物根系为中心聚集了大量的生命物质及其分泌物,构成了极为独特的“生态修复单元”。本文叙述了根在根际圈污染土壤修复中的生理生态作用,富集、固定重金属,吸收、降解有机污染物等功能;菌根真菌对根际圈内重金属的吸收、屏障及螯合作用,对有机污染物的降解作用;根际圈内细菌对重金属的吸附与固定,对有机污染物的降解作用以及根际圈真菌和细菌的联合修复作用等,同时对可能存在的机理进行了分析,认为根际圈对污染土壤的修复作用是植物修复的重要组成部分和主要理论基础之一,并指出利用重金属超富集植物修复重金属污染土壤具有广阔的应用前景;筛选对水溶性有机污染物高吸收富集及其根 发泌能力强的特异植物,同时接种利于有机污染物降解的专性或非专性真菌和细菌可能会成为有机污染土壤植物修复研究的重要方向之一。  相似文献   

8.
龙脑香科植物对丛枝菌根真菌的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
在天然林地和温室盆栽条件下,比较研究了龙脑香科植物对丛枝菌根(Arbuscular mycorrhizas, AM)真菌孢子密度、相对多度、频度、属的组成、丰度和侵染状况等方面的影响.结果表明,用坡垒作盆栽寄主加富培养后,菌根侵染率、泡囊、丛枝和侵入点都低于原采样植物,以原坡垒土壤中栽植苗木的侵染率为最高,可达203%;而以望天树根围土壤栽植的苗木为最低,仅为106%;坡垒还不同程度地改变了原采样植物根围土壤中AM真菌孢子的密度、相对多度、频度、属的组成、丰度等.在4种土壤中,栽植坡垒苗木后,AM真菌的孢子密度都有不同程度的增长.采用与原采样相同种类的植物作为AM真菌加富培养的寄主更有利于促进AM真菌的生长发育、保持AM的多样性.  相似文献   

9.
采用三室隔网培养装置,以玉米为宿主植物,接种丛枝菌根真菌(AM)(Glomus intraradices),研究了不同用量的植酸钠对AM真菌生长和代谢活性的影响.研究发现,接种AM真菌的植株地上部和根系的P浓度和吸P量,比非菌根植物的提高了1~2倍.外源植酸钠的存在,显著降低了AM真菌根内菌丝的碱性磷酸酶活性,增加了AM真菌在土壤中的菌丝密度.结果表明,外源植酸钠对根内AM真菌碱性磷酸酶活性和真菌根外菌丝的生长具有调控(增减)作用,并且AM真菌提高了植物对土壤固有养分和外源植酸钠中P的吸收和利用.  相似文献   

10.
丛枝菌根对有机污染土壤的修复作用及机理   总被引:7,自引:0,他引:7  
丛枝菌根(AM)是丛枝菌根真菌(AMF)与植物根系相互作用的互惠共生体,能改良土壤结构,增强植物抗性.自然界中已知的AMF有170多种,分布广泛,且可与大多数植物共生.利用AM修复有机污染土壤正成为一个崭新的研究方向.本文综述了AM对多环芳烃、酞酸脂、石油和农药等一些典型有机污染物污染土壤的修复作用.AM修复有机污染土壤的机理主要包括:AMF代谢有机污染物;AM分泌酶,降解污染物;AM影响根系分泌作用,并促进根际微生物对有机污染物的降解;AMF宿主植物吸收积累污染物.AM修复研究中,高效AMF的筛选、复合菌种效应、土壤老化、AM作用下植物对有机污染物的吸收积累等几方面仍有待于深入研究.  相似文献   

11.
Phytoremediation of mine tailings in temperate and arid environments   总被引:9,自引:0,他引:9  
Phytoremediation is an emerging technology for the remediation of mine tailings, a global problem for which conventional remediation technologies are costly. There are two approaches to phytoremediation of mine tailings, phytoextraction and phytostabilization. Phytoextraction involves translocation of heavy metals from mine tailings to the plant shoot biomass followed by plant harvest, while phytostabilization focuses on establishing a vegetative cap that does not shoot accumulate metals but rather immobilizes metals within the tailings. Phytoextraction is currently limited by low rates of metal removal which is a combination of low biomass production and insufficiently high metal uptake into plant tissue. Phytostabilization is currently limited by a lack of knowledge of the minimum amendments required (e.g., compost, irrigation) to support long-term plant establishment. This review addresses both strategies within the context of two specific climate types: temperate and arid. In temperate environments, mine tailings are a source of metal leachates and acid mine drainage that contaminate nearby waterways. Mine tailings in arid regions are subject to eolian dispersion and water erosion. Examples of phytoremediation within each of these environments are discussed. Current research suggests that phytoextraction, due to high implementation costs and long time frames, will be limited to sites that have high land values and for which metal removal is required. Phytostabilization, due to lower costs and easier implementation, will be a more commonly used approach. Complete restoration of mining sites is an unlikely outcome for either approach.  相似文献   

12.
This article reviews recent developments in in situ bioremediation of trace metal contaminated soils, with particular reference to the microbial dynamics in the rhizospheres of plants growing on such soils and their significance in phytoremediation. In non-agricultural conditions, the natural role of plant growth promoting rhizobacteria (PGPR), P-solubilizing bacteria, mycorrhizal-helping bacteria (MHB) and arbuscular mycorrhizal fungi (AMF) in maintaining soil fertility is more important than in conventional agriculture, horticulture, and forestry where higher use of agrochemicals minimize their significance. These microbes initiate a concerted action when a particular population density is achieved, i.e. quorum sensing. AMF also recognize their host by signals released by host roots, allowing a functional symbiosis. AM fungi produce an insoluble glycoprotein, glomalin, which sequester trace elements and it should be considered for biostabilization leading to remediation of contaminated soils. Conclusions drawn from studies of metal uptake kinetics in solution cultures may not be valid for more complex field conditions and use of some combination of glasshouse and field experiments with organisms that occur within the same plant community is suggested. Phytoextraction strategies, such as inoculation of plants to be used for phytoremediation with appropriate heavy metal adapted rhizobial microflora, co-cropping system involving a non-mycorrhizal hyperaccumulator plant and a non-accumulator but mycorrhizal with appropriate AMF, or pre-cropping with mycotrophic crop systems to optimize phytoremediation processes, merit further field level investigations. There is also a need to improve our understanding of the mechanisms involved in transfer and mobilization of trace elements by rhizosphere microbiota and to conduct research on selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes. This is necessary if we are to improve the chances of successful phytoremediation.  相似文献   

13.
Technogenic activities (industrial—plastic, textiles, microelectronics, wood preservatives; mining—mine refuse, tailings, smelting; agrochemicals—chemical fertilizers, farm yard manure, pesticides; aerosols—pyrometallurgical and automobile exhausts; biosolids—sewage sludge, domestic waste; fly ash—coal combustion products) are the primary sources of heavy metal contamination and pollution in the environment in addition to geogenic sources. During the last two decades, bioremediation has emerged as a potential tool to clean up the metal-contaminated/polluted environment. Exclusively derived processes by plants alone (phytoremediation) are time-consuming. Further, high levels of pollutants pose toxicity to the remediating plants. This situation could be ameliorated and accelerated by exploring the partnership of plant-microbe, which would improve the plant growth by facilitating the sequestration of toxic heavy metals. Plants can bioconcentrate (phytoextraction) as well as bioimmobilize or inactivate (phytostabilization) toxic heavy metals through in situ rhizospheric processes. The mobility and bioavailability of heavy metal in the soil, particularly at the rhizosphere where root uptake or exclusion takes place, are critical factors that affect phytoextraction and phytostabilization. Developing new methods for either enhancing (phytoextraction) or reducing the bioavailability of metal contaminants in the rhizosphere (phytostabilization) as well as improving plant establishment, growth, and health could significantly speed up the process of bioremediation techniques. In this review, we have highlighted the role of plant growth promoting rhizo- and/or endophytic bacteria in accelerating phytoremediation derived benefits in extensive tables and elaborate schematic sketches.  相似文献   

14.
Heavy metals are among the major pollutants from anthropogenic inputs that reach mangrove ecosystem by urban and agricultural runoff, industrial effluents, boating, mining and other processes. To minimize the detrimental effects of heavy metal exposure and their accumulations, plants in general have evolved biological detoxification mechanisms, which include avoidance or exclusion, excretion and accumulation. To protect the cellular components from oxidative damage by heavy metal contamination, biological systems have developed enzymatic and non-enzymatic antioxidant mechanisms. Another detoxification mechanisms produced in plants are osmoprotectants, which are the compatible solutes which maintain a favourable water potential gradient and protect cellular structures from toxic ions. Besides these mechanisms, another heavy metal detoxification system in plants involves the chelation of metals by metal binding molecules like metallothioneins (MTs) and phytochelatins (PCs). To limit the heavy metal toxicity from mangrove ecosystem, it was found that phytoremediation is a most useful technology where in plants are used to remove pollutants from the environment and it is considered as a comparatively new, low-cost and highly promising technology for the remediation of heavy metal. Rhizofiltration, phytovolatilization, phytoextraction and phytostabilization are the important phytoremediation techniques. Among these phytoextraction and phytostabilization are found highly important in the case of mangroves and are promising means of phytoremediation.  相似文献   

15.
Plants show enhanced phytoremediation of heavy metal contaminated soils particularly in response to fungal inoculation. Present study was conducted to find out the influence of Nickel (Ni) toxicity on plant biomass, growth, chlorophyll content, proline production and metal accumulation by L. usitatissimum (flax) in the presence of Glomus intraradices. Flax seedlings of both inoculated with G. intraradices and non-inoculated were exposed to different concentrations i.e., 250, 350 and 500 ppm of Ni at different time intervals. Analysis of physiological parameters revealed that Ni depressed the growth and photosynthetic activity of plants. However, the inoculation of plants with arbuscular mycorrhizae (G. intraradices) partially helped in the alleviation of Ni toxicity as indicated by improved plant growth under Ni stress. Ni uptake of non- mycorrhizal flax plants was increased by 98% as compared to control conditions whereas inoculated plants showed 19% more uptake when compared with the non-inoculated plants. Mycorrhizal plants exhibited increasing capacity to remediate contaminated soils along with improved growth. Thus, AM assisted phytoremediation helps in the accumulation of Ni in plants to reclaim Ni toxic soils. Based on our findings, it can be concluded that the role of flax plants and mycorrhizal fungi is extremely important in phytoremediation.  相似文献   

16.
Bioremediation is an integrated management of a polluted ecosystem where different organisms are employed to catalyze the natural processes that decontaminate the environment. The potential role of bioremediation, particularly higher terrestrial plants (phytoremediation) research in the remediation of metal-polluted sites, has been the focus of much research in recent years. Arbuscular mycorrhizal fungi are soil microorganisms that establish mutual symbiosis with the majority of higher plants, providing direct links between fungi and roots. This paper reviews the incidence of arbuscular mycorrhizal fungi in metal polluted sites, their role in imparting metal tolerance to plants, the factors affecting arbuscular mycorrhizal fungi in metal polluted sites, and their mechanism of heavy metal tolerance. Particular attention is given to the current methodologies and challenges in this field.  相似文献   

17.
重金属污染土壤植物修复中的微生物功能研究进展   总被引:17,自引:0,他引:17  
李韵诗  冯冲凌  吴晓芙  石润 《生态学报》2015,35(20):6881-6890
综述了国内外在重金属污染土壤植物-微生物联合修复领域的研究报道,总结了近5年的研究实例。植物-微生物联合修复体系具有生物固定与生物去除土壤重金属的两种功能,根际微生物可以菌根、内生菌等方式与根系形成联合体,通过增强植物抗性和优化根际环境,促进根系发展,增强植物吸收和向上转运重金属的能力。建立植物-微生物联合修复体系,可充分发挥植物与微生物作用功能的优势,提高污染土壤的修复效率。增强植物修复体系中微生物功能的重点是深入研究根际微生物、根系和介质载体三者之间复合功能,结合污染土壤类型与植物群落配置的特点筛选扩繁高效菌种与菌群。  相似文献   

18.
Göhre V  Paszkowski U 《Planta》2006,223(6):1115-1122
High concentrations of heavy metals (HM) in the soil have detrimental effects on ecosystems and are a risk to human health as they can enter the food chain via agricultural products or contaminated drinking water. Phytoremediation, a sustainable and inexpensive technology based on the removal of pollutants from the environment by plants, is becoming an increasingly important objective in plant research. However, as phytoremediation is a slow process, improvement of efficiency and thus increased stabilization or removal of HMs from soils is an important goal. Arbuscular mycorrhizal (AM) fungi provide an attractive system to advance plant-based environmental clean-up. During symbiotic interaction the hyphal network functionally extends the root system of their hosts. Thus, plants in symbiosis with AM fungi have the potential to take up HM from an enlarged soil volume. In this review, we summarize current knowledge about the contribution of the AM symbiosis to phytoremediation of heavy metals.  相似文献   

19.
Waste dumps generated by mining activities contain heavy metals that are dispersed into areas leading to significant environmental contamination. The objectives of this study were (i) to survey native plants and their associated AM fungal communities from waste soils in a Moroccan mine site and (ii) to follow Eucalyptus growth in soil collected from the waste-mine. AM spores from native plant species were collected from the mining site and the surrounding uncontaminated areas were multiplied and inoculated onto Eucalyptus camaldulensis. The results showed that (i) the native plant species recorded in the waste did not show an active metal uptake, (ii) the selected native plant species are associated with AM mycorrhizal fungi and (iii) the use of AM fungi adapted to these drastic conditions can improve the growth of the fast-growing tree, E. camaldulensis and its tolerance to high soil Cu content. In conclusion, it is suggested that in order to define efficient low-cost phytostabilization processes, the use of native resources (i.e., mixtures of native mycorrhizal fungi) in combination with fast-growing tree species such as Eucalyptus, could be used to optimize the establishment of a permanent cover plant in contaminated areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号