首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Replication of human immunodeficiency virus type 1 requires the functional expression of the virally encoded Rev protein. The binding of this nuclear trans activator to its viral target sequence, the Rev-response element, induces the cytoplasmic expression of unspliced viral mRNAs. Mutation of the activation domain of Rev generates inactive proteins with normal RNA binding capabilities that inhibit wild-type Rev function in a trans-dominant manner. Here, we report that the activation domain comprises a minimum of nine amino acids, four of which are critically spaced leucines. The preservation of this essential sequence in other primate and nonprimate lentivirus Rev proteins indicates that this leucine-rich motif has been highly conserved during evolution. This conclusion, taken together with the observed permissiveness of a variety of eukaryotic cell types for Rev function, suggests that the target for the activation domain of Rev is likely to be a highly conserved cellular protein(s) intrinsic to nuclear mRNA transport or splicing.  相似文献   

2.
Expression from a human cytomegalovirus early promoter (E1.7) has been shown to be activated in trans by the IE2 gene products (C.-P. Chang, C. L. Malone, and M. F. Stinski, J. Virol. 63:281-290, 1989). Using wild-type and mutant viral proteins, we have defined the protein regions required for transactivation of the E1.7 promoter in IE2 and for augmentation of transactivation in the IE1 protein. Two regions of the IE2 proteins were found to be essential for transactivation. One near the amino terminus is within 52 amino acids encoded by exon 3. The second comprises the carboxyl-terminal 85 amino acids encoded by exon 5. The IE2 protein encoded by an mRNA which lacks the intron within exon 5 and the IE2 protein encoded by exon 5 had no activity for transactivation of the E1.7 promoter. Although the IE1 gene product alone had no effect on this early viral promoter, maximal early promoter activity was detected when both IE1 and IE2 gene products were present. The IE1 protein positively regulated its enhancer-containing promoter-regulatory region. The IE1 protein alone increased the steady-state level of IE2 mRNA; therefore, IE1 and IE2 are synergistic for expression from the E1.7 promoter. Like the IE2 proteins, the IE1 protein requires for activity 52 amino acids encoded by exon 3. IE1 also requires amino acids encoded by exon 4. Since the IE1 and IE2 proteins have 85 amino acids in common at the amino-terminal end encoded by exons 2 and 3, the difference between these specific transactivators resides in their carboxyl-terminal amino acids encoded by exons 4 and 5, respectively.  相似文献   

3.
Gjerdrum C  Stranda A  Szilvay AM 《FEBS letters》2001,495(1-2):106-110
To study functional aspects of the exon 1 encoded region of the human immunodeficiency virus type 1 Rev protein, the viral Tev protein which exhibits low Rev activity but lacks the rev exon 1 encoded region was examined. Neither Rev-Tev heteromer complex formation nor inhibition of Rev by an export deficient Tev mutant was observed. Insertion of the rev exon 1 encoded region into the Tev mutant allowed it to oligomerize with Rev and act as a trans-dominant negative mutant. This showed that the exon 1 encoded region of Rev is essential for oligomerization and that oligomerization is a prerequisite for trans-dominant inhibition.  相似文献   

4.
5.
D McDonald  T J Hope    T G Parslow 《Journal of virology》1992,66(12):7232-7238
The human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex proteins induce cytoplasmic expression of incompletely spliced viral mRNAs by binding to these mRNAs in the nucleus. Each protein binds a specific cis-acting element in its target RNAs. Both proteins also associated with nucleoli, but the significance of this association is uncertain because mutations that inactivate nucleolar localization signals in Rev or Rex also prevent RNA binding. Here we demonstrate that Rev and Rex can function when tethered to a heterologous RNA binding site by a bacteriophage protein. Under these conditions, cytoplasmic accumulation of unspliced RNA occurs without the viral response elements, mutations in the RNA binding domain of Rev do not inhibit function, and nucleolar localization can be shown to be unnecessary for the biological response.  相似文献   

6.
E Bhnlein  J Berger    J Hauber 《Journal of virology》1991,65(12):7051-7055
Expression of human immunodeficiency virus type 1 (HIV-1) structural proteins requires the direct interaction of the viral trans-activator protein Rev with its cis-acting RNA sequence (Rev-response element [RRE]). A stretch of 14 amino acid residues of the 116-amino-acid Rev protein is sufficient to impose nucleolar localization onto a heterologous protein. Our results demonstrated that these same amino acid residues confer Rev-specific RRE binding to the heterologous human T-cell leukemia virus type I Rex protein. In addition, our results indicated that amino acids distinct from the nuclear localization signal are important for Rex-specific RRE RNA binding.  相似文献   

7.
The precise mechanism of Rev-mediated expression of human immunodeficiency virus (HIV-1) late genes is not well characterized. We recently proposed a requirement for HIV-1 Rev responsive element (RRE) RNA binding host nuclear proteins in Rev function. In this report, using a transient transfection assay of Rev function, we further demonstrate the role of host cell factors in HIV-1 Rev function. Murine A9 cells, which are inefficient in forming RRE-host protein ribonucleoprotein complexes, are also inefficient in supporting Rev function. We also show that host cell factor(s) encoded by human chromosomes 6 and 11 can support HIV-1 Rev-mediated expression of unspliced viral mRNAs in murine A9 cells.  相似文献   

8.
9.
10.
Nuclear export of the incompletely spliced mRNAs encoded by several complex retroviruses, including human immunodeficiency virus type 1 (HIV-1), is dependent on a virally encoded adapter protein, termed Rev in HIV-1, that directly binds both to a cis-acting viral RNA target site and to the cellular Crm1 export factor. Human endogenous retrovirus K, a family of ancient endogenous retroviruses that is not related to the exogenous retrovirus HIV-1, was recently shown to also encode a Crm1-dependent nuclear RNA export factor, termed K-Rev. Although HIV-1 Rev and K-Rev display little sequence identity, they share the ability not only to bind to Crm1 and to RNA but also to form homomultimers and shuttle between nucleus and cytoplasm. We have used mutational analysis to identify sequences in the 105-amino-acid K-Rev protein required for each of these distinct biological activities. While mutations in K-Rev that inactivate any one of these properties also blocked K-Rev-dependent nuclear RNA export, several K-Rev mutants were comparable to wild type when assayed for any of these individual activities yet nevertheless defective for RNA export. Although several nonfunctional K-Rev mutants acted as dominant negative inhibitors of K-Rev-, but not HIV-1 Rev-, dependent RNA export, these were not defined by their inability to bind to Crm1, as is seen with HIV-1 Rev. In total, this analysis suggests a functional architecture for K-Rev that is similar to, but distinct from, that described for HIV-1 Rev and raises the possibility that viral RNA export mediated by the approximately 25 million-year-old K-Rev protein may require an additional cellular cofactor that is not required for HIV-1 Rev function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号