首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Brief episodes of myocardial ischemia-reperfusion were shown to be protective against reperfusion injury when used during early reperfusion after a prolonged ischemic episode. This phenomenon has been termed myocardial ischemic postconditioning. In this study, an effect of ischemic postconditioning on persistent reperfusion-induced ventricular fibrillation was studied in the rat isolated heart. 2 minutes of global ischemia on the 15th minute of reperfusion after 30 minutes of regional ischemia effectively abolished the persistent ventricular fibrillation. In non-postconditioned hearts, the ventricular fibrillation continued to the end of reperfusion. The ischemic postconditioning seems to exert a strong antiarrhythmic effect protecting the heart against persistent reperfusion-induced ventricular tachyarrhythmias.  相似文献   

2.
Diabetic heart is suggested to exhibit either increased or decreased resistance to ischemic injury. Ischemic preconditioning suppresses arrhythmias in the normal heart, whereas relatively little is known about its effects in the diseased myocardium. Our objective was to investigate whether development of diabetes mellitus modifies the susceptibility to ischemia-induced arrhythmias and affects preconditioning in the rat heart. Following 1 and 9 weeks of streptozotocin-induced (45 mg/kg, i.v.) diabetes, the hearts were Langendorff-perfused at constant pressure of 70 mm Hg and subjected to test ischemia induced by 30 min occlusion of the left anterior descending (LAD) coronary artery. Preconditioning consisted of one cycle of 5 min ischemia and 10 min reperfusion, prior to test ischemia. Susceptibility to ischemia-induced arrhythmias was lower in 1-week diabetics: only 42 % of diabetic hearts exhibited ventricular tachycardia (VT) and 16 % had short episodes of ventricular fibrillation (VF) as compared to VT 100 % and VF 70 % (including sustained VF 36 %) in the non-diabetics (P<0.05). Development of the disease was associated with an increased incidence of VT (VT 92 %, not significantly different from non-diabetics) and longer total duration of VT and VF at 9-weeks, as compared to 1-week diabetics. Preconditioning effectively suppressed arrhythmias in the normal hearts (VT 33 %, VF 0 %). However, it did not provide any additional antiarrhythmic protection in the acute diabetes. On the other hand, in the preconditioned 9-weeks diabetic hearts, the incidence of arrhythmias tended to decrease (VT 50 %, transient VF 10 %) and their severity was reduced. Diabetic rat hearts are thus less susceptible to ischemia-induced arrhythmias in the acute phase of the disease. Development of diabetes attenuates increased ischemic tolerance, however, diabetic hearts in the chronic phase can benefit more from ischemic preconditioning, due to its persisting influence.  相似文献   

3.
Ischemic preconditioning (IP) protects the heart against subsequent prolonged ischemia. Whether the beta-adrenoceptor/adenylate cyclase pathway contributes to this cardioprotection is not yet fully known. Using enzyme catalytic cytochemistry we studied the adenylate cyclase activity and its distribution in the preconditioned rat heart. Adenylate cyclase activity was examined in Langendorff-perfused rat hearts subjected to the following conditions: control perfusion; 30 min regional ischemia; 5 min occlusion and 10 min reperfusion (IP); IP followed by ischemia. Ischemia-induced arrhythmias and the effect of ischemic preconditioning on the incidence of arrhythmias were analyzed. At the end of experiment the heart was shortly prefixed with glutaraldehyde. Tissue samples from the left ventricle were incubated in a medium containing the specific substrate AMP-PNP for adenylate cyclase and then routinely processed for electron microscopy. Adenylate cyclase activity was cytochemically demonstrated in the sarcolemma and the junctional sarcoplasmic reticulum (JSR) in control hearts, while it was absent after test ischemia. The highest activity of the precipitate was observed after ischemic preconditioning. In the preconditioned hearts followed by test ischemia, adenylate cyclase activity in the precipitate was preserved in sarcolemma and even more in JSR. Protective effect of ischemic preconditioning was manifested by the suppression of severe arrhythmias. These results indicate the involvement of the adenylate cyclase system in mechanisms underlying ischemic preconditioning.  相似文献   

4.
The role for peroxynitrite (ONOO(-)) in the mechanism of preconditioning is not known. Therefore, we studied effects of preconditioning and subsequent ischemia/reperfusion on myocardial ONOO(-) formation in isolated rat hearts. Hearts were subjected to a preconditioning protocol (three intermittent periods of global ischemia/reperfusion of 5 min duration each) followed by a test ischemia/reperfusion (30 min global ischemia and 15 min reperfusion). When compared to nonpreconditioned controls, preceding preconditioning improved postischemic cardiac performance and significantly decreased test ischemia/reperfusion-induced formation of free nitrotyrosine measured in the perfusate as a marker for cardiac endogenous ONOO(-) formation. During preconditioning, however, the first period of ischemia/reperfusion increased nitrotyrosine formation, which was attenuated after the third period of ischemia/reperfusion. We conclude that classic preconditioning inhibits ischemia/reperfusion-induced cardiac formation of ONOO(-) and that subsequent periods of ischemia/reperfusion result in a gradual attenuation of ischemia/reperfusion-induced ONOO(-) generation. This mechanism might be involved in ischemic adaptation of the heart.  相似文献   

5.
Ischemic preconditioning has been shown to protect several organs from ischemia/reperfusion-induced injury. In the pancreas, protective effect of ischemic preconditioning has been shown against pancreatitis evoked by ischemia/reperfusion, as well as by caerulein. However, the effect of ischemic preconditioning on the course of acute pancreatic is unclear. The aim of our study was to evaluate the influence of ischemic preconditioning on pancreatic regeneration and pancreatic presence of platelet-derived growth factor-A (PDGF-A) and vascular endothelial growth factor (VEGF) in the course of ischemia/reperfusion-induced pancreatitis. METHODS: In male Wistar rats, ischemic preconditioning of the pancreas was performed by short-term clamping of celiac artery (twice for 5 min with 5 min interval). Acute pancreatitis was induced by clamping of inferior splenic artery for 30 min followed by reperfusion. Rats were sacrificed 1, 5, 12 h or 1, 2, 3, 5, 7, 9 and 21 days after the start of reperfusion. Severity of acute pancreatitis and pancreatic regeneration were determined by biochemical and morphological examination, expression of growth factors was determined by immunohistochemical analysis. RESULTS: In ischemia/reperfusion-induced pancreatitis, the pancreatic damage reached the maximal range between the first and second day of reperfusion, and was followed by subsequent pancreatic regeneration. Ischemic preconditioning alone caused mild passing pancreatic damage and an increase in plasma concentration of pro-inflammatory interleukin-1 and anti-inflammatory interleukin-10. Ischemic preconditioning applied before ischemia/reperfusion-induced pancreatitis reduced morphological and biochemical signs of the pancreatitis-evoked pancreatic damage and accelerated pancreatic regeneration. This effect was associated with improvement of pancreatic blood flow. Ischemic preconditioning, ischemia/reperfusion-induced pancreatitis and their combination increased the presence of VEGF in acinar and islet cells, and immunostaining for PDGF-A in blood vessels. This effect was maximally pronounced after combination of ischemic preconditioning plus pancreatitis and occurred earlier than after pancreatitis alone. CONCLUSIONS: Ischemic preconditioning reduces pancreatic damage and accelerates pancreatic healing in the course of ischemia/reperfusion-induced pancreatitis. This effect is associated with the increase in plasma concentration of anti-inflammatory interleukin-10, improvement of pancreatic blood flow and alteration of pancreatic immunohistochemical expression of PDGF-A and VEGF.  相似文献   

6.
Exogenously administered adenosine agonist will protect myocardium against infarction during ischemia. However, long-term exposure to adenosine agonists is associated with loss of this protection. To determine why this protection is lost, isolated, perfused rabbit hearts were studied after administration of R(-)-N6-(2-phenylisopropyl)adenosine (PIA), 0.25 mg/h IP, for 3-4 days to intact animals. All hearts experienced 30 min of regional ischemia and 120 min of reperfusion. Control groups 1 and 2 were untreated. In group 1 this ischemia/reperfusion was the only intervention, whereas group 2 hearts were preconditioned with a cycle of 5 min global ischemia/10 min reperfusion preceding the 30 min regional ischemia. Groups 3-5 had been chronically exposed to PIA. Group 3 hearts had 1 preconditioning ischemia/reperfusion cycle before the prolonged ischemia. Group 4 received a 5 min infusion of 0.1 mol/L phenylephrine in lieu of global ischemia, whereas group 5 was instead treated with 1 mol/L carbachol. Infarct size averaged 32% of the risk zone in group 1, whereas ischemic preconditioning limited infarction to 8.2 in group 2. Prolonged exposure of group 3 hearts to PIA resulted in the inability of preconditioning with 5 min global ischemia to protect (28.7 ± 4.4% infarction). However, protection was restored by either phenylephrine, an agonist of 1-adrenergic receptors which couple to Gq and stimulate PKC, or carbachol, an agonist of M2-muscarinic receptors which couple instead to Gi as do adenosine A1 receptors (5.2 ± 1.7% and 9.2 ± 2.1% infarction, resp.). Therefore, cross tolerance to ischemic preconditioning develops after chronic PIA infusion. Since both the Gi and the PKC components of the preconditioning pathway were shown to be intact, tolerance must have been related to downregulation or desensitization of the A1 adenosine receptor.  相似文献   

7.
Inhalational anesthetic-induced preconditioning (APC) has been shown to reduce infarct size and attenuate contractile dysfunction caused by myocardial ischemia. Only a few studies have reported the effects of APC on arrhythmias during myocardial ischemia-reperfusion injury, focusing exclusively on reperfusion. Accordingly, the aim of the present study was to examine the influence of APC on ventricular arrhythmias evoked by regional no-flow ischemia. APC was induced in adult male Wistar rats by 12-min exposures to two different concentrations (0.5 and 1.0 MAC) of isoflurane followed by 30-min wash-out periods. Ventricular arrhythmias were assessed in the isolated perfused hearts during a 45-min regional ischemia and a subsequent 15-min reperfusion. Myocardial infarct size was determined after an additional 45 min of reperfusion. The incidence, severity and duration of ventricular arrhythmias during ischemia were markedly reduced by APC. The higher concentration of isoflurane had a larger effect on the incidence of ventricular fibrillation than the lower concentration. The incidence of ventricular tachycardia and reversible ventricular fibrillation during reperfusion was also significantly reduced by APC; the same was true for myocardial infarct size. In conclusion, we have shown that preconditioning with isoflurane confers profound protection against myocardial ischemia- and reperfusion-induced arrhythmias and lethal myocardial injury.  相似文献   

8.
The role of NO in ischemia/reperfusion injury in isolated rat heart   总被引:5,自引:0,他引:5  
Nitric oxide (NO) is an important regulator of myocardial function and vascular tone under physiological conditions. However, its role in the pathological situations, such as myocardial ischemia is not unequivocal, and both positive and negative effects have been demonstrated in different experimental settings including human pathology. The aim of the study was to investigate the role of NO in the rat hearts adapted and non-adapted to ischemia. Isolated Langendorff-perfused hearts were subjected to test ischemic (TI) challenge induced by 25 min global ischemia followed by 35 min reperfusion. Short-term adaptation to ischemia (ischemic preconditioning, IP) was evoked by 2 cycles of 5 min ischemia and 5 min reperfusion, before TI. Recovery of function at the end of reperfusion and reperfusion-induced arrhythmias served as the end-points of injury. Coronary flow (CF), left ventricular developed pressure (LVDP), and dP/dt(max) (index of contraction) were measured at the end of stabilization and throughout the remainder of the protocol until the end of reperfusion. The role of NO was investigated by subjecting the hearts to 15 min perfusion with NO synthase (NOS) inhibitor L-NAME (100 mmol/l), prior to sustained ischemia. At the end of reperfusion, LVDP in the controls recovered to 29.0 +/- 3.9 % of baseline value, whereas preconditioned hearts showed a significantly increased recovery (LVDP 66.4 +/- 5.7 %, p < 0.05). Recovery of both CF and dP/dt(max) after TI was also significantly higher in the adapted hearts (101.5 +/- 5.8 % and 83.64 +/- 3.92 % ) as compared with the controls (71.9 +/- 6.3 % and 35.7 +/- 4.87 %, respectively, p < 0.05). NOS inhibition improved contractile recovery in the non-adapted group (LVDP 53.8 +/- 3.1 %; dP/dt(max) 67.5 +/- 5.92 %) and increased CF to 82.4 +/- 5.2 %. In contrast, in the adapted group, it abolished the protective effect of IP (LVDP 31.8 +/- 3.1 %; CF 70.3 +/- 3.4 % and dP/dt(max) 43.25 +/- 2.19 %). Control group exhibited 100 % occurrence of ventricular tachycardia (VT), 57 % incidence of ventricular fibrillation (VF) - 21 % of them was sustained VF (SVF); application of L-NAME attenuated reperfusion arrhythmias (VT 70 %, VF 20 %, SVF 0 %). Adaptation by IP also reduced arrhythmias, however, L-NAME in the preconditioned hearts increased the incidence of arrhythmias (VT 100 %, VF 58 %, SVF 17 %). In conclusion: our results indicate that administration of L-NAME might be cardioprotective in the normal hearts exposed to ischemia/reperfusion (I/R) alone, suggesting that NO contributes to low ischemic tolerance in the non-adapted hearts. On the other hand, blockade of cardioprotective effect of IP by L-NAME points out to a dual role of NO in the heart: a negative role in the non-adapted myocardium subjected to I/R, and a positive one, due to its involvement in the mechanisms of protection triggered by short-term cardiac adaptation by preconditioning.  相似文献   

9.
Preconditioning with brief periods of ischemia-reperfusion (I/R) induces a delayed protection of coronary endothelial cells against reperfusion injury. We assessed the possible role of nitric oxide (NO) produced during prolonged I/R as a mediator of this endothelial protection. Anesthetized rats were subjected to 20-min cardiac ischemia/60-min reperfusion, 24 h after sham surgery or cardiac preconditioning (1 x 2-min ischemia/5-min reperfusion and 2 x 5-min ischemia/5-min reperfusion). The nonselective NO synthase (NOS) inhibitor l-NAME, the selective inhibitors of neuronal (7-nitroindazole) or inducible (1400W) NOS, or the peroxynitrite scavenger seleno-l-methionine were administered 10 min before prolonged ischemia. Preconditioning prevented the reperfusion-induced impairment of coronary endothelium-dependent relaxations to acetylcholine (maximal relaxation: sham 77 +/- 3; I/R 44 +/- 6; PC 74 +/- 5%). This protective effect was abolished by l-NAME (41 +/- 7%), whereas 7-NI, 1400W or seleno-l-methionine had no effect. The abolition of preconditioning by l-NAME, but not by selective nNOS or iNOS inhibition, suggests that NO produced by eNOS is a mediator of delayed endothelial preconditioning.  相似文献   

10.
Ischemia is reported to stimulate glucose uptake, but the signaling pathways involved are poorly understood. Modulation of glucose transport could be important for the cardioprotective effects of brief intermittent periods of ischemia and reperfusion, termed ischemic preconditioning. Previous work indicates that preconditioning reduces production of acid and lactate during subsequent sustained ischemia, consistent with decreased glucose utilization. However, there are also data that preconditioning enhances glucose uptake. The present study examines whether preconditioning alters glucose transport and whether this is mediated by either phosphatidylinositol 3-kinase (PI3K) or p38 MAP kinase. Langendorff-perfused rat hearts were preconditioned with 4 cycles of 5 min of ischemia and 5 min of reperfusion, with glucose as substrate. During the last reflow, glucose was replaced with 5 mM acetate and 5 mM 2-deoxyglucose (2DG), and hexose transport was measured from the rate of production of 2-deoxyglucose 6-phosphate (2DG6P), using (31)P nuclear magnetic resonance. Preconditioning stimulated 2DG uptake; after 15 min of perfusion with 2DG, 2DG6P levels were 165% of initial ATP in preconditioned hearts compared with 96% in control hearts (p < 0.05). Wortmannin, an inhibitor of PI3K, did not block the preconditioning induced stimulation of 2DG6P production, but perfusion with SB202190, an inhibitor of p38 MAP kinase, did attenuate 2DG6P accumulation (111% of initial ATP, p < 0. 05 compared with preconditioned hearts). SB202190 had no effect on 2DG6P accumulation in nonpreconditioned hearts. Preconditioning stimulation of translocation of GLUT4 to the plasma membrane was not inhibited by wortmannin. The data demonstrate that ischemic preconditioning increases hexose transport and that this is mediated by p38 MAP kinase and is PI3K-independent.  相似文献   

11.
Myocardial ischemic preconditioning and mitochondrial F1F0-ATPase activity   总被引:1,自引:0,他引:1  
A short period of ischemia followed by reperfusion (ischemic preconditioning) is known to trigger mechanisms that contribute to the prevention of ATP depletion. In ischemic conditions, most of the ATP hydrolysis can be attributed to mitochondrial F1F0-ATPase (ATP synthase). The purpose of the present study was to examine the effect of myocardial ischemic preconditioning on the kinetics of ATP hydrolysis by F1F0-ATPase. Preconditioning was accomplished by three 3-min periods of global ischemia separated by 3 min of reperfusion. Steady state ATP hydrolysis rates in both control and preconditioned mitochondria were not significantly different. This suggests that a large influence of the enzyme on the preconditioning mechanism may be excluded. However, the time required by the reaction to reach the steady state rate was increased in the preconditioned group before sustained ischemia, and it was even more enhanced in the first 5 min of reperfusion (101 ± 3.0 sec in preconditioned vs. 83.4 ± 4.4 sec in controls, p 0.05). These results suggest that this transient increase in activation time may contribute to the cardioprotection by slowing the ATP depletion in the very critical early phase of post-ischemic reperfusion.  相似文献   

12.
We had previously reported that activation of histamine H(3)-receptors (H(3)R) on cardiac adrenergic nerve terminals decreases norepinephrine (NE) overflow from ischemic hearts and alleviates reperfusion arrhythmias. Thus, we used transgenic mice lacking H(3)R (H(3)R(-/-)) to investigate whether ischemic arrhythmias might be more severe in H(3)R(-/-) hearts than in hearts with intact H(3)R (H(3)R(+/+)). We report a greater incidence and longer duration of ventricular fibrillation (VF) in H(3)R(-/-) hearts subjected to ischemia. VF duration was linearly correlated with NE overflow, suggesting a possible cause-effect relationship between magnitude of NE release and severity of reperfusion arrhythmias. Thus, our findings strengthen a protective antiarrhythmic role of H(3)R in myocardial ischemia. Since malignant tachyarrhythmias cause sudden death in ischemic heart disease, attenuation of NE release by selective H(3)R agonists may represent a new approach in the prevention and treatment of ischemic arrhythmias.  相似文献   

13.
Zhou FW  Li YJ  Lu R  Deng HW 《Life sciences》1999,64(13):1091-1097
This study was designed to explore the protective effect of ischemic preconditioning on reperfusion-induced coronary endothelial dysfunction, with a focus on the role of calcitonin gene-related peptide (CGRP) in this effect, in the isolated perfused rat heart. Thirty minutes of global ischemia and 30 min of reperfusion significantly decreased heart rate, left ventricular pressure, and its first derivative and impaired vasodilator responses to acetylcholine. Ischemia-reperfusion did not affect vasodilator responses to sodium nitroprusside. Preconditioning induced by three cycles of 5 min of ischemia and 5 min of reperfusion produced a significant improvement in cardiac function concomitantly with an amelioration of vasodilator responses to acetylcholine. The protective effects of ischemic preconditioning were abolished by CGRP(8-37) (10(-7) M) , the selective CGRP receptor antagonist. After pretreatment with capsaicin (50 mg x kg(-1), s.c.) to deplete endogenous CGRP, the preconditioning effect was absent. Pretreatment with exogenous CGRP (5 x 10(-9) M) for 5 min induced a preconditioning-like protection. The present study suggests that the cardioprotection of ischemic preconditioning is related to the preservation of the coronary endothelial cell, and that the protective effect of preconditioning is mediated by endogenous CGRP in the isolated perfused rat heart.  相似文献   

14.
Sevoflurane postconditioning has been proven to protect the hearts against ischemia/reperfusion injury, manifested mainly by improved cardiac function, reduced myocardial specific biomarker release, and decreased infarct size. This study is to observe the effects of sevoflurane postconditioning on reperfusion-induced ventricular arrhythmias and reactive oxygen species generation in Langendorff perfused rat hearts. Compared with the unprotected hearts subjected to 25 min of global ischemia followed by 30 min of reperfusion, exposure of 3% sevoflurane during the first 15 min of reperfusion significantly improved cardiac function, reduced cardiac troponin I release, decreased infarct size and attenuated reperfusion-induced ventricular arrhythmia. Further analysis on arrhythmia during the 30 min of reperfusion showed that, sevoflurane postconditioning decreased both the duration and incidence of ventricular tachycardia and ventricular fibrillation. In the meantime, intracellular malondialdehyde and reactive oxygen species levels were also reduced. These above results demonstrate that sevoflurane postconditioning protects the hearts against ischemia/reperfusion injury and attenuates reperfusion-induced arrhythmia, which may be associated with the regulation of lipid peroxidation and reactive oxygen species generation.  相似文献   

15.
Glycogen turnover and anaplerosis in preconditioned rat hearts   总被引:1,自引:0,他引:1  
Using (13)C NMR, we tested the hypothesis that protection by preconditioning is associated with reduced glycogenolysis during ischemia. Preconditioned rat hearts showed improved postischemic function and reduced ischemic damage relative to ischemic controls after 30 min stop-flow ischemia and 30 min reperfusion (contractility: 30+/-10 vs. 2+/-2%; creatine kinase release: 41+/-4 vs. 83+/-15 U/g; both P<0.05). Preconditioning decreased preischemic [(13)C]glycogen by 24% (a 10% decrease in total glycogen), and delayed ischemic [(13)C]glycogen consumption by 5-10 min, reducing ischemic glycogenolysis without changing acidosis relative to controls. Upon reperfusion, glycogen synthesis resumed only after preconditioning. Glutamate (13)C-isotopomer analysis showed recovery of Krebs cycle activity with higher anaplerosis than before ischemia (23+/-4 vs. 11+/-3%, P<0.05), but in controls reperfusion failed to restore flux. Compared to control, preconditioning before 20 min ischemia increased contractility (86+/-10 vs. 29+/-14%, P<0.05) and restored preischemic anaplerosis (13+/-3 vs. 39+/-9%, P<0.05). Preconditioning is associated with reduced glycogenolysis early during ischemia. However, protection does not rely on major variations in intracellular pH, as proposed earlier. Our isotopomer data suggest that preconditioning accelerates metabolic and functional recovery during reperfusion by more efficient/active replenishment of the depleted Krebs cycle.  相似文献   

16.
The aim of this work was to investigate the role of the inward rectifying (K1) and the sarcolemmal ATP-sensitive K+ (K-ATP) channels in the electrical response to regional ischemia and the subsequent development of ventricular tachyarrhythmias on reflow (RA). Surface electrograms (ECG) and the transmembrane potential from subepicardial left ventricular cells were recorded in spontaneously beating rat hearts perfused with buffer alone (controls) or exposed to 100 M BaCl2 or 100 M 5-hydroxydecanoate (5-HD) to block either K1 or K-ATP channels respectively. After 20 min of equilibration and 10 min of control recordings, the left anterior descending coronary artery was occluded for 10 min. This was followed by reperfusion. The effects of regional ischemia as well as those of reperfusion (10 min) were recorded throughout. In the three groups, ischemia induced a modest decrease in heart rate and a sharp reduction in resting potential within 3 min. The latter as well as the accompanying depression of propagated electrical activity were enhanced by Ba2+. A partial recovery of the resting potential was observed in all groups during the last 2 min of coronary occlusion. Concomitantly, a slight reduction in the action potential duration was found in the control hearts. This effect was blocked by 5-HD. Under Barium the action potential duration increased by a factor of 3 and its ischemic variations were minimized. Severe sustained ventricular tachyarrhythmias developed on reflow in the controls and in the 5-HD exposed hearts. Barium limited the duration of arrhythmic episodes to a few seconds. Our data indicate that the initial electrical effects of ischemia are unrelated to activation of ATP sensitive K+ channels and that gK1 dominates the K+ membrane conductance at this stage. Furthermore, they show that action potential lengthening limits the duration of arrhythmic episodes triggered by reperfusion. This suggests that electrical heterogeneity plays an important role in the perpetuation of reperfusion arrhythmias.  相似文献   

17.
R Lu  Y J Li  H W Deng 《Regulatory peptides》1999,82(1-3):53-57
Previous studies have suggested that calcitonin gene-related peptide (CGRP) may play an important role in the mediation of ischemic preconditioning. In the present study, we examined the release of CGRP during ischemic preconditioning and the effect of preconditioning frequency on this effect in the isolated rat heart. Thirty minutes of global ischemia and 40 min of reperfusion caused a significant cardiac dysfunction and an increase in the release of creatine kinase (CK) during reperfusion. Preconditioning with one, two or three cycles of 5-min ischemia and 5-min reperfusion caused a marked improvement of cardiac function and a decrease in the release of CK, and there was no difference in the degree of improvement among groups. The protective effects of ischemic preconditioning were abolished by the CGRP receptor antagonist CGRP(8-37). A single preconditioning cycle induced a significant increase in the release of CGRP in the coronary effluent. In the hearts treated with two or three preconditioning cycles, the level of CGRP was highest in the first cycle, and was gradually decreased with increasing number of cycles of preconditioning. These results suggest that the protective effects of ischemic preconditioning are mediated by endogenous CGRP in the isolated rat heart.  相似文献   

18.
To investigate the role of 12-lipoxygenase in preconditioning, we examined whether hearts lacking the "leukocyte-type" 12-lipoxygenase (12-LOKO) would be protected by preconditioning. In hearts from wild-type (WT) and 12-LOKO mice, left ventricular developed pressure (LVDP) and (31)P NMR were monitored during treatment (+/-preconditioning) and during global ischemia and reperfusion. Postischemic function (rate-pressure product, percentage of initial value) measured after 20 min of ischemia and 40 min of reperfusion was significantly improved by preconditioning in WT hearts (78 +/- 12% in preconditioned vs. 44 +/- 7% in nonpreconditioned hearts) but not in 12-LOKO hearts (47 +/- 7% in preconditioned vs. 33 +/- 10% in nonpreconditioned hearts). Postischemic recovery of phosphocreatine was significantly better in WT preconditioned hearts than in 12-LOKO preconditioned hearts. Preconditioning significantly reduced the fall in intracellular pH during sustained ischemia in both WT and 12-LOKO hearts, suggesting that attenuation of the fall in pH during ischemia can be dissociated from preconditioning-induced protection. Necrosis was assessed after 25 min of ischemia and 2 h of reperfusion using 2,3,5-triphenyltetrazolium chloride. In WT hearts, preconditioning significantly reduced the area of necrosis (26 +/- 4%) compared with nonpreconditioned hearts (62 +/- 10%) but not in 12-LOKO hearts (85 +/- 3% in preconditioned vs. 63 +/- 11% in nonpreconditioned hearts). Preconditioning resulted in a significant increase in 12(S)-hydroxyeicosatetraenoic acid in WT but not in 12-LOKO hearts. These data demonstrate that 12-lipoxygenase is important in preconditioning.  相似文献   

19.
Recently, it was reported that Ginkgo biloba extract (EGb 761), which is known to have antioxidant properties, also has antiarrhythmic effects on cardiac reperfusion-induced arrhythmias. In the present study, effects of EGb 761 on cardiac ischemia-reperfusion injury were investigated from the point of view of recovery of mechanical function as well as the endogenous antioxidant status of ascorbate. Isolated rat hearts were perfused using the Langendorff technique, and 40 min of global ischemia were followed by 20 min of reperfusion. EGb 761 improved cardiac mechanical recovery and suppressed the leakage of lactate dehydrogenase (LDH) during reperfusion. Furthermore, EGb 761 diminished the decrease of myocardial ascorbate content after 40 min of ischemia and 20 min of reperfusion. Interestingly, EGb 761 also suppressed the increase of dehydroascorbate. These results indicate that EGb 761 protects against cardiac ischemia-reperfusion injury and suggest that the protective effects of EGb 761 depend on its antioxidant properties.  相似文献   

20.
Preconditioning of the heart can be achieved by an ischemia/reperfusion stimulus, but also by stretching of the heart by an acute volume overload. Since manipulations of the extracellular osmolality affects cell size, we hypothesized that hyperosmotic pretreatment of the isolated perfused rat heart could reduce infarct size following regional ischemia (RI). Langendorff perfused rat hearts were subjected to 30 min RI by ligature of the main branch of the left coronary artery followed by 120 min reperfusion (control group). Ischemic preconditioning (IP-5') was achieved by 5 min total global ischemia and 5 min reperfusion prior to RI. Hyperosmotic pretreatment was accomplished by perfusion with a hyperosmotic buffer (600 mOsm/kg H2O by adding mannitol) for 1 min, 2 min or 5 min. At the end of the experiments, the hearts were cut into 2 mm slices, incubated with triphenyltetrazoliumchloride before scanning and computerized for estimation of infarct size. The average infarct size (as percentage of area at risk) in the control group was 42% and was significantly reduced to 16% by ischemic preconditioning and to 17% by 2 min hyperosmotic pretreatment. Neither 1 min nor 5 min hyperosmotic pretreatment reduced infarct size as compared to the controls. The infarct reducing effect of 2 min hyperosmotic pretreatment was not blunted by inhibition of protein kinase C (chelerytrine chloride), the Na+/H+-exchanger (HOE 694) or stretch-activated anion channels (gadolinium chloride). The results indicate that short-lasting hyperosmotic perturbations of the extracellular environment may precondition the heart to a subsequent ischemic insult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号