首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 123 毫秒
1.
2.
Protein kinase C (PKC) is considered to modulate glucose-stimulated insulin secretion. Pancreatic beta cells express multiple isoforms of PKCs; however, the role of each isoform in glucose-stimulated insulin secretion remains controversial. In this study we investigated the role of PKCdelta, a major isoform expressed in pancreatic beta cells on beta cell function. Here, we showed that PKCdelta null mice manifested glucose intolerance with impaired insulin secretion. Insulin tolerance test showed no decrease in insulin sensitivity in PKCdelta null mice. Studies using islets isolated from these mice demonstrated decreased glucose- and KCl-stimulated insulin secretion. Perifusion studies indicated that mainly the second phase of insulin secretion was decreased. On the other hand, glucose-induced influx of Ca2+ into beta cells was not altered. Immunohistochemistry using total internal reflection fluorescence microscopy and electron microscopic analysis showed an increased number of insulin granules close to the plasma membrane in beta cells of PKCdelta null mice. Although PKC is thought to phosphorylate Munc18-1 and facilitate soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors complex formation, the phosphorylation of Munc18-1 by glucose stimulation was decreased in islets of PKCdelta null mice. We conclude that PKCdelta plays a non-redundant role in glucose-stimulated insulin secretion. The impaired insulin secretion in PKCdelta null mice is associated with reduced phosphorylation of Munc18-1.  相似文献   

3.
Lipoprotein lipase (LPL) provides tissues with fatty acids, which have complex effects on glucose utilization and insulin secretion. To determine if LPL has direct effects on glucose metabolism, we studied mice with heterozygous LPL deficiency (LPL+/-). LPL+/- mice had mean fasting glucose values that were up to 39 mg/dl lower than LPL+/+ littermates. Despite having lower glucose levels, LPL+/- mice had fasting insulin levels that were twice those of +/+ mice. Hyperinsulinemic clamp experiments showed no effect of genotype on basal or insulin-stimulated glucose utilization. LPL message was detected in mouse islets, INS-1 cells (a rat insulinoma cell line), and human islets. LPL enzyme activity was detected in the media from both mouse and human islets incubated in vitro. In mice, +/- islets expressed half the enzyme activity of +/+ islets. Islets isolated from +/+ mice secreted less insulin in vitro than +/- and -/- islets, suggesting that LPL suppresses insulin secretion. To test this notion directly, LPL enzyme activity was manipulated in INS-1 cells. INS-1 cells treated with an adeno-associated virus expressing human LPL had more LPL enzyme activity and secreted less insulin than adeno-associated virus-beta-galactosidase-treated cells. INS-1 cells transfected with an antisense LPL oligonucleotide had less LPL enzyme activity and secreted more insulin than cells transfected with a control oligonucleotide. These data suggest that islet LPL is a novel regulator of insulin secretion. They further suggest that genetically determined levels of LPL play a role in establishing glucose levels in mice.  相似文献   

4.
5.
6.
7.
cAMP signaling is important for the regulation of insulin secretion in pancreatic beta-cells. The level of intracellular cAMP is controlled through its production by adenylyl cyclases and its breakdown by cyclic nucleotide phosphodiesterases (PDEs). We have previously shown that PDE3B is involved in the regulation of nutrient-stimulated insulin secretion. Here, aiming at getting deeper functional insights, we have examined the role of PDE3B in the two phases of insulin secretion as well as its localization in the beta-cell. Depolarization-induced insulin secretion was assessed and in models where PDE3B was overexpressed [islets from transgenic RIP-PDE3B/7 mice and adenovirally (AdPDE3B) infected INS-1 (832/13) cells], the first phase of insulin secretion, occurring in response to stimulation with high K(+) for 5 min, was significantly reduced ( approximately 25% compared to controls). In contrast, in islets from PDE3B(-/-) mice the response to high K(+) was increased. Further, stimulation of isolated beta-cells from RIP-PDE3B/7 islets, using successive trains of voltage-clamped depolarizations, resulted in reduced Ca(2+)-triggered first phase exocytotic response as well as reduced granule mobilization-dependent second phase, compared to wild-type beta-cells. Using sub-cellular fractionation, confocal microscopy and transmission electron microscopy of isolated mouse islets and INS-1 (832/13) cells, we show that endogenous and overexpressed PDE3B is localized to insulin granules and plasma membrane. We conclude that PDE3B, through hydrolysis of cAMP in pools regulated by Ca(2+), plays a regulatory role in depolarization-induced insulin secretion and that the enzyme is associated with the exocytotic machinery in beta-cells.  相似文献   

8.
Somatostatin (SRIF) regulates pancreatic insulin and glucagon secretion. In the present study we describe the generation of SRIF receptor subtype 5 knockout (sst(5) KO) mice to examine the role of SRIF receptor subtypes (sst) in regulating insulin secretion and glucose homeostasis. Mice deficient in sst(5) were viable, fertile, appeared healthy, and displayed no obvious phenotypic abnormalities. Pancreatic islets isolated from sst(5) KO mice displayed increased total insulin content as compared with islets obtained from wild-type (WT) mice. Somatostatin-28 (SRIF-28) and the sst(5)/sst(1)-selective agonist compound 5/1 potently inhibited glucose-stimulated insulin secretion from WT islets. SRIF-28 inhibited insulin secretion from sst(5) KO islets with 16-fold less potency while the maximal effect of compound 5/1 was markedly diminished when compared with its effects in WT islets. sst(5) KO mice exhibited decreased blood glucose and plasma insulin levels and increased leptin and glucagon concentrations compared with WT mice. Furthermore, sst(5) KO mice displayed decreased susceptibility to high fat diet-induced insulin resistance. The results of these studies suggest sst(5) mediates SRIF inhibition of pancreatic insulin secretion and contributes to the regulation of glucose homeostasis and insulin sensitivity. Our findings suggest a potential beneficial role of sst(5) antagonists for alleviating metabolic abnormalities associated with obesity and insulin resistance.  相似文献   

9.
10.
Islet Ca2+-independent phospholipase A2 (iPLA2) is postulated to mediate insulin secretion by releasing arachidonic acid in response to insulin secretagogues. However, the significance of iPLA2 signaling in insulin secretion in vivo remains unexplored. Here we investigated the physiological role of iPLA2 in beta-cell lines, isolated islets, and mice. We showed that small interfering RNA-specific silencing of iPLA2 expression in INS-1 cells significantly reduced insulin-secretory responses of INS-1 cells to glucose. Immunohistochemical analysis revealed that mouse islet cells expressed significantly higher levels of iPLA2 than pancreatic exocrine acinar cells. Bromoenol lactone (BEL), a selective inhibitor of iPLA2, inhibited glucose-stimulated insulin secretion from isolated mouse islets; this inhibition was overcome by exogenous arachidonic acid. We also showed that iv BEL administration to mice resulted in sustained hyperglycemia and reduced insulin levels during glucose tolerance tests. Clamp experiments demonstrated that the impaired glucose tolerance was due to insufficient insulin secretion rather than decreased insulin sensitivity. Short-term administration of BEL to mice had no effect on fasting glucose levels and caused no apparent pathological changes of islets in pancreas sections. These results unambiguously demonstrate that iPLA2 signaling plays an important role in glucose-stimulated insulin secretion under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号