共查询到10条相似文献,搜索用时 109 毫秒
1.
BACKGROUND: Spectral interference (overlap) from phagocytosed green-yellow (GY) microspheres in the flow cytometric, red fluorescence emission measurement channel causes errors in quantifying damaged/dead alveolar macrophages by uptake of propidium iodide. METHODS: Particle burdens of uniform GY fluorescent microspheres phagocytosed by rat alveolar macrophages and the discrimination of damaged/dead cells as indexed by propidium iodide uptake were assessed with conventional and phase-sensitive flow cytometry. RESULTS: The fluorescence spectral emission from phagocytosed microspheres partly overlapped the propidium iodide red fluorescence emission and interfered with the measurement of damaged/dead cells when using conventional flow cytometry without subtractive compensation. This caused errors when estimating the percentage of nonviable, propidium iodide-positive, phagocytic macrophages. The interference was eliminated by employing phase-sensitive detection in the red fluorescence measurement channel based on differences in fluorescence lifetimes between the fluorescent microspheres and propidium iodide. Intrinsic cellular autofluorescence, whose fluorescence lifetime is approximately the same as that of the phagocytosed microspheres, also was eliminated in the phase-sensitive detection process. Because there was no detectable spectral interference of propidium iodide in the green fluorescence (phagocytosis) measurement channel, conventional fluorescence detection was employed. CONCLUSIONS: Phase-resolved, red fluorescence emission measurement eliminates spectral overlap errors caused by autofluorescent phagocytes that contain fluorescent microspheres in the analyses of propidium iodide uptake.Cytometry 39:45-55, 2000. Published 2000 Wiley-Liss, Inc. 相似文献
2.
Periplasmic space in Salmonella typhimurium and Escherichia coli. 总被引:74,自引:0,他引:74
The volume of the periplasmic space in Escherichia coli and Salmonella typhimurium cells was measured. This space, in cells grown and collected under conditions routinely used in work with these bacteria, was shown to comprise from 20 to 40% of the total cell volume. Further studies were conducted to determine the osmotic relationships between the periplasm, the external milieu, and the cytoplasm. Results showed that there is a Donnan equilibrium between the periplasm and the extracellular fluid, and that the periplasm and cytoplasm are isoosmotic. In minimal salts medium, the osmotic strength of the cell interior was estimated to be approximately 300 mosM, with a net pressure of approximately 3.5 atm being applied to the cell wall. A corollary of these findings was that an electrical potential exists across the outer membrane. This potential was measured by determining the distributions of Na+ and Cl- between the periplasm and the cell exterior. The potential varied with the ionic strength of the medium; for cells in minimal salts medium it was approximately 30 mV, negative inside. 相似文献
3.
Conjugation and bacteriophage P1 transduction experiments in Escherichia coli showed that resistance to the antibacterial compound diazaborine is caused by an allelic form of the envM gene. The envM gene from Salmonella typhimurium was cloned and sequenced. It codes for a 27,765-dalton protein. The plasmids carrying this DNA complemented a conditionally lethal envM mutant of E. coli. Recombinant plasmids containing gene envM from a diazaborine-resistant S. typhimurium strain conferred the drug resistance phenotype to susceptible E. coli cells. A guanine-to-adenine exchange in the envM gene changing a Gly codon to a Ser codon was shown to be responsible for the resistance character. Upstream of envM a small gene coding for a 10,445-dalton protein was identified. Incubating a temperature-sensitive E. coli envM mutant at the nonpermissive temperature caused effects on the cells similar to those caused by treatment with diazaborine, i.e., inhibition of fatty acid, phospholipid, and lipopolysaccharide biosynthesis, induction of a 28,000-dalton inner membrane protein, and change in the ratio of the porins OmpC and OmpF. 相似文献
4.
Flow cytometric analysis of the cellular DNA content of Salmonella typhimurium and Alteromonas haloplanktis during starvation and recovery in seawater. 总被引:1,自引:2,他引:1
下载免费PDF全文

Flow cytometry was used to investigate the heterogeneity of the DNA content of Salmonella typhimurium and Alteromonas haloplanktis cells that were starved and allowed to recover in seawater. Hoechst 33342 (bisbenzimide) was used as a DNA-specific dye to discriminate between DNA subpopulations. The DNA contents of both strains were heterogeneous during starvation. S. typhimurium cells contained one or two genomes, and A. haloplanktis cells contained up to six genomes. S. typhimurium genomes were fully replicated at the onset of starvation. Each replication cycle was completed in the early stage of starvation for A. haloplanktis by stopping cells in the partition step of the cell cycle prior to division. Multigenomic marine cells can undergo rapid cell division without DNA synthesis upon recovery, resulting in large fluctuations in the DNA contents of individual cells. In contrast, the heterogeneity of the DNA distribution of S. typhimurium cells was preserved during recovery. The fluctuations in the DNA fluorescence of this strain seem to be due to topological changes in DNA. Flow cytometry may provide a new approach to understanding dynamic and physiological changes in bacteria by detecting cellular heterogeneity in response to different growth conditions. 相似文献
5.
crp genes of Shigella flexneri, Salmonella typhimurium, and Escherichia coli. 总被引:5,自引:8,他引:5
下载免费PDF全文

P Cossart E A Groisman M C Serre M J Casadaban B Gicquel-Sanzey 《Journal of bacteriology》1986,167(2):639-646
The complete nucleotide sequences of the Salmonella typhimurium LT2 and Shigella flexneri 2B crp genes were determined and compared with those of the Escherichia coli K-12 crp gene. The Shigella flexneri gene was almost like the E. coli crp gene, with only four silent base pair changes. The S. typhimurium and E. coli crp genes presented a higher degree of divergence in their nucleotide sequence with 77 changes, but the corresponding amino acid sequences presented only one amino acid difference. The nucleotide sequences of the crp genes diverged to the same extent as in the other genes, trp, ompA, metJ, and araC, which are structural or regulatory genes. An analysis of the amino acid divergence, however, revealed that the catabolite gene activator protein, the crp gene product, is the most conserved protein observed so far. Comparison of codon usage in S. typhimurium and E. coli for all genes sequenced in both organisms showed that their patterns were similar. Comparison of the regulatory regions of the S. typhimurium and E. coli crp genes showed that the most conserved sequences were those known to be essential for the expression of E. coli crp. 相似文献
6.
Intracellular activation of albomycin in Escherichia coli and Salmonella typhimurium. 总被引:5,自引:2,他引:5
The antibiotic albomycin is actively taken up by Escherichia coli via the transport system for the structurally similar iron complex ferrichrome. Albomycin is cleaved, and the antibiotically active moiety is released into the cytoplasm, whereas the iron carrier moiety appears in the medium. Besides transport-negative mutants, additional albomycin-resistant mutants were isolated. The mutations were mapped outside the transport genes close to the pyrD gene at 21 min. The mutants were devoid of peptidase N activity. The molecular weight, sensitivity to inhibitors, and cytoplasmic location of the enzyme hydrolyzing albomycin in vitro corresponded to the known properties of peptidase N. The aminoacyl thioribosyl pyrimidine moiety of albomycin apparently has to be cleaved off the iron chelate transport vehicle to inhibit growth. Peptidase N is the major hydrolyzing enzyme. In Salmonella typhimurium peptidase N and peptidase A were equally active in hydrolyzing and activating albomycin. 相似文献
7.
Starvation-inducible loci of Salmonella typhimurium: regulation and roles in starvation-survival 总被引:12,自引:0,他引:12
Four starvation-inducible loci (stiA, stiB, stiC, and stiE) of Salmonella typhimurium have been extensively characterized as to their genetic and physiologic regulation, and their roles in survival during prolonged simultaneous phosphate (P)-, carbon (C)- and nitrogen (N)-starvation (PCN-starvation). Strains of S. typhimurium LT-2, isogenic with the exception of lacking either the stiA, stiB or stiC locus, died off more quickly and survived at much reduced levels compared with their wild-type parent. When certain sti mutations were combined in the same strain, we found that viability of these cultures declined even more rapidly, and starvation-survival was affected to levels over-and-above the additive effects of each individual mutation, indicating an epistatic relationship between these loci. All four sti loci were, directly or indirectly, under negative control by the crp gene product (cAMP receptor protein, CRP). With the exception of stiB, all were similarly regulated by the cya gene product (i.e., cAMP). This suggests that CRP acts alone, or with a signal molecule other than cAMP, to cause repression of the stiB locus. In addition, all four loci are under positive regulation by the relA gene product (i.e., ppGpp) during C- or N-starvation, but not P-starvation. Since not all relA-dependent sti loci are induced during both C- and N-starvation, we propose that two separate ppGpp-dependent pathways function during C-starvation and N-starvation, respectively. Possible models for separate P-, C- and N-starvation-induction pathways are discussed. 相似文献
8.
BACKGROUND: We have previously characterized apoptotic cell death induced in a follicular lymphoma cell line, HF-1, after triggering via the B-cell receptor (BCR) or treatment with Ca(2+) Ionophore A23187. We analyzed the kinetics of apoptosis induced by these two treatments, as two alternative models of classical apoptosis, by flow cytometry using a novel combination of cytofluorometric stains. METHODS: Cells were stained with a combination of Annexin V-FITC, propidium iodide (PI), and SYTO 17 and analyzed by a two-laser flow cytometry system using 488-nm argon and 633-nm HeNe air-cooled lasers. RESULTS: In both apoptotic models, the first apoptotic cells were detected by SYTO 17 staining. The alteration in SYTO 17 staining intensity was followed by an increased uptake of PI. Finally, the apoptotic cells were labeled with Annexin V in BCR-induced apoptosis. On the contrary, on treatment with Ca(2+) Ionophore A23187, cells became positive for Annexin V earlier than for PI. CONCLUSIONS: The novel cytofluorometric dye, SYTO 17, discriminates apoptotic alterations before Annexin V and PI. PI also discriminates apoptotic alterations before the loss of plasma membrane asymmetry by BCR but not by Ca(2+) Ionophore A23187-induced apoptosis. Finally, the combination of these three cytofluorometric dyes allows effective detection of apoptotic subpopulations and ordering of apoptotic events by flow cytometry. 相似文献
9.
A M Lazdunski 《FEMS microbiology reviews》1989,5(3):265-276
A number of peptidases and proteases have been identified in Escherichia coli. Although their specific physiological roles are often not known, some of them have been shown to be involved in: the maturation of nascent polypeptide chains; the maturation of protein precursors; the signal peptide processing of exported proteins; the degradation of abnormal proteins; the use of small peptides as nutrients; the degradation of colicins; viral morphogenesis; the inactivation of some regulatory proteins for which a limited lifetime is a physiological necessity. Some of these enzymes act in concert to carry out specific functions. At present, twelve peptidases and seventeen proteases have been characterized. The specificity for only a few of them is known. The possible roles and the properties of these enzymes are discussed in this review. 相似文献
10.
AIMS: The aim of this study was to deterimine the survival of an enteric bacterium in anaerobic groundwater and effluent microcosms using the green fluorescent protein (GFP) marker gene in combination with the viability indicator propidium iodide (PI). METHODS AND RESULTS: The pEGFP vector (Clontech) was transformed into Escherichia coli DH5alpha and was stable for at least 100 generations of growth in nonselective medium at 28 degrees C and 37 degrees C. Using an epifluorescent microscope, GFP cells could be detected under blue light (450-490 nm) and the numbers of PI-positive GFPs could be detected under green light (530-560 nm). GFP-tagged E. coli could be detected for at least 132 d in sterilized water microcosms. GFP fluorescence was not lost from the culturable cell population for the duration of the experiment. However, a slow decline in the number of GFP-fluorescent cells in sterilized groundwater was observed. Escherichia coli die-off and loss of green fluorescence was more rapid in nonsterilized waters than in sterilized. Viable numbers of the GFP-tagged E. coli determined by PI counterstaining were compatible with numbers of colony-forming units. CONCLUSIONS: The long-term survival of E. coli and maintainance of GFP-conferred fluorescence in these cells was demonstrated in both groundwater and effluent, under sterilized conditions. However, severe starvation and/or the presence of indigenous microorganisms were found to be factors affecting the maintenance of fluorescence in dead or dying cells. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates the successful application of PI with GFP-tagging to monitor long-term bacterial survival in nutrient-limited conditions and mixed microbial populations. 相似文献