首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There has been considerable interest in cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. However, almost all mass cultures of algae are carbon-limited. Therefore, to reach a high biomass and oil productivities, the ideal selected microalgae will most likely need a source of inorganic carbon. Here, growth and lipid productivities of Tetraselmis suecica CS-187 and Chlorella sp were tested under various ranges of pH and different sources of inorganic carbon (untreated flue gas from coal-fired power plant, pure industrial CO2, pH-adjusted using HCl and sodium bicarbonate). Biomass and lipid productivities were highest at pH 7.5 (320?±?29.9 mg biomass L?1 day?1and 92?±?13.1 mg lipid L?1 day?1) and pH 7 (407?±?5.5 mg biomass L?1 day?1 and 99?±?17.2 mg lipid L?1 day?1) for T. suecica CS-187 and Chlorella sp, respectively. In general, biomass and lipid productivities were pH 7.5?>?pH 7?>?pH 8?>?pH 6.5 and pH 7?>?pH 7.5?=?pH 8?>?pH 6.5?>?pH 6?>?pH 5.5 for T. suecica CS-187 and Chlorella sp, respectively. The effect of various inorganic carbon on growth and productivities of T. suecica (regulated at pH?=?7.5) and Chlorella sp (regulated at pH?=?7) grown in bag photobioreactors was also examined outdoor at the International Power Hazelwood, Gippsland, Victoria, Australia. The highest biomass and lipid productivities of T. suecica (51.45?±?2.67 mg biomass L?1 day?1 and 14.8?±?2.46 mg lipid L?1 day?1) and Chlorella sp (60.00?±?2.4 mg biomass L?1 day?1 and 13.70?±?1.35 mg lipid L?1 day?1) were achieved when grown using CO2 as inorganic carbon source. No significant differences were found between CO2 and flue gas biomass and lipid productivities. While grown using CO2 and flue gas, biomass productivities were 10, 13 and 18 %, and 7, 14 and 19 % higher than NaHCO3, HCl and unregulated pH for T. suecica and Chlorella sp, respectively. Addition of inorganic carbon increased specific growth rate and lipid content but reduced biomass yield and cell weight of T. suecica. Addition of inorganic carbon increased yield but did not change specific growth rate, cell weight or content of the cell weight of Chlorella sp. Both strains showed significantly higher maximum quantum yield (Fv/Fm) when grown under optimum pH.  相似文献   

2.
Both enantiomers of 2,2′-dihydroxy-4,4′,5,5′,6,6′-hexamethybiphenyl (2), a potentially useful chiral synthon, were obtained with >99% ee in high enantioselectivity by cholesterol esterase or porcine pancreas lipase (PPL)-mediated hydrolysis of the corresponding (±)-dipentanoate or (±)-dihexanoate, respectively. Absolute configuration of (S)-3-bromo-2,6′-dimethoxy-4,5,6,2′,3′,4′-hexamethyl-biphenyl (2h) was determined by X-ray analysis.  相似文献   

3.
The need to develop biomass-based domestic production of high-energy liquid fuels (biodiesel) for transportation can potentially be addressed by exploring microalgae with high lipid content. Selecting the strains with adequate oil yield and quality is of fundamental importance for a cost-efficient biofuel feedstock production based on microalgae. This work evaluated 29 strains of Chlorella isolated from Malaysia as feedstock for biodiesel based on volumetric lipid productivity and fatty acid profiles. Phylogenetic studies based on 18S rRNA gene revealed that majority of the strains belong to true Chlorella followed by Parachlorella. The strains were similarly separated into two groups based on fatty acid composition. Of the 18 true Chlorella strains, Chlorella UMACC187 had the highest palmitic acid (C16:0) content (71.3?±?4.2 % total fatty acids, TFA) followed by UMACC84 (70.1?±?0.7 %TFA), UMACC283 (63.8?±?0.7 %TFA), and UMACC001 (60.3?±?4.0 %TFA). Lipid productivity of the strains at exponential phase ranged from 34.53 to 230.38 mg L?1 day?1, with Chlorella UMACC050 attaining the highest lipid productivity. This study demonstrated that Chlorella UMACC050 is a promising candidate for biodiesel feedstock production.  相似文献   

4.
Thirty Chlorella and 30 Scenedesmus strains grown in nitrogen-stressed conditions (70 mg L?1 N) were analyzed for biomass accumulation, lipid productivity, protein, and fatty acid (FA) composition. Scenedesmus strains produced more biomass (4.02?±?0.73 g L?1) after 14 days in culture compared to Chlorella strains (2.57?±?0.12 g L?1). Protein content decreased and lipid content increased from days 8 to 14 with an increase in triacylglycerol (TAG) accumulation in most strains. By day 14, Scenedesmus strains generally had higher lipid productivity (53.5?±?3.7 mg lipid L?1 day?1) than Chlorella strains (35.1?±?2.8 mg lipid L?1 day?1) with the lipids consisting mainly of C16–18 TAGs. Scenedesmus strains generally had a more suitable FA profile with higher amounts of saturated fatty acids and monounsaturated fatty acids (MUFAs) and a smaller polyunsaturated fatty acid (PUFA) component. Chlorella strains had a larger PUFA component and smaller MUFA component. The general trend in the FA composition of Chlorella strains was oleic > palmitic > α-linolenic = linoleic > eicosenoic > heptadecenoic > stearic acid. For Scenedesmus strains, the general trend was oleic > palmitic > linoleic > α-linolenic > stearic > eicosenoic > palmitoleic > heptadecenoic acid. The most promising strains with the highest lipid productivity and most suitable FA profiles were Scenedesmus sp. MACC 401, Scenedesmus soli MACC 721, and Scenedesmus ecornis MACC 714. Although Chlorella sp. MACC 519 had lower lipid productivity, the FA profile was good with a lower PUFA component compared to the other Chlorella strains analyzed and a low linolenic acid concentration.  相似文献   

5.
The kinetics of chlorophyll fluorescence at 77 K were studied in Chlorella cells and spinach chloroplasts.During a first illumination, the rise is polyphasic with at least three phases. The slowest one is irreversible and corresponds to the cytochrome oxidation.The dark regeneration of half the variable fluorescence is biphasic, the fast phase being inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) both in Chlorella and chloroplasts.The fluorescence rise during a second illumination is still biphasic.Carbonyl cyanide m-chlorophenylhydrazone (CCCP) slows down the fluorescence rise in Chlorella but has no effect on the dark regeneration. It does not affect the fluorescence of chloroplasts.Ferricyanide which oxidizes cytochrome b-559 at room temperature produces a quenching of the variable fluorescence and an acceleration of the fluorescence rise during the first illumination.Our results fit the idea of the heterogeneity of the Photosystem II centers at low temperature.  相似文献   

6.
Evaluation of antioxidant capacities of green microalgae   总被引:2,自引:0,他引:2  
Three strains of green microalgae, Chlorococcum sp.C53, Chlorella sp. E53, and Chlorella sp.ED53 were studied for their antioxidant activities. Crude extracts of these microalgae in hot water and in ethanol were examined for their total phenolic contents and for their antioxidant capacities. In order to determine their phenolic contents, the Folin–Ciocalteu method was used. As for the determination of their antioxidant capacities, four different assays were used: (1) total antioxidant capacity determination; (2) DPPH radical scavenging assay; (3) ferrous ion chelating ability assay; and (4) inhibition of lipid peroxidation (using thiobarbituric acid reactive substance). For all the strains we have studied, their ethanolic extract showed more antioxidant activities than their hot water extract. Categorically, the ethanolic extract of Chlorella sp.E53 exhibited both the highest total phenolic content of 35.5?±?0.14 mg gallic acid equivalent (GAE) g?1 dry weight and the highest DPPH radical scavenging of 68.18?±?0.38 % at 1.4 mg mL?1 (IC50 0.81 mg mL?1), whereas Chlorella sp.ED53 showed both the highest ferrous ion chelation activity of 42.78?±?1.48 % at 1 mg mL?1 (IC50 1.23 mg mL?1) and the highest inhibition of lipid peroxidation of 87.96?±?0.59 % at 4 mg mL?1. This high level of inhibition is comparable to 94.42?±?1.39 % of butylated hydroxytoluene, a commercial synthetic antioxidant, at the same concentration.  相似文献   

7.
The concentration of triarimol giving ca 50% inhibition of growth was different for each of 3 species of Chlorella [C. emersonii, 1 mg/l. (1.5 × 10?6 M), C. ellipsoidea 10 mg/l. (3 × 10?5 M), C. sorokiniana, 2 mg/l. (6 × 10?6 M)]. The total lipid of 3 species of Chlorella grown in a culture medium containing triarimol were analysed for chlorophyll, fatty acids and sterol composition. Growth rates were studied in the presence of different concentrations of triarimol. The growth rates of the 3 species were differentially inhibited by triarimol. The growth of Chlorella sorokiniana was 50% inhibited by 2 mg/l. triarimol but 20 mg/l. did not produce a cessation of growth. The greatest inhibition of growth rates and chlorophyll content was observed in Chlorella emersonii. The quantity of unsaturated fatty acids was increased by triarimol treatment in all 3 species of Chlorella. Triarimol strongly inhibited 14α-demethylation in Chlorella emersonii, and C. ellipsoidea and less in C. sorokiniana, resulting in accumulation of 14α-methyl sterols. Triarimol also inhibited the second alkylation of the side chain in C. ellipsoidea and C. emersonii. The introduction of the 22-double bond was inhibited in all 3 species of Chlorella studied. Although some differences were apparent, the effect of triarimol was quite similar to that of triparanol and AY-9944 in these 3 species of Chlorella.  相似文献   

8.
The growth and total lipid content of four green microalgae (Chlorella sp., Chlorella vulgaris CCAP211/11B, Botryococcus braunii FC124 and Scenedesmus obliquus R8) were investigated under different culture conditions. Among the various carbon sources tested, glucose produced the largest biomass or microalgae grown heterotrophically. It was found that 1 % (w/v) glucose was actively utilized by Chlorella sp., C. vulgaris CCAP211/11B and B. braunii FC124, whereas S. obliquus R8 preferred 2 % (w/v) glucose. No significant difference in biomass production was noted between heterotrophic and mixotrophic (heterotrophic with light illumination/exposure) growth conditions, however, less production was observed for autotrophic cultivation. Total lipid content in cells increased by approximately two-fold under mixotrophic cultivation with respect to heterotrophic and autotrophic cultivation. In addition, light intensity had an impact on microalgal growth and total lipid content. The highest total lipid content was observed at 100 μmol m?2s?1 for Chlorella sp. (22.5 %) and S. obliquus R8 (23.7 %) and 80 μmol m?2s?1 for C. vulgaris CCAP211/11B (20.1 %) and B. braunii FC124 (34.9 %).  相似文献   

9.
水产用聚维酮碘对异育银鲫养殖的安全性评价   总被引:1,自引:0,他引:1  
评价水产用聚维酮碘对异育银鲫(Carassius auratus gibelio)养殖的安全性,为其在异育银鲫养殖中的安全应用提供了重要的科学依据,本研究参照国家标准及相关法规,在观察了聚维酮碘对小球藻(Chlorella sp.)生长抑制作用、对水产益生菌抑菌效果以及对大型蚤(Daphnia magna straus)、斑马鱼(Brachydanio rerio)和异育银鲫的急性毒性的基础上,分析其对异育银鲫及其养殖水体主要有害理化因子的影响.实验结果表明,聚维酮碘在终浓度为6.00 ~ 14.00 mg/L时对小球藻生长具有促进作用,对小球藻的半数抑制浓度大于14.00 mg/L,对水产益生菌的最小抑菌浓度为128~512 mg/L,对大型蚤、斑马鱼的半数致死浓度分别为13.44 mg/L、17.63 mg/L.此外,聚维酮碘对异育银鲫的半数致死浓度为74.77 mg/L,而且在养殖水体中加入聚维酮碘至终浓度为0.20 ~ 1.40 mg/L后14 d内,随着聚维酮碘浓度的增加,各浓度组异育银鲫养殖水体的氨氮含量、亚硝酸盐含量均缓慢下降.本研究证实聚维酮碘低毒,但考虑到其可能对异育银鲫养殖水体中大型蚤等浮游动物存在潜在影响,建议其在异育银鲫养殖中的安全应用浓度应不高于1.34 mg/L,在该安全应用浓度内不会引起养殖水中氨氮、亚硝酸盐等有害因子含量的增加.  相似文献   

10.
Summary A chloramphenicol concentration of 3 mg per ml inhibits uptake of 14C-labelled phenylalanine, lysine, and adenine by Chlorella cells. Incorporation into both the free pool and the TCA insoluble fraction is inhibited. The inhibition is not related to inhibition of protein synthesis since cycloheximide (a specific inhibitor of protein synthesis in Chlorella) does not inhibit uptake of the 14C-labelled amino acids. Uptake of 14C-uracil is not inhibited by chloramphenicol.Both chloramphenicol and 2.4-dinitrophenol stimulate endogenous respiration of Chlorella, but whereas the latter reduces the internal concentration of ATP, the former (in concentrations of 1–3 mg/ml) stimulates it about two-fold. Similar concentrations of chloramphenicol decreases slightly the concentration of ADP, and it is therefore suggested that in Chlorella, chloramphenicol concentrations of 1–3 mg per ml inhibit some energy-linked reactions by preventing ATP utilization.  相似文献   

11.
The aim of this study was to examine the effects of a control diet (CON, 0.25?mg DON/kg diet) or a Fusarium toxin-contaminated diet (FUS, 4.49?mg DON/kg diet) without and with humic substances (HS) (CON-HS and FUS-HS, 0.23 and 4.56?mg DON/kg diet, respectively) on piglets during a 5-week growth trial starting after weaning (6.7?±?0.9?kg live weight, n?=?20/group). Feed intake was significantly reduced by feeding the FUS containing diets by approximately 21% compared with the CON diet irrespective of HS supplementation. The decrease in live weight gain paralleled the feed intake depression and amounted to approximately 26%. Feeding the FUS diet was clearly reflected by the DON levels in blood. While only traces of DON with median concentrations of 3?ng/ml (2?C5?ng/ml) and 2?ng/ml (0?C3?ng/ml) were detected in piglets fed the CON and CON-HS diets, respectively, significantly higher levels of 22.5?ng/ml (7?C30?ng/ml) and 23.5?ng/ml (15?C32?ng/ml) were found in piglets fed the FUS and FUS-HS diet, respectively. The urinary excretion of DON and its metabolite de-epoxy-DON as percentage of DON intake was not significantly influenced by HS supplementation and amounted to 24.1 and 20.2% for groups FUS and FUS-HS, respectively. In conclusion, the tested HS preparation cannot be recommended as a DON inactivating feed supplement for pigs.  相似文献   

12.
Mammary glucose 6-phosphate dehydrogenase. Molecular weight studies   总被引:1,自引:0,他引:1  
Glucose 6-phosphate dehydrogenase was isolated from lactating rat mammary glands by a procedure extended and modified from one previously described. The sedimentation coefficient, S20,W, was 10.3 in 0.01 m potassium phosphate, pH 6.9, containing 0.1 m NaCl at three protein concentrations between 0.51 and 1.45 mg/ml. The partial specific volume, v?, was 0.735 ml/g as determined by equilibrium sedimentation centrifugation in H2O and D2O containing buffers at pH(D) 6.5 containing 0.01 m potassium phosphate and 0.1 m NaCl. In the same buffer, but with 2.0 m NaCl, the apparent partial specific volume, φ′, was 0.756 ml/g. Equilibrium sedimentation of the enzyme at an initial concentration of 0.8 mg/ml was performed in 0.01 m potassium phosphate, pH 6.5, containing 1.0 mm EDTA, 7.0 mm mercaptoethanol, and various concentrations of NaCl between 0 and 2.0 m and with or without 0.1 mm NADP+. Weight-average and Z-average molecular weights were calculated and, from these values, the molecular weights of the monomer and dimer were derived. Under these conditions, the enzyme existed principally as a dimer, of molecular weight approximately 235,000, at low salt concentration, and as a monomer, of molecular weight approximately 120,000 in 1.0 m and 2.0 m NaCl. The subunit molecular weight was found to be 64,000 by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Equilibrium sedimentation in 6 m guanidine hydrochloride gave a subunit molecular weight of 62,000 (assuming v? was unaltered) or 58,000 or 54,000 (assuming v? is decreased by 0.01 or 0.02, respectively, in 6 m guanidine). We conclude that rat mammary glucose 6-phosphate dehydrogenase has a molecular weight similar to that of glucose 6-phosphate dehydrogenases isolated from various other mammalian sources with the notable exception of human erythrocyte glucose 6-phosphate dehydrogenase which, like the microbial glucose 6-phosphate dehydrogenases thus far examined, has a significantly lower molecular weight.  相似文献   

13.
There has been considerable interest on cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. The ideal microalga characteristics are that it must grow well even under high cell density and under varying outdoor environmental conditions and be able to have a high biomass productivity and contain a high oil content (~25–30 %). The main advantage of Chlorophyta is that their fatty acid profile is suitable for biodiesel conversion. Tetraselmis suecica CS-187 and Chlorella sp. were grown semi-continuously in bag photobioreactors (120 L, W?×?L?=?40?×?380 cm) over a period of 11 months in Melbourne, Victoria, Australia. Monthly biomass productivity of T. suecica CS-187 and Chlorella sp. was strongly correlated to available solar irradiance. The total dry weight productivity of T. suecica and Chlorella sp. was 110 and 140 mg L?1 d?1, respectively, with minimum 25 % lipid content for both strains. Both strains were able to tolerate a wide range of shear produced by mixing. Operating cultures at lower cell density resulted in increasing specific growth rates of T. suecica and Chlorella sp. but did not affect their overall biomass productivity. On the other hand, self shading sets the upper limit of operational maximum cell density. Several attempts in cultivating Dunaliella tertiolecta CS-175 under the same climatic conditions were unsuccessful.  相似文献   

14.
《Process Biochemistry》2007,42(9):1319-1325
A two-step enzymatic resolution process for production of (R)- and (S)-glycidyl butyrate was investigated and the lipases were screened. The first step involved a hydrolysis of (R,S)-glycidyl butyrate catalyzed by porcine pancreatic lipase (S-favored) with an E of 21 for production of (R)-glycidyl butyrate (13.2 mmol, 98% ee, 36% yield) under the optimal conditions (pH 7.4, 30 °C, 30 mg/ml CTAB). Then, the recovered (R)-enriched glycidol (19.8 mmol, 65% ee, 56% yield) was used for transesterification catalyzed by Novozym 435 (R-favored) with an E of 69 to obtain (S)-glycidyl butyrate (15.1 mmol, 98% ee, 42% yield) under the optimum conditions (aW = 0.24, n-heptane, 80 min).  相似文献   

15.
Microalgae represent promising sources of bioactive compounds for pharmaceutical and industrial applications. The emergence of antibiotic resistant bacteria leads to the need to explore new cost-effective, safe, and potent bioactive compounds from the microalgae. This study aimed to investigate the potential of local microalgae for their antimicrobial properties and bioactive compounds. Three local microalgae namely Chlorella sorokiniana (UKM2), Chlorella sp. UKM8, and Scenedesmus sp. UKM9 biomass methanol extracts (ME) were prepared and tested against Gram-positive and Gram-negative bacteria. Chlorella sp. UKM8-ME showed the highest antibacterial activity. UKM8-ME minimum inhibitory concentrations were in the range of 0.312 to 6.25 mg/mL. Cytotoxicity evaluation using MTT assay showed that the microalgae methanolic extracts did not exhibit cytotoxicity against Vero-cells. The UKM8-ME was mainly containing 28 compounds from the Gas Chromatography-Mass Spectrometry (GC–MS) analysis. Major compounds of UKM8-ME included phenol (18.5%), hexadecanoic acid (18.25%), phytol (14.43%), 9,12-octadecadienoic acid (13.69%), and bicyclo[3.1.1]heptane (7.23%), which have been previously described to possess antimicrobial activity. Hence, Chlorella sp. (UKM8) methanol extracts showed promising antibacterial activity. More comprehensive studies are required to purify these antimicrobial compounds and develop our understanding on their mechanism in UKM8-ME to unleash their specific potential.  相似文献   

16.
Spinach leaves and photoautotrophically grown Euglena and Chlorella possess fructose 1,6-diphosphate aldolases inhibited by p-chloromercuribenzoate but insensitive to K+ or ethylenediamine tetraacetate (Type I). Dark grown Euglena and Chlorella have aldolases inhibited by p-chloromercuribenzoate and ethylenediamine tetraacetate but stimulated by K+ (Type II). The red alga, Chondrus, and the golden-brown alga, Ochromonas, appear to possess both types. Bean, pea, and spinach seeds and the leaves and cotyledons of etiolated bean seedlings contain a p-chloromercuribenzoate insensitive, apparently non-sulfhydryl variant of Type I. Sensitivity of leaf aldolase to p-chloromercuribenzoate occurs in etiolated bean seedlings only after an extended period of illumination. Type II aldolase activity in cell-free extracts of 4 blue-green algae has been demonstrated.  相似文献   

17.
The marine microalga Chlorella sp. was cultivated under mixotrophic conditions using methanol as an organic carbon source, which may also act to maintain the sterility of the medium for long-term outdoor cultivation. The optimal methanol concentration was determined to be 1% (v/v) for both cell growth and lipid production when supplying 5% CO2 with 450 μE/m2/sec of continuous illumination. Under these conditions, the maximal cell biomass and total lipid production were 4.2 g dry wt/L and 17.5% (w/w), respectively, compared to 2.2 g dry wt/L and 12.5% (w/w) from autotrophic growth. Cell growth was inhibited at methanol concentrations above 1% (v/v) due to increased toxicity, whereas 1% methanol alone sustained 1.0 g dry wt/L and 4.8% total lipid production. We found that methanol was preferentially consumed during the initial period of cultivation, and carbon dioxide was consumed when the methanol was depleted. A 12:12 h (light:dark) cyclic illumination period produced favorable cell growth (3.6 g dry wt/L). Higher lipid production was observed with cyclic illumination than with continuous illumination (18.6% (w/w) vs 17.5% (w/w)), and better lipid production was also obtained under mixotrophic rather than autotrophic conditions. Interestingly, under mixotrophic conditions with 12:12 (h) cyclic illumination, high proportions of C16:0, C18:0, and C18:1 were observed, which are beneficial for biodiesel production. These results strongly indicate that the carbon source is important for controlling both lipid composition and cell growth under mixotrophic conditions, and they suggest that methanol could be utilized to scale up production to an open pond type system for outdoor cultivation where light illumination changes periodically.  相似文献   

18.
Adenylate cyclase was found to be present in rod outer segment preparations, but its specific activity was only about 1% of activities reported in earlier studies. In frog activities ranged from 0.015 to 1.1 nmoles 3′,5′ cyclic AMP/mg protein per 10 min depending on the method of preparation and homogenization. In cattle, the rod outer segment layer obtained after sucrose density gradient centrifugation, had an activity of 0.22 nmole 3′,5′ cyclic AMP/mg protein per 10 min. Furthermore a second (more dense) layer obtained in this procedure possessed a 10 times higher specific activity.Light decreased the adenylate cyclase activity in the rod outer segment suspensions of both frog and cattle, but the maximal inhibition was about 50% at extensive illumination. Light did not affect the activity in the second layer, unless rod outer segment layer material was present, indicating that an inhibitory diffusible factor is released from outer segments during illumination. Evidence that either Ca2+ or free all-trans retinaldehyde constitutes this factor could not be obtained.The activities of some marker enzymes in the two layers and in whole retina homogenates from cattle were determined. Comparison of some properties of the adenylate cyclase activities in the two layers and consideration of these enzyme activities do not exclude the possibilty that the activity in the rod outer segment material is due to contamination with other retinal material.The available evidence does not support a direct role for 3′,5′ cyclic AMP in the visual excitation process.  相似文献   

19.
The present study focused on cost-effective production of microalgal biomass and lipid production on dairy effluent. The novel microalga, Chlorella sp. isolated from the dairy effluent showed high growth and lipid production on the undiluted and two-fold diluted dairy effluent which were four to five times higher than those of Chlorella vulgaris (control). The high growth of Chlorella sp. was thought to be possibly due to its heterotrophic growth capacity, high turbidity, COD, nutrients and trace elements. In contrast, C. vulgaris showed poor heterotrophic and photoautotrophic growth under the highly turbid conditions of dairy effluent. Both Chlorella sp. and C. vulgaris showed similar total FAME (mg FAME/g algal cells). The fatty acid composition analysis revealed that both Chlorella sp. and C. vulgaris possessed major C18 and C20 fatty acids which will be used for biodiesel production. Overall, the novel microalga, Chlorella sp. isolated from the dairy effluent showed high potential for cost-effective algal cultivation and lipid production on dairy effluent without any modification of process.  相似文献   

20.
Outbreaks of Cyclospora cayetanensis infection have been linked to consumption of food and water contaminated by oocysts that can survive both physical and chemical disinfectants. Magnesium oxide (MgO) nanoparticles (NPs) can be potentially used in food as bactericides. In this study, C. cayetanensis pre- and post-sporulated oocysts were exposed to MgO NPs with different doses ranging from 1.25–25?mg/ml. With comparison to control, the antiprotozoal activity of MgO NPs was evaluated by identifying the median effective concentration dose (EC50), lethal concentration dose (LC90), microscopically changes on treated oocysts and rates of sporulation. Among pre- and post-sporulated oocysts, MgO NPs?≥?EC50 was observed after 24?h at concentrations 10 and 12.5?mg/ml, respectively, while?≥?LC90 was observed after 24?h, 48?h and 72?h at concentrations 15, 12.5 and 10?mg/ml, respectively. MgO NPs treated oocysts showed abnormal morphological changes such as an increase in size, wall injury, deposition of vacuolated homogenous particles in the cytoplasm, evacuation of oocyst's contents, and collapse. Sporocysts of treated oocysts were noticed to be peripherally shifted. Sporulation failure of treated oocysts achieved ≥90% after 24?h and 72?h of incubation with 15 and 12.5?mg/ml, respectively, while it was 10.1% among non-treated. All the differences were statistically significant. Our results demonstrated that MgO NPs has a significant anti-Cyclospora effect on both unsporulated and sporulated oocysts, especially considering that it could be biologically synthesized, that way it can be used safely as a preventive agent in food and water disinfectant treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号