首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in vegetation along a precipitation gradient in Central Argentina were studied. Floristic samples were taken along an east-west transect of about 300 km. Correlation analysis between precipitation and ordination axes was used to provide an environmental interpretation of vegetation variability.Floristic analysis produced an ordination of plant communities from evergreen forests (precipitation >500 mm) to desert shrublands and therophyte communities (precipitation <200 mm). Results showed a trend of floristic and structural impoverishment towards the west. There is a replacement of species along the transect and a shift in dominant growth forms. The first ordination axis is significantly, negatively correlated with annual precipitation.  相似文献   

2.
郑楠  张华  武晶  曹月 《生态科学》2009,28(6):510-515
通过沿海拔梯度的系统样方调查,利用物种丰富度、α多样性和β多样性等指标,对辽宁老秃顶子北坡植物群落木本层和草本层物种多样性随海拔梯度的变化趋势进行了研究,并对植物群落物种多样性与土壤特性之间的相关关系进行了初步探索。结果表明:木本植物物种多样性随海拔梯度的升高呈波动式降低的趋势;草本植物物种多样性随海拔梯度的变化趋势为先降低后升高;群落类型间的过渡带是植物物种替换速率较高的地区;老秃顶子北坡土壤类型以棕色森林土和暗棕色森林土为主,土壤有机质含量较高;群落物种多样性与土壤特性之间存在着一定的负相关性。  相似文献   

3.
Aim Climate‐modelling exercises have demonstrated that the Cape Floristic Region is highly sensitive to climate change and will apparently lose much of its northern limits over the next few decades. Because there is little monitoring of diversity in this area, ant assemblage structure was investigated within the main vegetation types in the Greater Cederberg Biodiversity Corridor. In particular, we sought to determine how ant assemblage structure differs between the main vegetation types, how restricted ants – and in particular the major myrmecochores – are to the major vegetation types, and which environmental variables might underlie differences in the ant assemblages and in the specificity of species to particular areas. Location Northern Cape Floristic Region, Western Cape, South Africa. Methods Sampling was undertaken during October 2002 and March 2003 across an altitudinal gradient ranging from sea level (Lambert's Bay) to c. 2000 m a.s.l. (Sneeukop, Cederberg) and down again to 500 m a.s.l. (Wupperthal) in the Western Cape, South Africa. Pitfall traps were used to sample ants at 17 altitudinal bands, stretching over three vegetation types (Strandveld, Mountain Fynbos and Succulent Karoo). Biotic and abiotic environmental variables were collected at each sampling site. Generalized linear models were used to determine the relationships between species richness, density, abundance and the abundance of the major myrmecochores, and the environmental variables. Redundancy analysis was used to determine the relationship between ant assemblage structure and the environmental variables. The Indicator Value Method was used to identify characteristic ant species for each vegetation type and altitudinal site. Results Temperature explained significant proportions of the variation in species density and abundance, and, together with area and several vegetation variables, contributed significantly to the separation of the assemblages in the major vegetation types and biomes. Four major myrmecochores were identified [Anoplolepis sp. (cf. custodiens), Anoplolepis sp. (cf. steinergroeveri), Camponotus niveosetosus, Tetramorium quadrispinosum]. The abundances of the two Anoplolepis species were related to vegetation variables, while the abundance of the other two species showed opposite relationships with temperature variables. Fourteen ant species were characteristic of certain vegetation types and altitudes. Several of these species contributed to the differences between the assemblages. Main conclusions There are likely to be substantial and complex changes to ant assemblages as climates change in the northern Cape Floristic Region. Moreover, the importance of ants for ecosystem functioning suggests that these responses are not only likely to be a response solely to vegetation changes, but might also precipitate vegetation changes. The changes that are predicted to take place in the next 50 years in the Cape Floristic Region could be substantially exacerbated by such synergistic effects, which have major implications for long‐term conservation plans. Ongoing monitoring of this transect will reveal the nature and pace of the change as it unfolds.  相似文献   

4.
《农业工程》2020,40(1):30-43
IntroductionDistribution pattern and diversity of flora was compared along an altitudinal gradient using the stratified random sampling design for identifying major plant communities of Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India. The reconnaissance of flora is presented, along with the analysis of the distribution of species, genera, and families within five (5) altitudinal zones. Kedarnath Wildlife Sanctuary which is situated in the Indian Himalayas harbours a rich variety of flora and fauna. The Himalayas are recognized for diverse vegetation distributed over a wide range of topographical conditions.ResultsThe analysis of diversity within five (5) altitudinal zones was carried out and a total of 324 plant species, representing 219 genera belonging to 92 families, were found. The dominant family was Asteraceae; the co-dominant family was Rosaceae, followed by Lamiaceae and Ranunculaceae. Eight (8) families were observed in all the altitudinal zones, while forty (40) families were observed in a single altitudinal zone, and the remaining forty-four (44) families were found in more than one (1) altitudinal zone. Most of the tree species were contagiously distributed, but a few of them were randomly distributed in all the altitudinal zones. The shrubs and herbs were contagiously distributed in all the altitudinal zones. The correlation analysis (P < 0.05) between altitude and number of species showed that altitude is negatively correlated with tree (r = −0.96), shrub (r = −0.61), and herb species (r = −0.20). As per the cluster analysis of tree layer, altitudinal zone - III (2450–2650 m) and altitudinal zone - IV (2900–3100 m) were found most similar. Altitudinal zone–V (3350–3550 m) was found to be dissimilar from the other zones for herbs.ConclusionsAlthough species composition varies with altitude, but there is a complex relationship between species richness and altitudinal gradient. A decreasing pattern in both species richness and family richness for trees, shrubs and herbs, was recorded with increasing altitude. The predominant factors underlying this variability in plant species and biogeography appear to be climatic and specific to each taxonomic group.  相似文献   

5.
热带地区环境变化对研究全球气候变化显得越来越重要,热带地区的古环境记录,特别是孢粉记录是恢复过去气候的重要方法,东亚热带地区在冰期-间冰期的气候影响下,生态环境主要表现为山地植被带的垂直升降,因此,定量恢复热带地区第四纪植被垂直移动的幅度,以及作为古气候的替代性指标进行数量化转换是热带地区孢粉研究的关键,然而,我国热带地区现代孢粉雨和植被的关系研究程度较低,给热带第四纪孢粉古生态的恢复和对比带来困难,本研究较系统地总结了海南岛从低地平原到五指山1860m的垂直植被带表土的孢粉散布规律,为热带地区孢粉古环境的重建提供了新的基础数据。研究结果表明,孢粉组合的变化与垂直植被带紧密相关,孢粉的多样性随海拔升高而降低,其中针叶类随海拔升高而增加,蕨类孢子则相应减少,在低地和低山丘陵,孢粉组合显示出为干扰的影响,如防风雨的主要树种木麻黄(Casuarina),行道树台湾相思(Acacia richii)和人为砍伐后大面积生长的芒箕(Dicranopteris)群落等在一些孢粉谱中特别高,尽管如此,孢粉组合反映的垂直植被带变化仍然是清楚的,海南岛由下至上可划分出5个表土孢粉组合带-低地人类强烈干扰带(<400m):Mallotus,Casuarina,Pinus,Myrica,Palmae,Poaceaae,Dicranopteris:--低地质陵地带(400-800m):Quercus,Castanopsis,Mallotus,Myrica,Platea,Meliaceae和大量孢子(包括Dicranopteris);--山地下带(800-1200m):Castanopsis,Quercus,Podocarpus,Dacrydium,Cyathea和单缝孢子;--山地上带(1200-1600m):Dacrydium,Pinus,Altingia,Quercus,Castanopsis;--山顶带(>1600m):Pinus,Rhododendron,Dacrydium,Symplocos.  相似文献   

6.
Abstract. We studied the vegetation distribution in eight landscape types distinguished along an altitudinal gradient in the Trans‐Himalayan region of Ladakh, India. The point‐intercept method was used for vegetation sampling. Six plant communities were distinguished by cluster analysis. Of these 6 communities, three communities were dominated by shrub species. Table lands are the landscape type with the highest species diversity followed by undulating areas and river beds. Most plant species were restricted to one landscape type.  相似文献   

7.
Thirteen floristic communities are recognized by numerical analysis of the vegetation of a part of the West Coast Range containing the climatic station with the highest mean annual precipitation in temperate Australia, and a variation in altitude from 400 to 1200 m. These communities form an altitude-related sequence with a perceptible break at the transition to alpine vegetation. Within rainforest three intergrading groups also form an altitudinal sequence. However, total environmental stress, as reflected in growth rates, is hypothesized to control this floristic and richness gradient. Direct and indirect gradient analysis reveals a lowland successional sequence from sedgeland to rainforest. Although some alpine communities are clearly the product of firing of others, there is no analogue of the lowland sedgelands. Fire-induced change in both alpine vegetation and rainforest can be extremely long term. Soil drainage is important in the differentiation of both lowland and alpine communities.  相似文献   

8.
Question: How does the floristic diversity of Afromontane rainforests change along an altitudinal gradient? What are the implications for conservation planning in these strongly fragmented forest areas that form part of the Eastern Afromontane Biodiversity Hotspot? Location: Bonga, southwestern Ethiopia. Methods: Based on evidence from other montane forests, we hypothesized that altitude has an effect on the floristic diversity of Afromontane rainforests in southwestern Ethiopia. To test this hypothesis, detailed vegetation surveys were carried out in 62 study plots located in four relatively undisturbed forest fragments situated at altitudes between 1600 m and 2300 m. Floristic diversity was evaluated using a combination of multivariate statistical analyses and diversity indices. Results: Ordination and indicator species analyses showed gradual variations in floristic diversity along the altitudinal gradient with a pronounced shift in species composition at ca. 1830 m. Upper montane forest (>1830 m) is characterized by high fern diversity and indicator species that are Afromontane endemics. Lower montane forest (<1830 m) exhibits a greater diversity of tree species and a higher abundance of the flagship species Coffea arabica. Conclusions: Our results provide crucial ecological background information concerning the montane rainforests of Ethiopia, which have been poorly studied until now. We conclude that both forest types identified during this study need to be considered for conservation because of their particular species compositions. Owing to the high degree of forest fragmentation, conservation concepts should consider a multi‐site approach with at least two protected areas at different altitudinal levels.  相似文献   

9.
10.
Despite enormous diversity, abundance, and role in ecosystem processes, little is known about how butterflies differ across altitudinal gradients. For this, butterfly communities were investigated along an altitudinal gradient of 2700–3200 m a.s.l, along the Gulmarg region of Jammu & Kashmir, India. We aimed to determine how the altitudinal gradient and environmental factors affect the butterfly diversity and abundance. Our findings indicate that species richness and diversity are mainly affected by the synergism between climate and vegetation. Alpha diversity indices showed that butterfly communities were more diverse at lower elevations and declined significantly with increase in elevation. Overall, butterfly abundance and diversity is stronger at lower elevations and gradually keep dropping towards higher elevations because floristic diversity decreased on which butterflies rely for survival and propagation. A total of 2023 individuals of butterflies were recorded belonging to 40 species, represented by 27 genera and 05 families. Six survey sites (S I- S VI) were assessed for butterfly diversity from 2018 to 2020 in the Gulmarg region of Jammu & Kashmir. Across the survey, Nymphalidae was the most dominant family represented by 16 genera and 23 species, while Papilionidae and Hesperiidae were least dominant represented by 01 genera and 01 species each. Among the six collection sites selected, Site I was most dominant, represented by 16 genera and 21 species, while Site VI was least dominant, represented by 04 genera and 04 species.  相似文献   

11.
Aims Ecosystems dominated by herbaceous plant communities are amongst the most diversified landscape units in the Guayana (Guiana) Shield region. This paper aims to present a synthetic overview of the wide array of herbaceous ecosystems found in the region in an attempt to furnish a more concrete baseline for a better understanding of the pattern of variation, and to clarify some of the differences that occur in the vegetation of the area. Location The Guayana Shield region, and the area of north‐eastern South America extending between the Orinoco River to the North and the Amazon River to the South (c. 8° N to 1° S). Methods Floristic and ecological field data gathered from over 300 study sites located at different altitudinal levels in the Venezuelan Guayana and the northern Brazilian Amazon are evaluated and interpreted in the light of personal observations and existing literature. Results The diversification pattern includes physiognomic as well as floristic variation and shows two opposing tendencies in relation to their altitudinal location: grass‐dominated meadows (savannas) predominate in the macrothermic lowlands, whereas non‐gramineous, broadleaved herbaceous communities are dominant in the mesothermic highlands of the Guayanan mountains. In detail, the biogeographic region of Guayana (Guiana) consists of three easily recognized altitudinal levels, each of which contains a highly characteristic set of landscape types with their associated ecosystems and endemic plant communities. Between 0 and c. 500 m a.s.l. the extensive macrothermic (mean annual temperature, MAT > 24 °C) lowlands are found, where an enormous – still largely unexplored – diversity of forest types represents the main plant cover of the plains, peneplains, glacis and piedmont slopes. Sparsely distributed within this forest cover are numerous herbaceous ecosystems, ranging from true grass savannas to unusual and poorly understood meadows developed on extremely oligotrophic white sandy soils dominated by non‐gramineous genera of Rapateaceae and Xyridaceae. In the intermediate submesothermic (MAT 24–18 °C) Guayana uplands, extending roughly between 500 and 1500 m a.s.l., the grasslands of the Gran Sabana in south‐eastern Venezuela reach their upper altitudinal limit. At the same altitudinal level, however, several distinct herbaceous communities are found, in which other genera of Rapateaceae, together with Bromeliaceae and Xyridaceae, are predominant. Finally, at the uppermost altitudinal level, i.e. in Pantepui (which includes the characteristically flat topped mountain summits (tepuis) of the Guayana highlands) between 1500 and 3000 m a.s.l., encompassing a range of meso‐ to submicrothermic temperature regimes (MAT 18–8 °C), the extensive herbaceous ecosystems are developed either on deep organic soils (peat) or on open sandstone surfaces. These high‐tepui meadows present a considerable physiognomic diversification and are formed by a variety of endemic genera of the Rapateaceae, Bromeliaceae, Xyridaceae, Eriocaulaceae and Cyperaceae families, often dominated by locally endemic species on each of the larger tepui massifs. In contrast, grass dominated plant communities are very rare and restricted to only a few high‐tepui sites. Main conclusions A marked floristic and ecologic differentiation of herbaceous ecosystems in the Guayana Shield region can be recognized. The ecological differentiation results primarily from the wide spectrum of variations in the substrate found at the various altitudinal levels of the Guayana Shield region. A possible explanation for the present‐day pattern of herbaceous vegetation types may be the following: Non‐gramineous meadows representing ancient species pools of Guayana‐centred families had evolved successful colonization strategies in occupying extremely nutrient poor sites at all altitudinal levels. In contrast, the more modern grass savannas, which preferentially occupy the peripheral Guayana landscapes, are restricted to richer soil conditions with better internal drainage and water retention conditions.  相似文献   

12.
Epiphytic lichen vegetation was studied in 10 sites along an altitude gradient from 750 to 1510 m on NW-facing slopes of Mount Olympos, Greece to assess the main spatial heterogeneity of microhabitats affecting communities and species composition. Community structure along the gradient was studied by using multivariate techniques. The critical factor for spatial heterogeneity seems to be the height at which the lichen community develops on the tree trunks. Changes in the community structure of the epiphytic lichen vegetation were also detected along the altitudinal gradient and the altitude of 1200 m is considered to be an ecotone. A comparative study of epiphytic lichen communities on Mt. Olympos and in the Thessaloniki area revealed species indicators of air pollution.  相似文献   

13.
The Alborz Mountains, the second largest range in Iran, is, on its southern slopes, mainly covered by steppe vegetation. These dry slopes also include ‘green islands’ of wetland. Floristic diversity and environmental characteristics of 45 of these little-studied wetland sites have been assessed along an altitudinal gradient using one-way ANOVA, Pearson r and detrended correspondence analysis/canonical correspondence analysis (DCA/CCA) analyses. The wetlands proved to be of conservation importance with 310 plant taxa, including 35 endemics or subendemics. Predictably, and consistent with the phytosociological classification of Klein [2001. La végétation altitudinale de L’Alborz Central (Iran): Entre les régions Irano-Touranienne et Euro-sibérienne. Institut Français de Recherche en Iran, Téhéran], there were parallel changes in vegetation both within wetlands and the surrounding steppes and in DCA/CCA analyses altitude appeared to be the primary determinant of floristic composition. Upper mountain wetlands are particularly species-rich and contain many endemics and other species of a narrow phytogeographical distribution. Soil pH declined with altitude, perhaps in part as a consequence of low salinity (and high pH) in the mountains. Consistent with the work of Raunkiaer [1934. The life forms of plants and statistical plant geography. Clarendon Press, Oxford], hemicryptophytes are mainly restricted to upper mountain areas. Though correlated both directly with altitude and with correlation in DCA/CCA plots, phytogeography, life-form and soil pH fail to adequately explain the ecological processes that maintain the altitudinal gradient in vegetation types and species composition. Further studies on site productivity, soil chemistry and climate-related variables are, therefore, on-going in an attempt to understand more fully the ecosystem processes maintaining the diversity of these important wetland sites.  相似文献   

14.
Wang  Guohong  Zhou  Guangsheng  Yang  Limin  Li  Zhenqing 《Plant Ecology》2003,165(2):169-181
We studied the distribution pattern, species diversity and life-formspectra of plant communities along an altitudinal gradient in the mid-sectionofthe northern slopes of Qilianshan Mountains by means of multivariate analyses.Two data sets (167 species × 75 plots, 10 environmental variables ×75 plots), originated from the fieldworks in 1998–1999, were subjected toTWINSPAN and DCCA, resulting in 8 major plant communities: 1)Asterothamnus centraliasiaticus–Halogetonarachnoideus desert grassland on azonal substrates from 1450 to 1600m and 2) zonal Reaumuria soogorica desertgrassland on gravels from 1470 to 1900 m; 3) Stipaprzewalskii–Stipa purpurea montane grassland from 2200 to 2900m; 4) Polygonum viviparum alpine grasslandfrom 2900 to 3700 m; 5) Caraganastenophylla–Ajaniafruticulosa dry-warm shrubland from 2350 to 2800 m; 6)Sabina przewalskii mid-wet warm forest from 2700 to 3300m; 7) Picea crassifolia cold coniferousforestfrom 2450 to 3200 m; 8) Caragana jubatawet-cold alpine shrubland from 3100 to 3700 m. Species diversityand species richness of both grasslands and forests peaked at the intermediateportion of the elevational gradient. Evenness might be strongly influenced byeither biotic or abiotic factors at a local scale, while seems quiteindependentof an elevational gradient at landscape scales. Beta-diversity decreased from1500 to 3700 m, indicating that species turnover declined withincreased elevation. Both richness of life-form and total species richness in agiven altitudinal belt (gamma-diversity) peaked at intermediate elevations,while relative species richness of different life-form varied differently alongthe altitudinal gradient.  相似文献   

15.
北京东灵山海拔梯度上辽东栎种群结构和空间分布   总被引:13,自引:0,他引:13  
张育新  马克明  祁建  冯云  张洁瑜 《生态学报》2009,29(6):2789-2796
种群年龄结构和空间分布格局是种群生态学的核心研究内容.为了阐明辽东栎种群海拔梯度分布特点,在北京东灵山地区辽东栎海拔分布范围(1000~1800m)内调查10条样带,研究种群大小级结构和空间分布的变异.种群的平均胸径在海拔梯度上表现出两段式的分布特征,海拔1480m为两段分布的分界点,在每一段内随海拔增加平均胸径也增加, 这反映了海拔梯度上种群的不同发育历史.种群密度、种群的聚集程度、种群的结构在海拔梯度上的分布特征都与平均胸径分布相似,种群密度和聚集程度与平均胸径为负相关系,其分布趋势与平均胸径相反.总体上,东灵山海拔梯度上辽东栎种群还是比较稳定的.辽东栎种群结构和空间分布在海拔梯度上的分布特征是种群发育历史、物种特性、环境、干扰等因素在海拔梯度上综合作用的结果.  相似文献   

16.
This study documents differences in fish assemblages for 32 freshwater streams located between 258 and 2242 m a.s.l. on the eastern slopes of the central range of the Colombian Andes. A total of 2049 fishes belonging to 62 species, 34 genera and 16 families were collected. Species richness declined rapidly with altitude; nearly 90% of the species were recorded between 250 and 1250 m a.s.l. Three of the four physico‐chemical variables, of the water, temperature, dissolved oxygen and pH, explained 53·5% of the variation in species richness along the altitudinal gradient, with temperature the most important (37·6%). An analysis of species composition showed that the distinctiveness of the fish fauna increased with elevation, with the greatest turnover observed between 1000 and 1750 m a.s.l. On this altitudinal gradient, turnover was dominated by the loss of species rather than gain, and dominance by just a few species was greater at higher elevations. Turnover was also observed along the altitudinal gradient in the structure of the three functional groups (torrential, pool and pelagic species). The study focused on understanding the pattern of diversity of fish communities inhabiting the Andes in Colombia. Anthropogenic effects on the altitudinal distribution of fish species in the region, however, are largely unknown and would require further investigations.  相似文献   

17.
向琳  陈芳清  官守鹏  王玉兵  吕坤 《生态学报》2019,39(21):8144-8155
研究植物群落功能多样性沿环境梯度的变化可以揭示功能多样性与生态系统功能间的关系及维持机制。以井冈山地区鹿角杜鹃(Rhododendron latoucheae)群落为研究对象,通过调查不同海拔梯度群落灌木层植物的物种组成与结构特征,研究了该群落类型灌木层植物的物种多样性、功能多样性、环境因子的特征及其相互之间的关系。结果表明:1)群落类型灌木层植物物种多样性和功能多样性沿海拔梯度呈现不同的变化趋势。物种多样性指数均随着海拔的升高呈减小趋势,而功能多样性指数的变化却较为复杂。其中FRic、FEveFDis随着海拔的升高显著减小,FDivRao却随海拔的升高而增加;2)群落中物种多样性和功能多样性呈现复杂的相关性。FRic、FEve与丰富度指数呈显著正相关,而Rao、FDis、FDivSimpson优势度指数呈线性相关关系,且具有显著相关性;3)群落所分布的坡位及土壤氮与磷含量等环境因子对灌木植物的功能多样性有着重要的影响。鹿角杜鹃群落灌木层植物的物种多样性和功能多样性的相互关系及其对环境变化的响应共同决定了群落的生态系统功能。  相似文献   

18.
The mountain wetlands studied represent a unique habitat on the southern slopes of the Alborz mountain range, the second largest range in Iran. In comparison with other parts of this range the western section is ecologically and botanically unknown. Floristic and vegetation variation were assessed using diverse environmental variables along a broad altitudinal span (350 m to 3200 m a.s.l.). Using both statistical and ordination analyses floristic variation was assessed on three defined altitudinal belts which were delimited based on Alborz macro-climatic boundaries. The distribution of individual wetland plant species, of phytogeographic elements and of life-forms all differ among altitudinal belts. This result is also shown in both direct and indirect analyses of ordinations. The proportion of geophytes significantly increases with altitude and geophytes are very well represented in the upper altitudinal belt. The number of species of a narrow phytogeographical distribution (e.g. endemics) increases with altitude, soil pH and EC declined with altitude. The first axis of DCA ordination with passively projected environmental variables indicates that, organic matter and concentration of Fe2+ are increased toward higher altitude. The second axis of ordination is related to both soil texture and slope inclination. The distribution of species in the CCA species plot is also close to the distribution of those in the DCA ordination. This study indicates that altitude and slope together with other dependent environmental variables (pH, EC, Ca2+ and soil texture) are the main ecological factors controlling species distribution across the Western Alborz wetland sites.  相似文献   

19.
Mountain ecosystems have shown slow mineralization activity due to weather conditions, and to some groups with arthropods with special roles. The Collembola is an important group for litter fragmentation, showing different distribution patterns. The objective of the present study was to determine the diversity of Collembola along a volcano altitudinal gradient. For this, four sampling expeditions evaluated four altitudinal levels (I = 2 753, II = 3 015, III = 3 250 and IV = 3 687 masl) in Iztaccihuatl Volcano, from November 2003, and March, June and August 2004. Shannon diversity (H'), Pielou evenness (J') and Simpson dominance (1/lambda) indices were calculated. The similarity between the associations of springtails between the sampling sites was evaluated by a cluster analysis using the Pearson correlation coefficient, as distance and the unpaired arithmetic averages (UPGMA) as amalgamation method. A total of 24 075 springtails, distributed in 12 families, 46 genera and 86 species was collected. The higher species abundance was found at the altitudinal area II. The lowest diversity value was recorded in IV, while the higher diversity values were found in III. Significant differences between Shannon indices were found between zones II-III (t(0.01, 187) = 4.11, p < 0.05) and between III-IV (t(0.01, 187) = 3.8, p < 0.05) according to modified t-test. When considering sampling dates, no significant differences were found. The dendrogram showed that in composition the level I is more homogeneous throughout the year. In conclusion, a statistically significant seasonal variation in springtail abundances was not found, but it was observed that, the lower altitude (I) resulted more homogeneous along the studied period, followed by level II and III. There is a particular assemblage of springtails community in each altitudinal area studied; in general, the sites with low slope resulted more diverse in Collembola communities. These results show that there are important factors such as altitude, vegetation type and microhabitat heterogeneity that may affect the distribution of springtails communities along an altitudinal gradient.  相似文献   

20.
探索和揭示生物多样性的空间格局和维持机制是生态学和生物地理学研究的热点内容, 但综合物种、系统进化和功能属性等方面的多样性海拔格局研究很少。该文以关帝山森林群落为研究对象, 综合物种、谱系和功能α和β多样性指数, 旨在初步探讨关帝山森林群落多样性海拔格局及其维持机制。研究结果表明: 随着海拔的升高(1 409-2 150 m), 关帝山森林群落物种丰富度指数(S)、谱系多样性指数(PD)和功能丰富度指数(FRic)整体上表现出上升的趋势, 特别是海拔1 800 m以上区域。随着海拔的升高, 总β多样性(βtotal)和更替(βrepl)上升趋势明显, 而丰富度差异(βrich)则逐渐下降。不同生活型植物的物种、谱系和功能多样性海拔格局差异较大。随着海拔的升高, 草本植物S和物种多样性指数(H′)上升趋势高于木本植物。影响草本植物S分布的主要因素是地形因子, 而影响木本植物S分布的主要因素是历史过程。随着海拔的升高, 木本植物βtotal上升趋势要比草本植物明显。随着海拔的升高, 木本植物βreplβrich分别表现出单峰格局和“U”形格局, 而草本植物βreplβrich则分别表现出单调递增和单调递减的格局。随着环境差异和地理距离的增加, 群落间物种、谱系和功能β多样性显著增加。环境差异(环境过滤)对木本植物的β多样性具有相对较强的作用; 而环境差异(环境过滤)和地理距离(扩散限制)共同作用于草本植物的β多样性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号