首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secretory phospholipase A2 is involved in inflammatory processes and was previously shown to be inhibited by lipophilic tetracyclines such as minocycline (minoTc) and doxycycline. Lipophilic tetracyclines might be a new lead compound for the design of specific inhibitors of secretory phospholipase A2, which play a crucial role in inflammatory processes. Our X-ray crystal structure analysis at 1.65 Å resolution of the minoTc complex of phospholipase A2 (PLA2) of the Indian cobra (Naja naja naja) is the first example of nonantibiotic tetracycline interactions with a protein. MinoTc interferes with the conformation of the active-site Ca2+-binding loop, preventing Ca2+ binding, and shields the active site from substrate entrance, resulting in inhibition of the enzyme. MinoTc binding to PLA2 is dominated by hydrophobic interactions quite different from antibiotic recognition of tetracyclines by proteins or the ribosome. The affinity of minoTc for PLA2 was determined by surface plasmon resonance, resulting in a dissociation constant Kd = 1.8 × 10 4 M.  相似文献   

2.
Human non-pancreatic secretory phospholipase A2 (hnpsPLA2) is a group IIA phospholipase A2 which plays an important role in the innate immune response. This enzyme was found to exhibit bactericidal activity toward Gram-positive bacteria, but not Gram-negative ones. Though native hnpsPLA2 is active over a broad pH range, it is only highly active at alkaline conditions with the optimum activity pH of about 8.5. In order to make it highly active at neutral pH, we have obtained two hnpsPLA2 mutants, Glu89Lys and Arg100Glu that work better at neutral pH in a previous study. In the present study, we tested the bactericidal effects of the native hnpsPLA2 and the two mutants. Both native hnpsPLA2 and the two mutants exhibit bactericidal activity toward Gram-positive bacteria. Furthermore, they can also kill Escherichia coli, a Gram-negative bacterium. The two mutants showed better bactericidal activity for E. coli at neutral pH than the native enzyme, which is consistent with the enzyme activities. As hnpsPLA2 is highly stable and biocompatible, it may provide a promising therapy for bacteria infection treatment or other bactericidal applications.  相似文献   

3.
Snake venoms are complex mixtures of proteins among which both basic and acidic phospholipases A2 (PLA2s) can be found. Basic PLA2s are usually responsible for major toxic effects induced by snake venoms, while acidic PLA2s tend to have a lower toxicity. A novel PLA2, here named PnPLA2, was purified from the venom of Porthidium nasutum by means of RP-HPLC on a C18 column. PnPLA2 is an acidic protein with a pI of 4.6, which migrates as a single band under both non-reducing and reducing conditions in SDS-PAGE. PnPLA2 had a molecular mass of 15,802.6 Da, determined by ESI-MS. Three tryptic peptides of this protein were characterized by HPLC-nESI-MS/MS, and N-terminal sequencing by direct Edman degradation showing homology to other acidic PLA2s from viperid venoms. PnPLA2 displayed indirect hemolytic activity in agarose erythrocyte-egg yolk gels and bactericidal activity against Staphylococcus aureus in a dose-dependent manner, with a MIC and MBC of 32 μg/mL. In addition, PnPLA2 showed a potent inhibitory effect on platelet aggregation with doses up to 40 μg/mL. This acidic PLA2, in contrast to basic enzymes isolated from other viperid snake venoms, was not cytotoxic to murine skeletal muscle myoblasts C2C12. This is the first report on a bactericidal protein of Porthidium nasutum venom.  相似文献   

4.
Mice deficient in group 1b phospholipase A2 have decreased plasma lysophosphatidylcholine and increased hepatic oxidation that is inhibited by intraperitoneal lysophosphatidylcholine injection. This study sought to identify a mechanism for lysophosphatidylcholine-mediated inhibition of hepatic oxidative function. Results showed that in vitro incubation of isolated mitochondria with 40–200 μM lysophosphatidylcholine caused cyclosporine A-resistant swelling in a concentration-dependent manner. However, when mitochondria were challenged with 220 μM CaCl2, cyclosporine A protected against permeability transition induced by 40 μM, but not 80 μM lysophosphatidylcholine. Incubation with 40–120 μM lysophosphatidylcholine also increased mitochondrial permeability to 75 μM CaCl2 in a concentration-dependent manner. Interestingly, despite incubation with 80 μM lysophosphatidylcholine, the mitochondrial membrane potential was steady in the presence of succinate, and oxidation rates and respiratory control indices were similar to controls in the presence of succinate, glutamate/malate, and palmitoyl-carnitine. However, mitochondrial oxidation rates were inhibited by 30–50% at 100 μM lysophosphatidylcholine. Finally, while 40 μM lysophosphatidylcholine has no effect on fatty acid oxidation and mitochondria remained impermeable in intact hepatocytes, 100 μM lysophosphatidylcholine inhibited fatty acid stimulated oxidation and caused intracellular mitochondrial permeability. Taken together, these present data demonstrated that LPC concentration dependently modulates mitochondrial microenvironment, with low micromolar concentrations of lysophosphatidylcholine sufficient to change hepatic oxidation rate whereas higher concentrations are required to disrupt mitochondrial integrity.  相似文献   

5.
The crystal structure of crotoxin, a potent presynaptic neurotoxin from Crotalus durissusterrificus, was solved at 1.35 Å resolution. It shows the architecture of the three disulfide-linked polypeptide chains (α, β, and γ) of the acidic subunit CA noncovalently complexed with the basic phospholipase A2 (PLA2) subunit CB. The unique structural scaffold of the association of the CA and CB subunits indicates that posttranslational cleavage of the pro-CA precursor is a prerequisite for the assembly of the CA-CB complex. These studies provide novel structural insights to explain the role of the CA subunit in the mechanism of action of crotoxin. The crystal structure of the highly toxic and stable CA2CBb complex crystallized here allows us to identify key amino acid residues responsible for significant differences in the pharmacological activities of the two classes of crotoxin complexes. In particular, we show that critical residues Trp31 and Trp70 of the CBb subunit establish intermolecular polar contacts with Asp99 and Asp89, respectively, of the β-chain of CA2 and contribute to the stability and toxicity of the CA2CBb complex. These interactions also lead to decreased PLA2 activity by partially blocking substrate access to the catalytic dyad and by masking several interfacial binding surface residues important for PLA2 interaction with phospholipids.Identification of the binding interface between the CA subunits and the CB subunits of crotoxin is important for the structure-based design of antineurotoxic inhibitors. Since crotoxin displays numerous physiological functions, including antitumoral properties, knowledge of its three-dimensional structure will be useful for the understanding of these diverse effects.  相似文献   

6.
Lysophosphatidic acid (LPA) acts as a signaling molecule that regulates diverse cellular processes and it can rapidly be metabolized by phosphatase and acyltransferase. LPA phosphatase gene has not been identified and characterized in plants so far. The BLAST search revealed that the At3g03520 is similar to phospholipase family, and distantly related to bacterial phosphatases. The conserved motif, (J)4XXXNXSFD, was identified in both At3g03520 like phospholipases and acid phosphatases. In silico expression analysis of At3g03520 revealed a high expression during phosphate starvation and abiotic stresses. This gene was overexpressed in Escherichia coli and shown to posses LPA specific phosphatase activity. These results suggest that this gene possibly plays a role in signal transduction and storage lipid synthesis.  相似文献   

7.
A phospholipase A2 was identified from MDCK cell homogenates with broad specificity toward glycerophospholipids including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol. The phospholipase has the unique ability to transacylate short chain ceramides. This phospholipase is calcium-independent, localized to lysosomes, and has an acidic pH optimum. The enzyme was purified from bovine brain and found to be a water-soluble glycoprotein consisting of a single peptide chain with a molecular weight of 45 kDa. The primary structure deduced from the DNA sequences is highly conserved between chordates. The enzyme was named lysosomal phospholipase A2 (LPLA2) and subsequently designated group XV phospholipase A2. LPLA2 has 49% of amino acid sequence identity to lecithin-cholesterol acyltransferase and is a member of the αβ-hydrolase superfamily. LPLA2 is highly expressed in alveolar macrophages. A marked accumulation of glycerophospholipids and extensive lamellar inclusion bodies, a hallmark of cellular phospholipidosis, is observed in alveolar macrophages in LPLA2−/− mice. This defect can also be reproduced in macrophages that are exposed to cationic amphiphilic drugs such as amiodarone. In addition, older LPLA2−/− mice develop a phenotype similar to human autoimmune disease. These observations indicate that LPLA2 may play a primary role in phospholipid homeostasis, drug toxicity, and host defense.  相似文献   

8.
Phospholipase A2 (PLA2) not only plays a role in the membrane vesiculation system but also mediates membrane-raft budding and fission in artificial giant liposomes. This study aimed to demonstrate the same effects in living cells. Differentiated Caco-2 cells were cultured on filter membranes. MDCK cells were challenged with Influenza virus. The MDCK cultures were harvested for virus titration with a plaque assay. Alkaline phosphatase (ALP), a membrane-raft associated glycosylphosphatidylinositol (GPI)-anchored protein, was 70% released by adding 0.2 mmol/l lysophosphatidylcholine, which was abolished by treatment with a membrane-raft disrupter, methyl-β-cyclodextrin. Activation of calcium-independent PLA2 (iPLA2) by brefeldin A increased the apical release of ALP by approximately 1.5-fold (p < 0.01), which was blocked by PLA2 inhibitor bromoenol lactone (BEL). BEL also reduced Influenza virus production into the media (< 10%) in the MDCK culture. These results suggest that cells utilize inverted corn-shaped lysophospholipids generated by PLA2 to modulate plasma membrane structure and assist the budding of raft-associated plasma membrane particles, which virus utilizes for its budding. Brush borders are enriched with membrane-rafts and undergo rapid turnover; thus, PLA2 may be involved in the regulatory mechanism in membrane dynamism. Further, iPLA2 may provide a therapeutic target for viral infections.  相似文献   

9.
Disulfide bonds are known to be crucial for protein stability. To probe the contribution of each of the five disulfide bonds (C9-C31, C30-C70, C37-C63, C61-C95, and C105-C113) in bee venom phospholipase A2 to stability, variants with deleted disulfide bonds were produced by substituting two serine residues for each pair of cysteine residues. The mutations started from the pseudo-wild-type variant (pWT) with the mutation I1A (Markert et al., Biotechnol. Bioeng. 98 (2007) 48-59). All variants were expressed in Escherichia coli, refolded from inclusion bodies and purified as pWT. The activity of the variants ranged from 12 to 82% of pWT. From the transition curves of guanidine hydrochloride-induced unfolding, the contributions of the individual disulfide bonds to conformational stability were estimated. They increased in the sequence C9-C31 < C105-C113 < C30-C70 ≈ C37-C63 < C61-C95. For two disulfide bonds (C9-C31, C105-C113) the effects were confirmed on additionally produced variants with the substitution of cysteine by alanine. Despite distinct differences in stability, all variants showed similar cooperativity in unfolding. Selected variants were also probed for proteolytic stability toward thermolysin. The removal of disulfide bonds increased the proteolytic susceptibility of the native proteins in the same way as the stability decreased. From the comparison of the results with literature data on phospholipase A2 from bovine pancreas possessing seven disulfide bonds, it was concluded that conserved disulfide bonds in homologous proteins fulfill related functions in conformational stability.  相似文献   

10.
Choline kinase in mammals is encoded by two genes, Chka and Chkb. Disruption of murine Chka leads to embryonic lethality, whereas a spontaneous genomic deletion in murine Chkb results in neonatal forelimb bone deformity and hindlimb muscular dystrophy. Surprisingly, muscular dystrophy isn't significantly developed in the forelimb. We have investigated the mechanism by which a lack of choline kinase β, encoded by Chkb, results in minimal muscular dystrophy in forelimbs. We have found that choline kinase β is the major isoform in hindlimb muscle and contributes more to choline kinase activity, while choline kinase α is predominant in forelimb muscle and contributes more to choline kinase activity. Although choline kinase activity is decreased in forelimb muscles of Chkb−/− mice, the activity of CTP:phosphocholine cytidylyltransferase is increased, resulting in enhanced phosphatidylcholine biosynthesis. The activity of phosphatidylcholine phospholipase C is up-regulated while the activity of phospholipase A2 in forelimb muscle is not altered. Regeneration of forelimb muscles of Chkb−/− mice is normal when challenged with cardiotoxin. In contrast to hindlimb muscle, mega-mitochondria are not significantly formed in forelimb muscle of Chkb−/− mice. We conclude that the relative lack of muscle degeneration in forelimbs of Chkb−/− mice is due to abundant choline kinase α and the stable homeostasis of phosphatidylcholine.  相似文献   

11.
Effects of essential oil of Allium sativum (garlic) and Piper longum (Indian long pepper) were evaluated on muscular activity of whole Fasciola gigantica and its strip preparation. The whole flukes and longitudinal strip preparations of the flukes were isometrically mounted to record the spontaneous muscular activity (SMA) and to evaluate effects of cumulative doses (0.1, 0.3, 1.0 and 3.0 mg/ml) of the plant essential oils. Whole flukes and the strip preparations exhibited continuous SMA without any significant difference in its baseline tension, frequency and amplitude for 2 h. Essential oil of A. sativum produced significant reduction in the frequency and the amplitude of the SMA of whole fluke at 1 and 3 mg/ml concentrations. It caused complete paralysis of the fluke after 15 min of administration of 3 mg/ml concentration. Similar to whole fluke, essential oil of A. sativum (3 mg/ml) also produced flaccid paralysis in the strip preparations of the flukes. Essential oil of P. longum firstly induced marked excitatory effect and then there was flaccid paralysis of the whole fluke following 15 min exposure at 3 mg/ml concentration. Complete flaccid paralysis of the strip preparation was also ensued after 15 min of administration of 3 mg/ml concentration of P. longum. In both the essential oils, the whole fluke and strip preparations did not recover from paralysis following 2-3 washes. In conclusion, the observations demonstrated irreversible paralytic effect of essential oils of A. sativum and P. longum on F. giganticain vitro which might possibly help to developing herbal-based anthelmintic.  相似文献   

12.
A marine snail digestive phospholipase A2 (mSDPL) was purified from delipidated hepatopancreas. Unlike known digestive phospholipases A2, which are 14 kDa proteins, the purified mSDPL has a molecular mass of about 30 kDa. It has a specific activity of about 180 U/mg measured at 50 °C and pH 8.5 using phosphatidylcholine liposomes as a substrate in the presence of 4 mM NaTDC and 6 mM CaCl2. The N-terminal amino-acid of the purified mSDPL does not share any homology with known phospholipases.Moreover, the mSDPL exhibits hemolytic activity in intact erythrocytes and can penetrate phospholipid monolayers at high surface pressure, comparable to snake venom PLA2. These observations suggest that mSDPL could be toxic to mammal cells. However, mSDPL can be classified as a member of a new family of enzymes. It should be situated between the class of toxic phospholipase A2 from venoms and another class of non toxic pancreatic phospholipase A2 from mammals.  相似文献   

13.
Calcium-independent phospholipase A2 group VIA (iPLA2β) releases docosahexaenoic acid (DHA) from phospholipids in vitro. Mutations in the iPLA2β gene, PLA2G6, are associated with dystonia-parkinsonism and infantile neuroaxonal dystrophy. To understand the role of iPLA2β in brain, we applied our in vivo kinetic method using radiolabeled DHA in 4 to 5-month-old wild type (iPLA2β+/+) and knockout (iPLA2β−/−) mice, and measured brain DHA kinetics, lipid concentrations, and expression of PLA2, cyclooxygenase (COX), and lipoxygenase (LOX) enzymes. Compared to iPLA2β+/+ mice, iPLA2β−/− mice showed decreased rates of incorporation of unesterified DHA from plasma into brain phospholipids, reduced concentrations of several fatty acids (including DHA) esterified in ethanolamine- and serine-glycerophospholipids, and increased lysophospholipid fatty acid concentrations. DHA turnover in brain phospholipids did not differ between genotypes. In iPLA2β−/− mice, brain levels of iPLA2β mRNA, protein, and activity were decreased, as was the iPLA2γ (Group VIB PLA2) mRNA level, while levels of secretory sPLA2-V mRNA, protein, and activity and cytosolic cPLA2-IVA mRNA were increased. Levels of COX-1 protein were decreased in brain, while COX-2 protein and mRNA were increased. Levels of 5-, 12-, and 15-LOX proteins did not differ significantly between genotypes. Thus, a genetic iPLA2β deficiency in mice is associated with reduced DHA metabolism, profound changes in lipid-metabolizing enzyme expression (demonstrating lack of redundancy) and of phospholipid fatty acid content of brain (particularly of DHA), which may be relevant to neurologic abnormalities in humans with PLA2G6 mutations.  相似文献   

14.
The repellent activity of the essential oil of the catmint plant, Nepeta cataria (Lamiaceae), and the main iridoid compounds (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone, was assessed against (i) major Afro-tropical pathogen vector mosquitoes, i.e. the malaria mosquito, Anopheles gambiae s.s. and the Southern house mosquito, Culex quinquefasciatus, using a World Health Organisation (WHO)-approved topical application bioassay (ii) the brown ear tick, Rhipicephalus appendiculatus, using a climbing repellency assay, and (iii) the red poultry mite, Dermanyssus gallinae, using field trapping experiments. Gas chromatography (GC) and coupled GC-mass spectrometry (GC-MS) analysis of two N. cataria chemotypes (A and B) used in the repellency assays showed that (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone were present in different proportions, with one of the oils (from chemotype A) being dominated by the (4aS,7S,7aR) isomer (91.95% by GC), and the other oil (from chemotype B) containing the two (4aS,7S,7aR) and (4aS,7S,7aS) isomers in 16.98% and 69.83% (by GC), respectively. The sesquiterpene hydrocarbon (E)-(1R,9S)-caryophyllene was identified as the only other major component in the oils (8.05% and 13.19% by GC, respectively). Using the topical application bioassay, the oils showed high repellent activity (chemotype A RD50 = 0.081 mg cm−2 and chemotype B RD50 = 0.091 mg cm−2) for An. gambiae comparable with the synthetic repellent DEET (RD50 = 0.12 mg cm−2), whilst for Cx. quinquefasciatus, lower repellent activity was recorded (chemotype A RD50 = 0.34 mg cm−2 and chemotype B RD50 = 0.074 mg cm−2). Further repellency testing against An. gambiae using the purified (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone isomers revealed overall lower repellent activity, compared to the chemotype A and B oils. Testing of binary mixtures of the (4aS,7S,7aR) and (4aS,7S,7aS) isomers across a range of ratios, but all at the same overall dose (0.1 mg), revealed not only a synergistic effect between the two, but also a surprising ratio-dependent effect, with lower activity for the pure isomers and equivalent or near-equivalent mixtures, but higher activity for non-equivalent ratios. Furthermore, a binary mixture of (4aS,7S,7aR) and (4aS,7S,7aS) isomers, in a ratio equivalent to that found in chemotype B oil, was less repellent than the oil itself, when tested at two doses equivalent to 0.1 and 0.01 mg chemotype B oil. The three-component blend including (E)-(1R,9S)-caryophyllene at the level found in chemotype B oil had the same activity as chemotype B oil. In a tick climbing repellency assay using R. appendiculatus, the oils showed high repellent activity comparable with data for other repellent essential oils (chemotype A RD50 = 0.005 mg and chemotype B RD50 = 0.0012 mg). In field trapping assays with D. gallinae, addition of the chemotype A and B oils, and a combination of the two, to traps pre-conditioned with D. gallinae, all resulted in a significant reduction of D. gallinae trap capture. In summary, these data suggest that although the nepetalactone isomers have the potential to be used in human and livestock protection against major pathogen vectors, intact, i.e. unfractionated, Nepeta spp. oils offer potentially greater protection, due to the presence of both nepetalactone isomers and other components such as (E)-(1R,9S)-caryophyllene.  相似文献   

15.
Phospholipases A2 are components of Bothrops venoms responsible for disruption of cell membrane integrity via hydrolysis of its phospholipids. This study used a large nonimmune human scFv library named Griffin.1 (MRC, Cambridge, UK) for selection of recombinant antibodies against antigens present in Bothrops jararacussu venom and identification of specific antibodies able to inhibit phospholipase activity. Four clones were identified as capable of inhibiting this activity in vitro. These clones were able to reduce in vivo the myotoxic activity of BthTX-I and BthTX-II PLA2, but had no effect on the in vitro anticoagulant activity of BthTX-II. This work shows the potential of using recombinant scFv libraries in the search for antibodies that neutralize relevant venom components.  相似文献   

16.
In a previous paper we showed that bradykinin (BK), interacting with its B2 receptor, inhibits proximal tubule Na+-ATPase activity but does not change (Na+ + K+)ATPase activity. The aim of this paper was to investigate the molecular mechanisms involved in B2-mediated modulation of proximal tubule Na+-ATPase by BK. To abolish B1 receptor-mediated effects, all experiments were carried out in the presence of (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Leu), des-Arg9-[Leu8]-BK (DALBK), a specific antagonist of B1 receptor. A dual effect on the Na+-ATPase activity through the B2 receptor was found: short incubation times (1-10 min) stimulate the enzyme activity; long incubation times (10-60 min) inhibit it. The stimulatory effect of BK is mediated by activation of phosphoinositide-specific phospholipase C β (PI-PLCβ)/protein kinase C (PKC); its inhibitory action is mediated by Ca2+-independent phospholipase A2 (iPLA2). Prior activation of the PI-PLCβ/PKC pathway is required to activate the iPLA2-mediated inhibitory phase. These results reveal a new mechanism by which BK can modulate renal sodium excretion: coupling between B2 receptor and activation of membrane-associated iPLA2.  相似文献   

17.
The effects of physalin B (a natural secosteroidal chemical from Physalis angulata, Solanaceae) on phagocytosis and microaggregation by hemocytes of 5th-instar larvae of Rhodnius prolixus were investigated. In this insect, hemocyte phagocytosis and microaggregation are known to be induced by the platelet-activating factor (PAF) or arachidonic acid (AA) and regulated by phospholipase A2 (PLA2) and PAF-acetyl hydrolase (PAF-AH) activities. Phagocytic activity and formation of hemocyte microaggregates by Rhodnius hemocytes were strongly blocked by oral treatment of this insect with physalin B (1 μg/mL of blood meal). The inhibition induced by physalin B was reversed for both phagocytosis and microaggregation by exogenous arachidonic acid (10 μg/insect) or PAF (1 μg/insect) applied by hemocelic injection. Following treatment with physalin B there were no significant alterations in PLA2 activities, but a significant enhancement of PAF-AH was observed. These results show that physalin B inhibits hemocytic activity by depressing insect PAF analogous (iPAF) levels in hemolymph and confirm the role of PAF-AH in the cellular immune reactions in R. prolixus.  相似文献   

18.
We have previously described that arachidonic acid (AA)-5-lipoxygenase (5-LO) metabolism inhibitors such as NDGA and MK886, inhibit cell death by apoptosis, but not by necrosis, induced by extracellular ATP (ATPe) binding to P2X7 receptors in macrophages. ATPe binding to P2X7 also induces large cationic and anionic organic molecules uptake in these cells, a process that involves at least two distinct transport mechanisms: one for cations and another for anions. Here we show that inhibitors of the AA-5-LO pathway do not inhibit P2X7 receptors, as judged by the maintenance of the ATPe-induced uptake of fluorescent anionic dyes. In addition, we describe two new transport phenomena induced by these inhibitors in macrophages: a cation-selective uptake of fluorescent dyes and the release of ATP. The cation uptake requires secreted ATPe, but, differently from the P2X7/ATPe-induced phenomena, it is also present in macrophages derived from mice deficient in the P2X7 gene. Inhibitors of phospholipase A2 and of the AA-cyclooxygenase pathway did not induce the cation uptake. The uptake of non-organic cations was investigated by measuring the free intracellular Ca2 + concentration ([Ca2 +]i) by Fura-2 fluorescence. NDGA, but not MK886, induced an increase in [Ca2 +]i. Chelating Ca2 + ions in the extracellular medium suppressed the intracellular Ca2 + signal without interfering in the uptake of cationic dyes. We conclude that inhibitors of the AA-5-LO pathway do not block P2X7 receptors, trigger the release of ATP, and induce an ATP-dependent uptake of organic cations by a Ca2 +- and P2X7-independent transport mechanism in macrophages.  相似文献   

19.
The ability of Aspergillus japonicus ATCC 20236 to colonize different synthetic materials (polyurethane foam, stainless steel sponge, vegetal fiber, pumice stones, zeolites, and foam glass) and to produce fructooligosaccharides (FOS) from sucrose (165 g/L) is described. Cells were immobilized in situ by absorption, through direct contact with the carrier particles at the beginning of fermentation. Vegetal fiber was the best immobilization carrier as A. japonicus grew well on it (1.25 g/g carrier), producing 116.3 g/L FOS (56.3 g/L 1-kestose, 46.9 g/L 1-nystose, and 13.1 g/L 1-β-fructofuranosyl nystose) with 69% yield (78% based only in the consumed sucrose amount), giving also elevated activity of the β-fructofuranosidase enzyme (42.9 U/mL). In addition, no loss of material integrity, over a 2 day-period, was found. The fungus also immobilized well on stainless steel sponge (1.13 g/g carrier), but in lesser extents on polyurethane foam, zeolites, and pumice stones (0.48, 0.19, and 0.13 g/g carrier, respectively), while on foam glass no cell adhesion was observed. When compared with the FOS and β-fructofuranosidase production by free A. japonicus, the results achieved using cells immobilized on vegetal fiber were closely similar. It was thus concluded that A. japonicus immobilized on vegetal fiber is a potential alternative for high production of FOS at industrial scale.  相似文献   

20.
Indole-5-carboxylic acids with 3-aryloxy-2-oxopropyl residues in position 1 have been found to be potent inhibitors of human cytosolic phospholipase A2α (cPLA2α). In course of structure-activity relationship studies, we investigated the effect of the substitution of the electrophilic ketone group in the middle part of the molecule by other polar residues, such as hydroxyimino, azido, acyloxy, acylamino, urea and carbamate, on enzyme inhibition. With an IC50 of 1.7 μM against cPLA2α from human platelets, the 4-fluorophenylcarbamate derivative 23f was the most active of the compounds tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号