首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PHYLOGENETIC RELATIONSHIPS AMONG EXTANT BRACHIOPODS   总被引:1,自引:0,他引:1  
Abstract— The monophyletic status of the Brachiopoda and phylogenetic relationships within the phylum have long been contentious issues for brachiopod systematists. The relationship of brachiopods to other lophophore-bearing taxa is also uncertain; results from recent morphological and molecular studies are in conflict. To test current hypotheses of relationship, a phylogenetic analysis was completed (using PAUP 3.1.1) with 112 morphological and embryological characters that vary among extant representatives of seven brachiopod superfamilies, using bryozoans, phoronids, pterobranchs and sipunculids as outgroups. In the range of analyses performed, brachiopod monophyly is well supported, particularly by characters of soft anatomy. Arguments concerning single or multiple origins of a bivalved shell are not relevant to recognizing brachiopods as a clade. Articulate monophyly is very strongly supported, but inarticulate monophyly receives relatively weak support. Unlike previous studies, the nature of uncertainties about the clade status of Inarticulata are detailed explicitly here, making them easier to test in the future. Calcareous inarticulates appear to share derived characters with the other inarticulates, while sharing many primitive characters with other calcareous brachiopods (the articulates). Experimental manipulation of the data matrix reveals potential sources of bias in previous hypotheses of brachiopod phylogeny. Although not tested explicitly, lophophorate monophyly is very tentatively supported. Molecular systematic studies of a diverse group of brachiopods and other lophophorates will be particularly welcome in providing a test of the conclusions presented here.  相似文献   

2.
Nuclear and mtDNA sequences from selected short-looped terebratuloid (terebratulacean) articulate brachiopods yield congruent and genetically independent phylogenetic reconstructions by parsimony, neighbour-joining and maximum likelihood methods, suggesting that both sources of data are reliable guides to brachiopod species phylogeny. The present-day genealogical relationships and geographical distributions of the tested terebratuloid brachiopods are consistent with a tethyan dispersal and subsequent radiation. Concordance of nuclear and mitochondrial gene phylogenies reinforces previous indications that articulate brachiopods, inarticulate brachiopods, phoronids and ectoprocts cluster with other organisms generally regarded as protostomes. Since ontogeny and morphology in brachiopods, ectoprocts and phoronids depart in important respects from those features supposedly diagnostic of protostomes, this demonstrates that the operational definition of protostomy by the usual ontological characters must be misleading or unreliable. New, molecular, operational definitions are proposed to replace the traditional criteria for the recognition of protostomes and deuterostomes, and the clade-based terms ''Protostomoza'' and ''Deuterostomozoa'' are proposed to replace the existing term ''Protostomia'' and ''Deuterostomia''.  相似文献   

3.
Most studies of brachiopod evolution have been based on their extensive fossil record, but molecular techniques, due to their independence from the rock record, can offer new insights into the evolution of a clade. Previous molecular phylogenetic hypotheses of brachiopod interrelationships place phoronids within the brachiopods as the sister group to the inarticulates, whereas morphological considerations suggest that Brachiopoda is a monophyletic group. Here, these hypotheses were tested with a molecular phylogenetic analysis of seven nuclear housekeeping genes combined with three ribosomal genes. The combined analysis finds brachiopods to be monophyletic, but with relatively weak support, and the craniid as the sister taxon of all other brachiopods. Phylogenetic-signal dissection suggests that the weak support is caused by the instability of the craniid, which is attracted to the phoronids. Analysis of slowly evolving sites results in a robustly supported monophyletic Brachiopoda and Inarticulata (Linguliformea+Craniiformea), which is regarded as the most likely topology for brachiopod interrelationships. The monophyly of Brachiopoda was further tested with microRNA-based phylogenetics, which are small, noncoding RNA genes whose presence and absence can be used to infer phylogenetic relationships. Two novel microRNAs were characterized supporting the monophyly of brachiopods. Congruence of the traditional molecular phylogenetic analysis, microRNAs, and morphological cladograms suggest that Brachiopoda is monophyletic with Phoronida as its likely sister group. Molecular clock analysis suggests that extant phoronids have a Paleozoic divergence despite their conservative morphology, and that the early brachiopod fossil record is robust, and is not affected by taphonomic factors relating to the late-Precambrian/early-Cambrian phosphogenic event.  相似文献   

4.
We present five case studies among articulate (rhynchonelliform) brachiopods, i.e. of Rhynchonellida, Cancellothyridoidea, Terebratuloidea, Dyscolioidea, Laqueoidea, and various terebratulids with modified long‐loops, in an attempt to illustrate and better understand congruence and conflict between morpho‐classification and rDNA‐based molecular clade structure, having been prompted to address these issues by difficulties encountered when describing the newly collected brachiopod, E biscothyris bellonensis gen. et sp. nov. The five studies reveal dramatic conflict in the Rhynchonellida and Terebratuloidea/Dyscolioidea, good congruence in the Cancellothyridoidea and Laqueoidea, and fair congruence (albeit with weak phylogenetic signal) in the long‐looped terebratulids. We suggest that the leading cause of the observed conflict lies in the use of inadequately specific morphological characters and morpho‐classification. Phylogenetic systematic (cladistic) analyses of Rhynchonellida also conflict markedly with the rDNA gene tree, leading us to recognize that such analyses are not only conceptually circular (using morphological characters to assess a morphological classification) but also to propose that they are biased by the act of classification that necessarily precedes the identification of putatively homologous characters; when the prior classification does not reflect evolutionary history, phylogenetic analysis will do likewise. In addition, we propose that the brachiopod community has overlooked the significance of two sources of morphological homoplasy affecting brachiopod systematics: (1) the loss of co‐adapted genomic complexes caused by mass extinctions at the end of the Permian; and (2) the pervasive consequences of developmental integration and constraint resulting from the integrated roles of the outer mantle epithelium in shell deposition and growth that underly the determination of form and the shell‐based classification. © 2015 The Linnean Society of London  相似文献   

5.
Brachiopod and phoronid phylogeny is inferred from SSU rDNA sequences of 28 articulate and nine inarticulate brachiopods, three phoronids, two ectoprocts and various outgroups, using gene trees reconstructed by weighted parsimony, distance and maximum likelihood methods. Of these sequences, 33 from brachiopods, two from phoronids and one each from an ectoproct and a priapulan are newly determined. The brachiopod sequences belong to 31 different genera and thus survey about 10% of extant genus-level diversity. Sequences determined in different laboratories and those from closely related taxa agree well, but evidence is presented suggesting that one published phoronid sequence (GenBank accession UO12648) is a brachiopod-phoronid chimaera, and this sequence is excluded from the analyses. The chiton, Acanthopleura, is identified as the phenetically proximal outgroup; other selected outgroups were chosen to allow comparison with recent, non-molecular analyses of brachiopod phylogeny. The different outgroups and methods of phylogenetic reconstruction lead to similar results, with differences mainly in the resolution of weakly supported ancient and recent nodes, including the divergence of inarticulate brachiopod sub-phyla, the position of the rhynchonellids in relation to long- and short-looped articulate brachiopod clades and the relationships of some articulate brachiopod genera and species. Attention is drawn to the problem presented by nodes that are strongly supported by non-molecular evidence but receive only low bootstrap resampling support. Overall, the gene trees agree with morphology-based brachiopod taxonomy, but novel relationships are tentatively suggested for thecideidine and megathyrid brachiopods. Articulate brachiopods are found to be monophyletic in all reconstructions, but monophyly of inarticulate brachiopods and the possible inclusion of phoronids in the inarticulate brachiopod clade are less strongly established. Phoronids are clearly excluded from a sister-group relationship with articulate brachiopods, this proposed relationship being due to the rejected, chimaeric sequence (GenBank UO12648). Lineage relative rate tests show no heterogeneity of evolutionary rate among articulate brachiopod sequences, but indicate that inarticulate brachiopod plus phoronid sequences evolve somewhat more slowly. Both brachiopods and phoronids evolve slowly by comparison with other invertebrates. A number of palaeontologically dated times of earliest appearance are used to make upper and lower estimates of the global rate of brachiopod SSU rDNA evolution, and these estimates are used to infer the likely divergence times of other nodes in the gene tree. There is reasonable agreement between most inferred molecular and palaeontological ages. The estimated rates of SSU rDNA sequence evolution suggest that the last common ancestor of brachiopods, chitons and other protostome invertebrates (Lophotrochozoa and Ecdysozoa) lived deep in Precambrian time. Results of this first DNA-based, taxonomically representative analysis of brachiopod phylogeny are in broad agreement with current morphology-based classification and systematics and are largely consistent with the hypothesis that brachiopod shell ontogeny and morphology are a good guide to phylogeny.  相似文献   

6.
The advent of numerical methods for analysing phylogenetic relationships, along with the study of morphology and molecular data, has driven our understanding of animal relationships for the past three decades. Within the protostome branch of the animal tree of life, these data have sufficed to establish its two main side branches, the moulting Ecdysozoa and the non-moulting Lophotrochozoa. In this review, I explore our current knowledge of protostome relationships and discuss progress and future perspectives and strategies to increase resolution within the main lophotrochozoan clades. Novel approaches to coding morphological characters are needed by scoring real observations on species selected as terminals. Still, methodological issues, for example, how to deal with inapplicable characters or the coding of absences, may require novel algorithmic developments. Taxon sampling is another key issue, as phyla should include enough species so as to represent their span of anatomical disparity. On the molecular side, phylogenomics is playing an increasingly important role in elucidating animal relationships, but genomic sampling is still fairly limited within the lophotrochozoan protostomes, for which only three phyla are represented in currently available phylogenies. Future work should therefore concentrate on generating novel morphological observations and on producing genomic data for the lophotrochozoan side of the animal tree of life.  相似文献   

7.
《Palaeoworld》2016,25(1):43-59
The brachiopod Superfamily Spiriferoidea diversified greatly and was widely distributed in the late Palaeozoic (Carboniferous–Permian), and yet its phylogeny has been seldom investigated with analytical methods. This is reflected in the current flux of very different classification schemes for this superfamily. This paper provides the first attempt to investigate the phylogenetic relationships of spiriferoid brachiopods through both cladistic and Bayesian analyses involving 24 discrete and continuous characters. The continuous characters, from morphometric data, have been separately discretized using the gap weighting method, and the ‘as such’ option in TNT. Our results highlight the potential significance of continuous characters in reconstructing and elucidating phylogenies, as much as qualitative characters. Building on the outcomes of the analyses, we also briefly evaluate existing classification schemes of Spiriferoidea. We found that none of the existing classifications fully reflect the phylogeny properly; major families within the superfamily, such as Spiriferidae, Choristitidae, and Trigonotretidae, turned out to be polyphyletic. Although this study is considered preliminary, due to the selection of and restriction to certain taxa, combined with the use of a relatively small number of characters, it nevertheless demonstrates that potentially the true phylogenetic relationships of spiriferoid taxa sharply contrast with any of the existing classification schemes. This highlights the need to develop an alternative scheme that takes into account a more comprehensive range of phylogenetic variables.  相似文献   

8.
Within the Poaceae, inflorescence diversification and its bearing on phylogeny and evolution are exceedingly complex. We used phylogenetic information of the "finger millet clade," a group of grasses with digitate inflorescences, to study the inflorescence diversification. This clade appears monophyletic in the morphological and molecular phylogenetic analyses. Three well-supported clades are shown in our cpDNA-derived phylogeny, with clades I and III consisting of species of Chloris and Microchloa, respectively, and clade II including species of Cynodon, Dactyloctenium, and Eleusine. Variation appears at different times throughout development. Changes involving primordium number and arrangement occur very early, changes involving duration of primordium activity occur much later. Characters derived from the comparison of developmental sequences were optimized onto the most parsimonious tree. The developmental characters were congruent with the molecular phylogeny. Two developmental characters may not be homologous in the Chloris subclade and the Cynodon subclade.  相似文献   

9.
Molecular phylogenetic analyses of aligned 18S rDNA gene sequences from articulate and inarticulate brachiopods representing all major extant lineages, an enhanced set of phoronids and several unrelated protostome taxa, confirm previous indications that in such data, brachiopod and phoronids form a well-supported clade that (on previous evidence) is unambiguously affiliated with protostomes rather than deuterostomes. Within the brachiopod-phoronid clade, an association between phoronids and inarticulate brachiopods is moderately well supported, whilst a close relationship between phoronids and craniid inarticulates is weakly indicated. Brachiopod-phoronid monophyly is reconciled with the most recent Linnaean classification of brachiopods by abolition of the phylum Phoronida and rediagnosis of the phylum Brachiopoda to include tubiculous, shell-less forms. Recognition that brachiopods and phoronids are close genealogical allies of protostome phyla such as molluscs and annelids, but are much more distantly related to deuterostome phyla such as echinoderms and chordates, implies either (or both) that the morphology and ontogeny of blastopore, mesoderm and coelom formation have been widely misreported or misinterpreted, or that these characters have been subject to extensive homoplasy. This inference, if true, undermines virtually all morphology-based reconstructions of phylogeny made during the past century or more.  相似文献   

10.
The phylogeny of megabats (Mammalia: Chiroptera: Megachiroptera) has been addressed only on molecular grounds, as little effort has previously been made to describe the impressive morphological variation of the group in terms of phylogenetically informative characters. Here we provide a morphological matrix of 236 characters from the integument, dentition, cranial and post‐cranial skeleton, digestive apparatus and urogenital system. This data set covers most characters discussed previously in more restricted taxonomic contexts, as well a large number of new characters. Our aim was to generate a phylogenetic hypothesis for megabats based on a combined analysis of morphological characters and available gene sequence data from four mitochondrial and one nuclear loci. We used direct optimization under conventional equal costs, as well as under a cost ratio that maximizes homology when inapplicables (gaps) are present. Our results contradict the allegedly high level of conflict between the molecular and morphological partitions. We found that, although morphology alone recovered trees different and to some extent incompatible with those from previous molecular analyses, the combination of the two sources of evidence easily accommodated the morphological and molecular signals, yielding a resolved and relatively well‐supported phylogeny of Megachiroptera that is in reasonable agreement with the current morphology‐based taxonomy of the group. Overall congruence favored the maximization of homology by a narrow margin. In addition, partial analyses showed that implied weighting of morphology performed slightly better than equal weighting with respect to the combined analyses. © The Willi Hennig Society 2005.  相似文献   

11.
Parrots (order Psittaciformes) have developed novel cranial morphology. At the same time, they show considerable morphological diversity in the cranial musculoskeletal system, which includes two novel structures: the suborbital arch and the musculus (M.) pseudomasseter. To understand comprehensively the evolutionary pattern and process of novel cranial morphology in parrots, phylogenetic and developmental studies were conducted. Firstly, we undertook phylogenetic analyses based on mitochondrial ribosomal RNA gene sequences to obtain a robust phylogeny among parrots, and secondly we surveyed the cranial morphology of parrots extensively to add new information on the character states. Character mapping onto molecular phylogenies indicated strongly the repeated evolution of both the suborbital arch and the well-developed M. pseudomasseter within parrots. These results also suggested that the direction of evolutionary change is not always identical in the two characters, implying that these characters are relatively independent or decoupled structures behaving as separate modules. Finally, we compared the developmental pattern of jaw muscles among bird species and found a difference in the timing of M. pseudomasseter differentiation between the cockatiel Nymphicus hollandicus (representative of a well-developed condition) and the peach-faced lovebird Agapornis roseicollis (representative of an underdeveloped condition). On the basis of this study, we suggest that in the development of novel traits, modularity and heterochrony facilitate the diversification of parrot cranial morphology.  相似文献   

12.
Caecilian morphology is strongly modified in association with their fossorial mode of life. Currently phylogenetic analyses of characters drawn from the morphology of caecilians lack resolution, as well as complementarity, with results of phylogenetic analyses that employ molecular data. Stemming from the hypothesis derived from the mammal literature that the braincase has the greatest potential (in comparison to other cranial units) to yield phylogenetic information, the braincase and intimately associated stapes of 27 species (23 genera) of extant caecilians were examined using images assembled via microcomputed tomography. Thirty‐four new morphological characters pertaining to the braincase and stapes were identified and tested for congruence with previously recognized morphological characters. The results reveal that when added to previous character matrices, characters of the braincase and stapes resolve generic‐level relationships in a way that is largely congruent with the results of molecular analyses. Analysis of a combined data set of molecular and morphological data provides a framework for conducting ancestral character state reconstructions, which resulted in the identification of 95 new synapomorphies for various clades and taxa, 27 of which appear to be unique for the taxa that possess them. Together these data demonstrate the utility of the application of characters of the braincase and stapes for resolving phylogenetic relationships for a group whose morphology is largely confounded by functional modifications. In addition this study provides evidence of the utility of the braincase in resolving problematic morphology‐based phylogeny outside of Amniota, in an amphibian group. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 160–201.  相似文献   

13.
Lophotrochozoa is a protostome clade that includes disparate animals such as molluscs, annelids, bryozoans, and flatworms, giving it the distinction of including the most body plans of any of the three major clades of Bilateria. This extreme morphological disparity has prompted numerous conflicting phylogenetic hypotheses about relationships among lophotrochozoan phyla. Here, I review the current understanding of lophotrochozoan phylogeny with emphasis on recent insights gained through approaches taking advantage of high-throughput DNA sequencing (phylogenomics). Of significance, Platyzoa, a hypothesized clade of mostly small-bodied animals, appears to be an artifact of long-branch attraction. Recent studies recovered Gnathifera (Syndermata, Gnathostomulida, and Micrognathozoa) sister to all other lophotrochozoans and a clade called Rouphozoa (Platyhelminthes and Gastrotricha) sister to the remaining non-gnathiferan lophotrochozoans. Although Bryozoa was traditionally grouped with Brachiopoda and Phoronida (Lophophorata), most molecular studies have supported a clade including Entoprocta, Cycliophora, and Bryozoa (Polyzoa). However, recent phylogenomic work has shown that entoprocts and bryozoans have compositionally heterogeneous genomes that may cause systematic artifacts affecting their phylogenetic placement. Lastly, relationships within Trochozoa (Mollusca, Annelida, and relatives) largely remain ambiguous. Recent work has shown that phylogenomic studies must identify and reduce sources of systematic error, such as amino acid compositional heterogeneity and long-branch attraction. Still, other approaches such as the analysis of rare genomic changes may be needed to overcome challenges to standard phylogenomic approaches. Resolving lophotrochozoan phylogeny will provide important insight into how these complex and diverse body plans evolved and provide a much-needed framework for comparative studies.  相似文献   

14.
This study conducts a phylogenetic analysis of extant African papionin craniodental morphology, including both quantitative and qualitative characters. We use two different methods to control for allometry: the previously described narrow allometric coding method, and the general allometric coding method, introduced herein. The results of this study strongly suggest that African papionin phylogeny based on molecular systematics, and that based on morphology, are congruent and support a Cercocebus/Mandrillus clade as well as a Papio/Lophocebus/Theropithecus clade. In contrast to previous claims regarding papionin and, more broadly, primate craniodental data, this study finds that such data are a source of valuable phylogenetic information and removes the basis for considering hard tissue anatomy “unreliable” in phylogeny reconstruction. Among highly sexually dimorphic primates such as papionins, male morphologies appear to be particularly good sources of phylogenetic information. In addition, we argue that the male and female morphotypes should be analyzed separately and then added together in a concatenated matrix in future studies of sexually dimorphic taxa. Character transformation analyses identify a series of synapomorphies uniting the various papionin clades that, given a sufficient sample size, should potentially be useful in future morphological analyses, especially those involving fossil taxa.  相似文献   

15.
There is much debate on the definitions of homoplasy and homology, and on how to spot them among character states used in a phylogenetic analysis. Many advocate what I call a "processual approach," in which information on genetics, development, function, or other criteria help a priori in identifying two character states as homologous or homoplastic. I argue that the processes represented by these criteria are insufficiently known for most organisms and most characters to be reliably used to identify homoplasies and homologies. Instead, while not foolproof, phylogeny should be the ultimate test for homology. Character states are assumed to be homologous a priori because this is falsifiable and because their initial inclusion in the character-state analysis is based on the assumption that they may be phylogenetically informative. If they fall out as symplesiomorphies or synapomorphies in a phylogenetic analysis, their status as homologies remains unfalsified. If they fall out as homoplasies, having evolved independently in more than one clade, their status as homologous is falsified, and a homoplasy is identified. The character-state transformation series, functional morphology, finer levels of morphological comparison, and the distribution and correlation of characters all help to explain the presence of homoplasies in a given phylogeny. Explaining these homoplasies, and not ignoring them as "noise," should be as much a goal of phylogenetic analysis as the production of a phylogeny. Examples from the fossil record of Miocene hominoids are given to illustrate the advantages of a process-informs-pattern-recognition-after-the-fact approach to understanding the evolution of character states.  相似文献   

16.
苔藓动物是后生动物中的一个重要类群。然而,和其它主要后生动物类群相比,长期以来对它的系统学研究却相对滞后。其起源,系统发生地位以及与其它后生物门类之间、其内部各高级分类群间的谱系发生关系一直存在争议。一般认为它是介于原口动物和后口动物之间的过渡类群。但是,近年来的分子系统学研究已经证实了它的原口归属。古生物学资料表明,虽然苔藓动物的大多数类群在奥陶纪已经分化出来,但它在寒武纪却缺乏任何化石记录。另外,苔藓动物起源的时间和方式、其内部各类群间的系统发生关系特别是现生类群和化石类群之间的关系等诸多问题的解决,还有待于大量的形态学和不同的分子数据的进一步积累,并结合其地层分布等各种相关资料进行综合研究。  相似文献   

17.
18.
The spider family Pholcidae comprises a large number of mainly tropical, web-weaving spiders, and is among the most diverse and dominant spider groups in the world. The phylogeny of this family has so far been investigated exclusively using morphological data. Here, we present the first molecular data for the family analyzed in a phylogenetic context. Four different gene regions (12S rRNA, 16S rRNA, cytochrome c oxidase subunit I, 28S rRNA) and 45 morphological characters were scored for 31 pholcid and three outgroup taxa. The data were analyzed both for individual genes, combined molecular data, and molecular plus morphological data, using parsimony, maximum likelihood, and Bayesian methods. Some of the phylogenetic hypotheses obtained previously using morphology alone were also supported by our results, like the monophyly of pholcines and of the New World clade. On the other hand, some of the previous hypotheses could be discarded with some confidence (monophyly of holocnemines, the position of Priscula), and still others need further investigation (the position of holocnemines, ninetines, and Metagonia). The data obtained provide an excellent basis for future investigations of phylogenetic patterns both within the family and among spider families.  相似文献   

19.
The diversity of hydrozoan life cycles, as manifested in the wide range of polyp, colony, and medusa morphologies, has been appreciated for centuries. Unraveling the complex history of characters involved in this diversity is critical for understanding the processes driving hydrozoan evolution. In this study, we use a phylogenetic approach to investigate the evolution of morphological characters in Hydrozoa. A molecular phylogeny is reconstructed using ribosomal DNA sequence data. Several characters involving polyp, colony, and medusa morphology are coded in the terminal taxa. These characters are mapped onto the phylogeny and then the ancestral character states are reconstructed. This study confirms the complex evolutionary history of hydrozoan morphological characters. Many of the characters involving polyp, colony, and medusa morphology appear as synapomorphies for major hydrozoan clades, yet homoplasy is commonplace.  相似文献   

20.
Lophotrochozoa has been consistently recovered in molecular phylogenetic analyses using different markers. Current knowledge of lophotrochozoan relationships is reviewed and the place that parasites occupy in this phylogeny is discussed. Two major taxa are identified within Lophotrochozoa: Platyzoa and Trochozoa. Monophyly of both taxa is still under debate. Relationships within Trochozoa remain largely unclear, however, there is strong evidence that the so called "minor phyla" Sipuncula, Echiura, and Myzostomida are all nested within annelids. Monophyly of the former "Lophophorata" is rejected, and a close relationship between phoronids and brachiopods, as well as between bryozoans and kamptozoans is suggested instead. The movement of the field of systematics into the genomic era will greatly improve our knowledge in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号