首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 504 毫秒
1.
The plasmids R711b (at present IncX) and F0lac (IncFV) both determine pili morphologically like those of F (IncFI), and confer sensitivity to the F-specific filamentous bacteriophages, but not to the F-specific isometric RNA phages. Detailed serological studies show that the two pilus types are unrelated, and that neither is related to any of the previously defined F pilus serotypes. Adsorption of the isometric RNA phage MS2 to R711b pili occurs in the presence but not in the absence of formalin, which presumably prevents elution of reversibly adsorbed virions. No adsorption occurs with F0lac pili. MS2 multiplication, as measured by titre increase tests in liquid medium, is found with neither plasmid. The two plasmids are not incompatible. These observations indicate that R744b and F0lac are different both from one another and from the plasmids belonging to the incompatibility groups IncFI--IV.  相似文献   

2.
Comparative Biochemical Studies on F and EDP208 Conjugative Pili   总被引:11,自引:9,他引:2       下载免费PDF全文
EDP208 pili are encoded by a derepressed derivative of a naturally occurring lac plasmid, F(0)lac (incompatibility group FV), originally isolated from Salmonella typhi. EDP208 pili are serologically unrelated to F pili and do not promote infection by F-specific ribonucleic acid bacteriophages. However, they do confer sensitivity to the F-specific filamentous deoxyribonucleic acid phages. EDP208-containing cells are multi-piliated and contain approximately 20 pili per cell. These pili contain a single polypeptide subunit of 11,500 daltons. EDP208-specific RNA phages were readily isolated from local sewage. These phages were somewhat smaller in diameter than the F-specific ribonucleic acid phages and absorbed relatively weakly to EDP208 pili. Comparing EDP208 pilin to F, it was found that both contain the equivalent of two to three hexose units per subunit as well as blocked N-termini. EDP208 pilin contains one covalently linked phosphate residue per subunit, whereas the F pilin subunit contains two such residues. Although notable differences were found in the case of three or four amino acids, the overall amino acid compositions of F and EDP208 were very similar. Moreover, the tryptic peptide maps of the two proteins contained seven peptides with similar mobilities, suggesting considerable homology in their amino acid sequences. Substantial similarities were also noted in the secondary structures of F and EDP208 pilin on the basis of circular dichroism studies. The alpha-helix content of both proteins was calculated to be 65 to 70%. X-ray fiber diffraction studies have indicated that the arrangements of subunits in F and EDP208 pili are also similar. It was concluded that F and EDP208 pili are closely related structures.  相似文献   

3.
Coordination of Sex Pili with their Specifying R Factors   总被引:2,自引:0,他引:2  
A single bacterial cell can simultaneously carry both F-like (fi+) and I-like (fi?) R factors and, when the R factors are de-repressed, most cells produce both F-like and I-like sex pili. These pili can be distinguished immunologically and by their capacity to adsorb different phages1. The F pilus is the receptor for RNA phages such as MS2 and filamentous DNA phages such as M13. The I pilus is the receptor for other filamentous DNA phages such as If1 and If2. Electron microscopy suggests that these filamentous DNA phages, both F-specific and I-specific, adsorb to the tip of the pilus2,3.  相似文献   

4.
Characterization and sequence analysis of pilin from F-like plasmids.   总被引:20,自引:11,他引:9       下载免费PDF全文
Conjugative pili are expressed by derepressed plasmids and initiate cell-to-cell contact during bacterial conjugation. They are also the site of attachment for pilus-specific phages (f1, f2, and QB). In this study, the number of pili per cell and their ability to retract in the presence of cyanide was estimated for 13 derepressed plasmids. Selected pilus types were further characterized for reactivity with anti-F and anti-ColB2 pilus antisera as well as two F pilus-specific monoclonal antibodies, one of which is specific for a sequence common to most F-like pilin types (JEL92) and one which is specific for the amino terminus of F pilin (JEL93). The pilin genes from eight of these plasmids were cloned and sequenced, and the results were compared with information on F, ColB2, and pED208 pilin. Six pilus groups were defined: I, was F-like [F, pED202(R386), ColV2-K94, and ColVBtrp]; IIA was ColB2-like in sequence but had a lowered sensitivity to f1 phage due to its decreased ability for pilus retraction [pED236(ColB2) and pED203(ColB4)]; IIB was ColB2-like but retained f1 sensitivity [pED200(R124) and pED207(R538-1)]; III contained R1-19, which had a ColB2-like amino terminus but had an additional lysine residue at its carboxy terminus which may affect its phage sensitivity pattern and its antigenicity; IV was R100-1-like [R100-1 and presumably pED241(R136) and pED204(R6)] which had a unique amino-terminal sequence combined with a carboxy terminus similar to that of F. pED208(Folac) formed group V, which was multipiliated and exhibited poor pilus retraction although it retained full sensitivity to f1 phage. The pED208 pilin gene could not be cloned at this time since it shared no homology with the pilin gene of the F plasmid.  相似文献   

5.
R62, a naturally occurring hybrid R plasmid   总被引:5,自引:4,他引:1       下载免费PDF全文
R62, a naturally occurring R factor, was shown to be a single deoxyribonucleic acid molecule composed of polynucleotide sequences typical of I group plasmids and also sequences typical of the N group. It determined I pili and belonged to the Iα compatibility group. Although compatible with plasmids of group N, R62 showed complex genetic reactions with N plasmids which are described and interpreted. It is concluded that R62 was the product of illegitimate recombination between an I group and an N group plasmid.  相似文献   

6.
Phage F0lac is an RNA-containing phage which plates only on strains carrying the plasmid EDP208, a pilus derepressed derivative of the unique incompatibility plasmid F0lac. A host range mutant, phage F0lac h, was selected which plated on strains carrying the ungrouped plasmid pPLS::Tn5 and lysed strains carrying another ungrouped plasmid TP224::Tn10 or the Com9 plasmid R71. An RNA-containing phage, SR, was isolated from sewage on bacteria harbouring plasmid pPLS::Tn5. It was antigenically distinct from the above two phages but had the same host range as phage F0lac h. Phages F0lac h and SR adsorbed unevenly to the shafts of the conjugative pili. Another phage, SF, was filamentous and plated or propagated on strains carrying any of the above plasmids as well as on strains harbouring IncD or F-complex plasmids. Plasmids TP224::Tn10 and pPLS::Tn5 were compatible with representative plasmids of all Inc groups also encoding thick flexible pili. The four plasmids EDP208, R71, TP224::Tn10 and pPLS::Tn5 were compatible with one another except for the reaction of TP224::Tn10 in the presence of pPLS::Tn5 which was slightly ambiguous. The host ranges of the bacteriophages, together with the serological relatedness of the thick flexible pili determined by these four compatible plasmids, suggested that they constitute a new complex, here designated S.  相似文献   

7.
Morphological and serological relationships of conjugative pili   总被引:24,自引:1,他引:23  
D E Bradley 《Plasmid》1980,4(2):155-169
It is now known that conjugative pili are determined by representative plasmids for all incompatibility groups in Escherichia coli K-12. They fall into three basic morphological groups, which are described: thin flexible, thick flexible, and rigid filaments or rods. The main thrust of this study, however, has been the use of immune electron microscopy to survey pili of all established incompatibility groups for serological cross-reactions. Morphologically identical thin flexible pili were determined by plasmids of the I complex, as well as IncB and IncK. Immune electron microscopy revealed two unrelated serotypes typified by Ia and I2 pili; K and B pili belonged to the first serotype. Thick flexible pili were determined by plasmids of Inc groups C, D, the F complex, H1, H2, J, T, V, X, com9, the single plasmid F0 lac, and the unclassified plasmid R687. Serological tests showed that C pili were related to J pili, H1 pili to H2 pili, com9 pili to F0 lac pili, and R687 pili to D pili, the remainder being unrelated. Rigid pili were determined by plasmids of Inc groups M, N, P, W, and by the unclassified plasmids R775, RA3, and pAr-32. The only relationship detected was between RA3 and pAr-32 pili. No cross reactions were found between pili of the three different morphological groups.  相似文献   

8.
David E. Bradley 《Plasmid》1983,9(3):331-334
IncI1 plasmids R144drd3 and R64drd11 determined thick, probably rigid pili in addition to the well-known thinner I1 pili. Electron microscopy revealed that the thick I1 pili often had large knobs at one end and were pointed at the other. They did not appear to act as receptors for any I-specific bacteriophages.  相似文献   

9.
Bacterial strains carrying the derepressed incompatibility group IncI2 plasmids TP114drp-l or R721pilc were lysed by the filamentous bacteriophages IKe, I2-2, and X. Phage I2-2 was serologically related to IKe, but phage X was not. Phage IKe adsorbed to the tips of thick pili determined by the IncI2 plasmids, but not to the well-known thin I2 pili.  相似文献   

10.
Five α-hemolytic plasmids were studied with respect to their molecular and genetic properties. Their molecular weights ranged from 48 to 93 Mdal. Digestion with HindIII restriction endonuclease indicated that they were all clearly different plasmids although similarities in their band patterns were observed. Plasmids pSU1, pSU105, and pSU316 produce F-like pili. Incompatibility studies between Hly plasmids were prevented by lack of markers other than α-hemolysin production. In order to overcome this problem, the inactivating properties of the transposable element Tn802 were used. Several Hly plasmids that have lost the ability to produce α-hemolysin were isolated after insertion of the ampicillin transposon Tn802. Incompatibility between the parental plasmids and their Tn802 derivatives suggests that α-hemolytic plasmids have spread over, at least, four incompatibility groups. Plasmids pSU1 and pSU105 were found to be incompatible with Hly-P212, the only representative, so far, of IncFVI. Plasmid pSU316 was incompatible both with ColB-K98 and R124, which suggests the existance of a FIII-FIV incompatibility complex. In addition, pSU5 and pSU233 were compatible with each other and with pSU316, pSU1, pSU105, and Hly-P212. They also produce a different type of pili from this test plasmids.  相似文献   

11.
The existence of the plasmid incompatibility group D was reaffirmed as a result of compatibility experiments done on plasmids R687, R711b, R778b and R840 which were previously tentatively accepted as constituting the group. The group was further delineated by the isolation of a phage, phage D, which adsorbed specifically to IncD plasmid-encoded pili produced by Escherichia coli K12 strains and strains of Salmonella typhimurium, Proteus morganii and Klebsiella oxytoca harbouring one of these plasmids. Plaque formation, like that of phage pilH alpha, was temperature sensitive in that plaques formed at 26 degrees C but not at 37 degrees C. Plaques were fairly clear, regular in outline and varied from pinpoint to about 1.5 mm in diameter on E. coli hosts where plaques were detected, but on the other hosts the plaques were more turbid and often irregular in outline. The phage did not plate (or propagate) on IncD plasmid-carrying strains of Providencia alcalifaciens, Providencia stuartii or Serratia marcescens. The phage had an isometric hexagonal outline with a diameter of about 27 nm. It contained RNA and resembled two other RNA-containing phages, M and pilH alpha, by being sensitive to chloroform. It adsorbed to the sides of the very distal ends of the shafts of IncD plasmid-coded pili.  相似文献   

12.
Summary Six missense point mutations in traA (WPFL43,44,45,46,47 and 51), the gene encoding F pilin in the transfer region of the F plasmid, have been characterized for their effect on the transfer ability, bacteriophage (R17, QB and fl) sensitivity and levels of piliation expressed by the plasmid. The sequence analysis of the first five of these mutations revealed two domains in the F pilin subunit exposed on the surface of the F pilus which mediate phage attachment. These two domains include residues 14–17 (approximately) and the last few residues at the carboxy-terminus of the pilin protein. One of these mutants had a pleiotropic affect on pilus function and was thought to have affected pilus assembly. The sixthe point mutant (WPFL51), previously thought to be in traA, was complemented by chimeric plasmids carrying the traG gene of the F transfer region, which may be involved in the acetylation of the pilin subunit. A traA nonsense mutant (JCFL1) carried an amber mutation near the amino-terminus which is well suppressed in SuI+ (supD) and SuIII+ (supF) strains. Neither the antigenicity of the pilin nor the efficiency of plating of F-specific bacteriophages were affected when this plasmid was harbored by either suppressor strain. A second amber mutant (JCFL25) which is not suppressible, carried its mutation in the codon for the single tryptophan in F pilin, suggesting that this residue is important in subunit interactions during pilus assembly. Two other point mutants (JCFL32 and 44) carried missense mutations in the leader sequence (positions 9 and 13) which affected the number of pili per cell presumably by altering the processing of propilin to pilin.  相似文献   

13.
Representative plasmids for most incompatibility groups in Escherichia coli K-12 were transferred to a "bald" strain to compare transfer frequencies for liquid and solid media. Standard broth matings were used for a liquid environment, but for solid surface mating, conjugation was allowed to take place on nutrient plates before washing off the cells for transconjugant selection on plates containing appropriate drugs. Plasmids that determine rigid pili transferred at least 2,000x better on plates than in broth. Some plasmids that determine thick flexible pili transferred 45 to 470x better, whereas others transferred equally well in both environments, as did plasmids of the I complex, which determine thin flexible pili. These results clearly distinguished a number of surface mating systems where most plasmids were derepressed for transfer and determined conjugative pili constitutively. The temperature-independent IncH2 plasmid R831b transferred best on plates, but other IncH plasmids transferred equally well in broth. This inconsistency led to the reclassification of R831b as IncM.  相似文献   

14.
The study dealth with effects of cationic detergents miramistin (alkylamidopropyldimethylbenzylammonium chloride), catamine AB (alkyldimethylbenzylammonium chloride) and the anionic compound sodium dodecyl sulphate (SDS) on the elimination from E. coli cells of plasmids determining the Hly, Ent and, indirectly, Col, F, and R markers of pathogenicity as well as their transfer upon conjugation. At subbacteriostatic concentrations, miramistin and catamine AB were found to suppress the transfer of Hly, Ent, F, and R plasmids during conjugation when applied to the donor, recipient or added to the conjugation medium without, however, eliminating plasmids. This is due to the disruption by detergents of F, J pili and other surface cell structures resulting in diminished ability to conjugate. Anionic SDS eliminated F and R plasmids without affecting Hly, Ent and Col.  相似文献   

15.
The tolQ (previously fii) mutation in Escherichia coli K12 inhibits infection by filamentous bacteriophages f1 and IKe but not by RNA-containing phage f2. This work extends these observations to other plasmid-specific bacteriophages including various filamentous. RNA-containing, and lipid-containing isolates. Only tip-adsorbing filamentous phages were affected by tolQ and not shaft-adsorbing ones. Electron microscopy showed that RP4-specific filamentous phage Pf3 was one of the latter kind. Several tip-adsorbing filamentous phages inhibited conjugation between tolQ strains carrying their specific plasmids, implicating the phage receptors (conjugative pili) as mating organelles. tolQ mutant strains were as proficient as their parents in conjugation mediated by a wide range of plasmids.  相似文献   

16.
The specifities of restriction of bacteriophages P1 and lambda controlled by R plasmids in Escherichia coli have been investigated. The isogenic strains harbouring the plasmids pAS26 coding for restriction endonuclease R.EcoRI, R245 coding for restriction endonuclease R.EcoRII and and R124 have been investigated in the present work. Modification-restriction controlled by R124 has been found to differ in specificity from those controlled by R245 and pAS26. Frequencies of restriction of bacteriophages P1vir and lambdavir specified by R124 pasmid differ from the frequencies in the strains harbouring pAS26 and R245 plasmids as well. The difference is due to the specifity of restriction-modification controlled by R124 plasmid. The data obtained are consistent with the determination of R124 specified restriction-modification activity as a novel one designated R.EcoRIII.  相似文献   

17.
F, F′ and R factors are closed circular molecules with molecular weights ranging from 5–100×106. They code for a number of different functions, including pili formation, fertility, autonomous replication, restriction of certain bacteriophages and exclusion of other extrachromosomal elements.  相似文献   

18.
Short, thick pili were found by electron microscopy on bacteria carrying the P group drug resistance plasmids RP1 and R1822. The R1822-specific phage PRR1 was seen to adsorb to the bases of the pili. Three RP1-specific phages, one filamentous (Pf3), and two with very thick capsids (PR3, PR4), were seen to attach all around the surface of P. aeruginosa cells, and were thought to be somatic, since pilus phages appear to be strictly polar on this species. PR3 and PR4 also lysed a strain of E. coli containing an N group plasmid, suggesting a relationship between the N and P group plasmids.  相似文献   

19.
Bacterial conjugation is a form of type IV secretion that transports protein and DNA to recipient cells. Specific bacteriophage exploit the conjugative pili and cell envelope spanning protein machinery of these systems to invade bacterial cells. Infection by phage R17 requires F-like pili and coupling protein TraD, which gates the cytoplasmic entrance of the secretion channel. Here we investigate the role of TraD in R17 nucleoprotein uptake and find parallels to secretion mechanisms. The relaxosome of IncFII plasmid R1 is required. A ternary complex of plasmid oriT, TraD and a novel activation domain within the N-terminal 992 residues of TraI contributes a key mechanism involving relaxase-associated properties of TraI, protein interaction and the TraD ATPase. Helicase-associated activities of TraI are dispensable. These findings distinguish for the first time specific protein domains and complexes that process extracellular signals into distinct activation stages in the type IV initiation pathway. The study also provided insights into the evolutionary interplay of phage and the plasmids they exploit. Related plasmid F adapted to R17 independently of TraI. It follows that selection for phage resistance drives not only variation in TraA pilins but diversifies TraD and its binding partners in a plasmid-specific manner.  相似文献   

20.
Thin pili of the closely related IncI1 plasmids ColIb-P9 and R64 are required only for liquid mating and belong to the type IV family of pili. They were sedimented by ultracentrifugation from culture medium in which Escherichia coli cells harboring ColIb-P9- or R64-derived plasmids had been grown, and then the pili were purified by CsCl density gradient centrifugation. In negatively stained thin pilus samples, long rods with a diameter of 6 nm, characteristic of type IV pili, were observed under an electron microscope. Gel electrophoretic analysis of purified ColIb-P9 thin pili indicated that thin pili consist of two kinds of proteins, pilin and the PilV protein. Pilin was demonstrated to be the product of the pilS gene. Pilin was first synthesized as a 22-kDa prepilin from the pilS gene and subsequently processed to a 19-kDa protein by the function of the pilU product. The N-terminal amino group of the processed protein was shown to be modified. The C-terminal segments of the pilV products vary among six or seven different types, as a result of shufflon DNA rearrangements of the pilV gene. These PilV proteins were revealed to comprise a minor component of thin pili. Formation of PilV-specific cell aggregates by ColIb-P9 and R64 thin pili was demonstrated and may play an important role in liquid mating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号