首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 957 毫秒
1.
To study the role of central cholinergic mechanisms in hypertension, we have determined muscarinic receptors using [3H](-)quinuclidinyl benzilate (QNB) and choline acetyltransferase (ChAT) activity in the brain regions of spontaneously hypertensive rats (SHR), stroke-prone SHR (SHRSP) and renal hypertensive rats. The number of muscarinic receptors was significantly (33–38%) elevated in the hypothalamus of SHR and SHRSP at the ages of 16 and 24 weeks compared to that of Wistar-Kyoto rats (WKY). An increased density of muscarinic receptors was consistently observed in the prehypertensive (5 weeks) and developmental (10 weeks) stages of hypertension. In contrast, in the hypothalamus of rats with renal hypertension there was no muscarinic receptor alteration. The receptor alteration in the SHRSP hypothalamus was not abolished by a chronic hypotensive treatment which prevented the development of hypertension, suggesting that an enhancement of the muscarinic receptors in spontaneous hypertension does not occur secondarily to the elevation of blood pressure. The hypothalamus of SHR and SHRSP at the ages of 5 and 24 weeks showed significantly less activity of ChAT. These data demonstrate that there is a specific increase in muscarinic receptors and a decrease in cholinergic activity in the hypothalamus of SHR and SHRSP. Thus, the present study suggests an important role for hypothalamic cholinergic receptors in the pathogenesis of spontaneous hypertension.  相似文献   

2.
GABA(B) receptor function is upregulated in the paraventricular nucleus (PVN) of the hypothalamus in spontaneously hypertensive rats (SHR), but it is unclear whether this upregulation occurs pre- or postsynaptically. We therefore determined pre- and postsynaptic GABA(B) receptor function in retrogradely labeled spinally projecting PVN neurons using whole cell patch-clamp recording in brain slices in SHR and Wistar-Kyoto (WKY) rats. Bath application of the GABA(B) receptor agonist baclofen significantly decreased the spontaneous firing activity of labeled PVN neurons in both SHR and WKY rats. However, the magnitude of reduction in the firing rate was significantly greater in SHR than in WKY rats. Furthermore, baclofen produced larger membrane hyperpolarization and outward currents in labeled PVN neurons in SHR than in WKY rats. The baclofen-induced current was abolished by either including G protein inhibitor GDPbetaS in the pipette solution or bath application of the GABA(B) receptor antagonist in both SHR and WKY rats. Blocking N-methyl-d-aspartic acid receptors had no significant effect on baclofen-elicited outward currents in SHR. In addition, baclofen caused significantly greater inhibition of glutamatergic excitatory postsynaptic currents (EPSCs) in labeled PVN neurons in brain slices from SHR than WKY rats. By contrast, baclofen produced significantly less inhibition of GABAergic inhibitory postsynaptic currents (IPSCs) in labeled PVN neurons in SHR than in WKY rats. Although microinjection of the GABA(B) antagonist into the PVN increases sympathetic vasomotor tone in SHR, the GABA(B) antagonist did not affect EPSCs and IPSCs of the PVN neurons in vitro. These findings suggest that postsynaptic GABA(B) receptor function is upregulated in PVN presympathetic neurons in SHR. Whereas presynaptic GABA(B) receptor control of glutamatergic synaptic inputs is enhanced, presynaptic GABA(B) receptor control of GABAergic inputs in the PVN is attenuated in SHR. Changes in both pre- and postsynaptic GABA(B) receptors in the PVN may contribute to the control of sympathetic outflow in hypertension.  相似文献   

3.
The specific binding of [3H]idazoxan in the presence of 10(-6) M (-)-adrenaline was used to evaluate the density of imidazoline receptors in the brain of spontaneously hypertensive (SHR) rats and sex- and age-matched normotensive Wistar-Kyoto (WKY) rats. In SHR rats the density of imidazoline receptors (cerebral cortex, hypothalamus, and medulla oblongata) was not different from that in normotensive (WKY) rats. However, repeated treatment with idazoxan consistently increased (23-80%) the density of imidazoline receptors in the various brain regions of WKY rats but not in SHR rats. In normotensive Sprague-Dawley rats, repeated treatment with the imidazoline drugs idazoxan and cirazoline also increased (33-37%) the density of imidazoline receptors in the cerebral cortex. The lack of regulation by idazoxan of the density of imidazoline receptors in the brain of SHR rats might reflect the existence of a relevant abnormality of these receptors in this genetic model of hypertension.  相似文献   

4.
The age-related development of GABABreceptors and their coupling to adenylate cyclase were studied in the brains of spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. Compared with WKY rats, the specific [3H]GABA binding to GABABreceptors showed a significant decrease not only in the posterior hypothalamus, midbrain, hippocampus and striatum of eleven-week-old SHR, which maintain a hypertensive state, but also in the posterior hypothalamus of four-week-old normotensive SHR. Similarly, the GABABreceptor agonists (baclofen and DN-2327)-induced suppression of adenylate cyclase activity showed a decrease in the posterior hypothalamus of four-week-old SHR as well as in the posterior hypothalamus and striatum of eleven-week-old SHR. These results suggest that the functions of the GABABreceptor in the brain of SHR may be decreased independently from the occurrence of blood pressure elevation and that such changes may even be involved in the pathogenesis of SHR.  相似文献   

5.
The hypothesis that endothelin (ET) receptor mechanisms are altered during development and progression of left ventricular hypertrophy (LVH) in vivo was tested using spontaneously hypertensive rats (SHRs). Ventricular cardiomyocytes were isolated from SHRs before onset (8 and 12 wk) and during progression (16, 20, and 24 wk) of LVH and compared with age-matched normotensive Wistar-Kyoto (WKY) rats. PreproET-1 mRNA expression was elevated in SHR (P < 0.05) relative to WKY cardiomyocytes at 20-24 wk. ET binding-site density was twofold greater in SHR than WKY cells at 12 wk (P < 0.05) but normalized at 20 wk. ET(B) receptors were detected on SHR cardiomyocytes as early as 8 wk and their affinity increased progressively with age (P < 0.05), whereas ET(B) receptors were not detected on WKY cells until 20 wk. ET-1 stimulated protein synthesis with similar maximum responses between strains (21-30%), in contrast with sarafotoxin 6c, which stimulated protein synthesis in SHR (13-20%) but not WKY cells at 12-20 wk. In SHR but not WKY cells, the ET(B) receptor-selective ligand A-192621 increased protein synthesis progressively with the development of LVH (15% maximum effect). In conclusion, the presence of ET(B) receptors (8-12 wk) coupled with functional responsiveness of SHR cells but not WKY cells to sarafotoxin 6c at 12 wk supports the involvement of ET(B) receptors before the onset of cardiomyocyte hypertrophy, whereas altered ET(B) receptor characteristics during active hypertrophy (16-24 wk) indicate that ET(B) receptor mechanisms may also contribute to disease progression.  相似文献   

6.
The sympathetic nervous system and renin-angiotensin system are both thought to contribute to the development and maintenance of hypertension in experimental models such as the spontaneously hypertensive rat (SHR). We demonstrated that periarterial nerve stimulation (NS) increased the perfusion pressure (PP) and neuropeptide Y (NPY) overflow from perfused mesenteric arterial beds of SHRs at 4-6, 10-12, and 18-20 wk of age, which correspond to prehypertensive, developing hypertensive, and maintained hypertensive stages, respectively, in the SHR. NS also increased PP and NPY overflow from mesenteric beds of Wistar-Kyoto (WKY) normotensive rats. NS-induced increases in PP and NPY were greater in vessels obtained from SHRs of all three ages compared with WKY rats. ANG II produced a greater increase in PP in preparations taken from SHRs than WKY rats. ANG II also resulted in a greater increase in basal NPY overflow from 10- to 12-wk-old and 18- to 20-wk-old SHRs than age-matched WKY rats. ANG II enhanced the NS-induced overflow of NPY from SHR preparations more than WKY controls at all ages studied. The enhancement of NS-induced NPY overflow by ANG II was blocked by the AT1 receptor antagonist EMD-66684 and the angiotensin type 2 receptor antagonist PD-123319. In contrast, ANG II greatly enhanced norepinephrine overflow in the presence of PD-123319. Both captopril and EMD-66684 decreased neurotransmitter overflow from SHR mesenteric beds; therefore, we conclude that an endogenous renin-angiotensin system is active in this preparation. It is concluded that the ANG II-induced enhancement of sympathetic nerve stimulation may contribute to the development and maintenance of hypertension in the SHR.  相似文献   

7.
With the use of in vitro receptor autoradiography, this study aims at determining whether the higher level of kinin B(2) receptor density in the spinal cord of the spontaneously hypertensive rat (SHR) is secondary to arterial hypertension and whether chronic treatment with angiotensin I-converting enzyme inhibitors (ACEI) can regulate neuronal B(1) and B(2) receptors. SHR received, from the age of 4 wk, one of the two ACEI (lisinopril or zofenopril, 10 mg x kg(-1) x day(-1)) or for comparison, the selective AT(1) antagonist (losartan, 20 mg x kg(-1) x day(-1)) in their drinking water for a period of 4, 12, and 20 wk. Age-matched untreated SHR and Wistar-Kyoto rats (WKY) were used as controls. B(2) receptor binding sites in most laminae were higher in SHR than in WKY from the age of 8 to 24 wk. Whereas B(1) receptor binding sites were significantly present in young SHR and WKY, they were barely detectable in adult rats. ACEI (16 and 24 wk) and AT(1) antagonist (24 wk) enhanced the number of B(2) without changing B(1) receptor binding sites. However, at 8 wk the three treatments significantly increased B(1) and decreased B(2) receptors in lamina I. It is concluded that 1) the higher density of B(2) receptors in the spinal cord of SHR is not due to hypertension, 2) kinin receptors are regulated differently by ACEI in neuronal and vascular tissues, and 3) aging may have a profound impact on levels of B(1) and B(2) receptors in the rat spinal cord.  相似文献   

8.
微小RNA在自发性高血压大鼠主动脉的差异表达   总被引:4,自引:0,他引:4  
Xu CC  Han WQ  Xiao B  Li NN  Zhu DL  Gao PJ 《生理学报》2008,60(4):553-560
微小RNAs(microRNAs,miRNAs)是一类基因组编码、非蛋白质编码的小RNA,在转录后水平负性调节靶基因表达.本研究探讨miRNAs在自发性高血压大(spontaneously hypertensive rats,SHR)主动脉的表达特征及其与高血压的关系.取4、8、16和24周龄雄性SHR大鼠及同龄正常血压对照(Wistar-Kyoto,WKY)大鼠.MiRanda、TargetScan和PicTar用于候选miRNAs及靶基因预测分析.通过实时定量RT-PCR检测大鼠主动脉miR-1、miR-133a、miR-155及miR-208的表达,并进一步通过实时定量RT-PCR检测呈差异表达的miR-155和miR-208的预测靶基因mRNA表达.结果显示,SHR大鼠主动脉miR-155表达在4、8、24周时与同龄WKY大鼠无显著差异,但在16周时明显低于同龄WKY大鼠(P<0.05),且大鼠主动脉miR-155表达量与血压呈负相关(r=-0.525,P<0.05).MiR-208表达在4周龄时最高,随年龄增长明显下降(P<0.05),其表达水平与血压和年龄呈负相关(r=-0.400,P<0.05;r=-0.684,P<0.0001),但在SHR和WKY大鼠之间无显著差异.miR-1和miR-133a在各年龄组SHR和WKY大鼠间未呈现差异表达.MiR-155和miR-208表达与相应预测靶基因mRNA表达无显著负相关性.以上结果表明,miR-155表达在成年SHR大鼠主动脉明显低于WKY,并与血压呈负相关,提示miR-155可能参与高血压的发生发展,主动脉miR-155表达异常可能是SHR大鼠血压升高的原因之一.大鼠主动脉miR-208表达在幼年时最高,随年龄增长而明显下降,提示其可能与血管发育有关.  相似文献   

9.
Glutathione (GSH) forms a part of the antioxidant system that plays a vital role in preventing oxidative stress, and an imbalance in the oxidant/antioxidant system has been linked to the pathogenesis of hypertension. The aim of this study was to investigate the status of the GSH system in the kidney of spontaneously hypertensive rats (SHR). Components of the GSH system, including glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), and total GSH content, were measured in the kidneys of 4, 6, 8, 12, and 16 weeks old SHR and Wistar–Kyoto (WKY) rats. Systolic blood pressure of SHR was significantly higher from the age of 6 weeks onwards compared with age-matched WKY rats. GPx activity in the SHR was significantly lower from the age of 8 weeks onwards when compared to that in age-matched WKY rats. No significant differences were evident in the GPx-1 protein abundance, and its relative mRNA levels, GR, GST activity, and total GSH content between SHR and age-matched WKY rats. The lower GPx activity suggests of an impairment of the GSH system in the SHR, which might be due to an abnormality in its protein rather than non-availability of a cofactor. Its role in the development of hypertension in SHR however remains unclear.  相似文献   

10.
杨Kun  丁虎 《生理学报》1991,43(4):345-351
The norepinephrine (NE) and angiotensin II (A II) contents in the brain regions of SHR and WKY (Wistar Kyoto) rats at different ages were determined by fluorospectrophotometry and radioimmunoassay. The systolic blood pressure (SBP) of the rats was measured indirectly with a tail cuff technique in conscious state. The results were as follows: There was no significant difference in the central A II and NE contents between SHR and WKY rats at 8-week age. Since 12th week age the SBP of SHR has increased gradually, up to 16th to 20th week and then maintained steady level. Whereas there was no significant change of SBP in WKY rats in the same span of age. In the early and late states of hypertension the A II contents in the medulla oblongata, pons, hypothalamus and nucleus caudatus of SHR were markedly higher than those of the age-matched WKY rats. But the change of NE content of SHR in the early stage showed a different picture as compared with that of WKY rats, i.e., NE decreased in medulla oblongata and anterior hypothalamus but increased in pons, posterior hypothalamus and nucleus caudatus. However, in the late stage there was no such significant difference between SHR and WKY rats. Consequently, it is suggested that the central A II and NE participated in the development of hypertension of SHR, and that the maintenance of hypertension is mainly dependent upon the increased A II content. Microinjection of captopril or 6-OHDA in the lateral cerebroventricle of SHR elicited a decrease of BP and reduction of both A II and NE contents in the medulla and hypothalamus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The locus ceruleus (LC) contains a high density of angiotensin II (All) receptors. The role of All receptors at the LC in genetic hypertension and organ function is unclear. Spontaneously hypertensive (SHR) rats and Wistar-Kyoto (WKY) rats were studied, and blood pressure of animals was measured using the tail-cuff method. Animals were decapitated and the heart weight (HW) and testicular weight (TW) of animals measured. All receptor binding was carried out by incubating the LC tissue sections with 200 pM [125I]-All receptor ligand, and measured using quantitative autoradiography. Results showed that the HW/BW ratio was significantly higher in SHR rats than WKY rats. However, the TW/BW ratio was higher in SHR rats than WKY rats only at two hypertensive stages, whereas All receptor binding capacity in the LC was also statistically higher in SHR rats than WKY rats. Results indicated that cardiac and testicular hypertrophies were related to higher All receptor binding in the LC of SHR rats, when compared with WKY rats. Interestingly, the literature shows that there is an LC-testes axis. In conclusion, this study indicated that All receptors in the LC are associated with genetic hypertension, and testicular weight could be a reasonable index for essential hypertension.  相似文献   

12.
The influence of long-lasting blockade of angiotensin AT1 or AT2 receptors by antibody against the particular receptor peptides on blood pressure and relative heart and kidney weight was studied in spontaneously hypertensive rats (SHR). Young and adult SHR were repeatedly immunized against the sequence 14-23 of angiotensin AT1 receptor from the age of either 1 or 3 months. Other groups of young and adult SHR were immunized against the sequences 37-43 and 106-116 of angiotensin AT2 receptor. Synthetic peptides conjugated to bovine gamma globulin were used as antigens. After 5 months of immunization, blood pressure was measured by the direct method. All immunized animals produced antibodies against the particular peptides. At the end of immunization, the blood pressure was significantly decreased in SHR immunized in youth against angiotensin AT1 receptor peptide, although no difference in heart and kidney hypertrophy was observed compared to sham-immunized SHR. The immunization against angiotensin AT1 receptor peptide in adulthood as well as the immunization against angiotensin AT2 receptor peptides in youth or in adulthood affected neither blood pressure nor heart and kidney weight. No influence of immunization on the studied parameters was observed in normotensive WKY rats. Angiotensin AT1 receptors play a more important role in the pathogenesis of spontaneous hypertension than angiotensin AT2 receptors. The blockade of angiotensin AT1 receptors by active immunization against the receptor peptide attenuated hypertension development in young SHR but did not modify the already established hypertension in adult SHR.  相似文献   

13.
H N Bhargava  S Das  M Bansinath 《Peptides》1987,8(2):231-235
The binding of [3H] [3-MeHis2] thyrotropin releasing hormone [( 3H]MeTRH) to brain membranes prepared from 8 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. [3H]MeTRH bound specifically to rat brain membranes at a single high affinity site. The density (Bmax value) of [3H]MeTRH binding sites was significantly greater (28%) in SHR rats compared to WKY rats. The apparent dissociation constants (Kd values) for the binding of [3H]MeTRH in SHR and WKY rats did not differ. Binding in the various brain regions revealed that the density of [3H]MeTRH was highest in the hypothalamus followed in decreasing order by pons + medulla, midbrain, cortex and striatum. The binding of [3H]MeTRH was approximately 25% greater in cortex, hypothalamus and striatum of SHR rats in comparison to WKY rats. The binding in pons + medulla, midbrain and pituitary of SHR and WKY rats did not differ. To assess the significance of increased binding sites for [3H]MeTRH in some brain regions of SHR rats, the binding studies were carried out during normotensive and hypertensive stages of postnatal age in the two strains. In 3 and 4 week old SHR rats there was neither an increase in blood pressure nor any increase in [3H]MeTRH binding in the hypothalamus and striatum as compared to age matched WKY rats. With the development of elevated blood pressure at 6 weeks, an increase in [3H]MeTRH binding in the hypothalamus and striatum of SHR rats in comparison to the tissues from WKY rats was observed. The results provide, for the first time, evidence for a parallel increase in the density of brain TRH receptors with elevation of blood pressure, and suggest that brain TRH receptors may play an important role in the pathophysiology of hypertension.  相似文献   

14.
15.
16.
To compare the functional state of the superior cervical (SCG) and stellate sympathetic ganglia (SG) of spontaneously hypertensive rats (SHR) with those of age-matched normotensive Wistar Kyoto rats (WKY), ganglion cell volume and area occupied by ganglion cells relative to each whole ganglionic area were morphometrically examined using the Texture Analyse System (TAS) in rats at 0, 10 and 30 days of age. The weight of each ganglion relative to animal weight was also measured. The ganglion cell volume and the relative area of ganglionic cells in both ganglia of SHR were significantly larger (P less than 0.05) than those of age-matched WKY at ages 0 and 10 days after birth. The relative ganglionic weights of SHR were significantly larger (P less than 0.01) compared with those of WKY at all ages examined, except for SG at 0 days after birth. These results show that the relative volume of sympathetic ganglion cells is greater in both SCG and SG of SHR than that of WKY, suggesting that hyperfunction of sympathetic ganglia occurs at the prehypertensive stage as a primary factor in the development of hypertension in SHR.  相似文献   

17.
Arteries undergo remodeling as a consequence of increased wall stress during hypertension. However, the molecular mechanisms of the vascular remodeling are largely unknown. Proteomics is a powerful tool to screen for differentially expressed proteins, but little effort was made on vascular disease research, especially on hypertension. In the present study, the differentially expressed proteins in aortas from 18-week-old spontaneously hypertensive rats (SHR) and their normotensive counterpart, Wistar Kyoto rats (WKY), were examined by two-dimensional electrophoresis (2-DE). We found 50 proteins to be differentially expressed, among which 27 were highly or only expressed in SHR and 23 in WKY. Using matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF-MS) and online data search, nine proteins, including Rho GDP dissociation inhibitor alpha (RhoGDIalpha), were identified with high confidence. Further, the upregulation of RhoGDIalpha was verified at both mRNA and protein level in SHR. In addition, when cultured vascular smooth muscle cells (VSMCs) from aortas of SHR and WKY were treated with angiotensin II (Ang II) and antagonist of angiotensin II type I (AT(1)) receptor, L158809, respectively, RhoGDIalpha was upregulated by Ang II and downregulated by L158809 in VSMCs of SHR. These results demonstrate that vascular remodeling results in significant alterations in the protein expression profile of the aorta during hypertension and suggest that the upregulation of RhoGDIalpha in hypertension is induced by Ang II via AT(1) receptor.  相似文献   

18.
The binding of 3H-naltrexone, an opiate receptor antagonist, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. 3H-Naltrexone bound to membranes of brain regions and spinal cord at a single high affinity site with an apparent dissociation constant value of 3 nM. The highest density of 3H-naltrexone binding sites were in hippocampus and lowest in the cerebral cortex. The receptor density (Bmax value) and apparent dissociation constant (Kd value) values of 3H-naltrexone to bind to opiate receptors on the membranes of amygdala, hippocampus, corpus striatum, pons and medulla, midbrain, cortex and spinal cord of WKY and SHR rats did not differ. The Bmax value of 3H-naltrexone binding to membranes of hypothalamus of SHR rats was 518% higher than WKY rats but the Kd values in the two strains did not differ. It is concluded that SHR rats have higher density of opiate receptors labeled with 3H-naltrexone in the hypothalamus only, in comparison with WKY rats, and that such a difference in the density of opiate receptors may be related to the elevated blood pressure in SHR rats.  相似文献   

19.
The binding of [3H] DAMGO, a highly selective ligand for mu-opiate receptors, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. [3H] DAMGO bound to membranes of brain regions and spinal cord at a single high affinity site. The receptor density (Bmax value) and apparent dissociation constant (Kd value) of [3H] DAMGO to bind to membranes of hippocampus, corpus striatum, pons and medulla, cortex and spinal cord of WKY and SHR rats did not differ. The Bmax value of [3H] DAMGO in membranes of hypothalamus and midbrain of SHR rats was significantly higher than in WKY rats but the Kd values in the two strains did not differ. On the other hand, the Bmax value of [3H] DAMGO in membranes of amygdala of SHR rats was lower than that of WKY rats but the Kd values in the two strains were similar. It is concluded that SHR rats have higher density of mu-opiate receptors in hypothalamus and midbrain but lower density in amygdala in comparison with WKY rats, and that such differences in the distribution of mu-opiate receptors may be related to the elevated blood pressure in SHR rats.  相似文献   

20.
To compare the functional state of the superior cervical (SCG) and stellate sympathetic ganglia (SG) of spontaneously hypertensive rats (SHR) with those of age-matched normotensive Wistar Kyoto rats (WKY), ganglion cell volume and area occupied by ganglion cells relative to each whole ganglionic area were morphometrically examined using the Texture Analyse System (TAS) in rats at 0, 10 and 30 days of age. The weight of each ganglion relative to animal weight was also measured. The ganglion cell volume and the relative area of ganglionic cells in both ganglia of SHR were significantly larger (P<0.05) than those of age-matched WKY at ages 0 and 10 days after birth. The relative ganglionic weights of SHR were significantly larger (P<0.01) compared with those of WKY at all ages examined, except for SG at 0 days after birth. These results show that the relative volume of sympathetic ganglion cells is greater in both SCG and SG of SHR than that of WKY, suggesting that hyperfunction of sympathetic ganglia occurs at the prehypertensive stage as a primary factor in the development of hypertension in SHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号