首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Some aspects of the biology of Crematogaster pygmaea, a highly polydomous and polygynous ant, are more commonly found in monogynous species. One such characteristic is the high attractiveness of its queens. In this study, this attractiveness was assessed under varying experimental conditions to investigate the factors responsible for its expression and variation, and to identify the nature of queen attractiveness. It was shown (1) that C. pygmaea queens are highly attractive to the workers that cluster on and around them (retinue), (2) that the attractiveness of C. pygmaea queens is context-dependent, i.e., it increases with increasing degree of potential danger to the queen, (3) that the attractiveness signal of C. pygmaea queens is chemically based, and (4) that this signal is persistent and apparently not colony-specific. The proposed hypothesis is that the C. pygmaea queens constantly release an attractiveness signal that is “read” by the workers, in a dependent way linked to the context, and that the main function of this attractiveness is to protect queens. This protection would have a high adaptive value in the context of the social structure and the reproductive strategies in C. pygmaea.  相似文献   

2.
3.
We study male parentage and between-colony variation in sex allocation and sexual production in the desert ant Crematogaster smithi, which usually has only one singly-mated queen per nest. Colonies of this species are known to temporarily store nutrients in the large fat body of intermorphs, a specialized female caste intermediate in morphology between queens and workers. Intermorphs repackage at least part of this fat into consumable but viable male-destined eggs. If these eggs sometimes develop instead of being eaten, intermorphs will be reproductive competitors of the queen but—due to relatedness asymmetries—allies of their sister worker. Using genetic markers we found a considerable proportion of non-queen sons in some, but not all, colonies. Even though intermorphs produce ∼1.7× more eggs than workers, their share in the parentage of adult males is estimated to be negligible due to their small number compared to workers. Furthermore, neither colony-level sex allocation nor overall sexual production was correlated with intermorph occurrence or number. We conclude that intermorph-laid eggs typically do not survive and that the storage of nutrients and their redistribution as eggs by intermorphs is effectively altruistic.  相似文献   

4.
Desert ants of the genus Cataglyphis evolved a remarkable diversity in their reproductive strategies. In Cataglyphis species where social organisation was described so far, colonies are headed by one or multiple queens, queens being singly or multiply mated, and workers and/or queens possess the ability to reproduce asexually via thelytokous parthenogenesis. Here, we investigate the social organisation of C. bombycina (group bombycinus) and C. theryi (group albicans) using highly polymorphic microsatellite markers. Our results show that both species are characterized by monogynous colonies and multiply mated queens, supporting the idea that polyandry is an ancestral trait of the genus. No evidence for parthenogenetic reproduction by queens was found. One distinctive feature of the species C. bombycina among the genus is the presence of a morphologically distinct soldier caste, with highly developed scythe blades jaws. In the only colony where a significant number of soldiers have been sampled, the distribution of patrilines is fundamentally different between the soldier and the worker caste. This result suggests a genetic contribution to worker caste determination in this species, and certainly awaits further investigation.  相似文献   

5.
Understanding how a single genome creates and maintains distinct phenotypes is a central goal in evolutionary biology. Social insects are a striking example of co‐opted genetic backgrounds giving rise to dramatically different phenotypes, such as queen and worker castes. A conserved set of molecular pathways, previously envisioned as a set of ‘toolkit’ genes, has been hypothesized to underlie queen and worker phenotypes in independently evolved social insect lineages. Here, we investigated the toolkit from a developmental point of view, using RNA‐Seq to compare caste‐biased gene expression patterns across three life stages (pupae, emerging adult and old adult) and two female castes (queens and workers) in the ant Formica exsecta. We found that the number of genes with caste‐biased expression increases dramatically from pupal to old adult stages. This result suggests that phenotypic differences between queens and workers at the pupal stage may derive from a relatively low number of caste‐biased genes, compared to higher number of genes required to maintain caste differences at the adult stage. Gene expression patterns were more similar among castes within developmental stages than within castes despite the extensive phenotypic differences between queens and workers. Caste‐biased expression was highly variable among life stages at the level of single genes, but more consistent when gene functions (gene ontology terms) were investigated. Finally, we found that a large part of putative toolkit genes were caste‐biased at least in some life stages in F. exsecta, and the caste‐biases, but not their direction, were more often shared between F. exsecta and other ant species than between F. exsecta and bees. Our results indicate that gene expression should be examined across several developmental stages to fully reveal the genetic basis of polyphenisms.  相似文献   

6.
In most social insects, the brood is totipotent and environmental factors determine whether a female egg will develop into a reproductive queen or a functionally sterile worker. However, genetic factors have been shown to affect the female's caste fate in a few ant species. The desert ant Cataglyphis hispanica reproduces by social hybridogenesis. All populations are characterized by the coexistence of two distinct genetic lineages. Queens are almost always found mated with a male of the alternate lineage than their own. Workers develop from hybrid crosses between the genetic lineages, whereas daughter queens are produced asexually via parthenogenesis. Here, we show that the association between genotype and caste in this species is maintained by a ‘hard‐wired’ genetic caste determination system, whereby nonhybrid genomes have lost the ability to develop as workers. Genetic analyses reveal that, in a rare population with multiple‐queen colonies, a significant proportion of nestmate queens are mated with males of their own lineage. These queens fail to produce worker offspring; they produce only purebred daughter queens by sexual reproduction. We discuss how the production of reproductive queens through sexual, intralineage crosses may favour the stability of social hybridogenesis in this species.  相似文献   

7.
The subgenus Orthocrema of the ant genus Crematogaster is a well defined group and diverse in the tropical Asia. Its systematics has remained poorly understood because of a lack of modern revisionary work. Crematogaster (Orthocrema) is revised for the Asian region, and 27 species including ten new species are recognized. Five species groups: the C. baduvi group (4 spp.); the C. binghamii group (3 spp.); the C. biroi group (10 spp.); the C. moatensis group (1 sp.); the C. quadriruga group (9 spp.) are established based on worker caste morphology. A key to Asian species of the subgenus Orthocrema based on the worker caste is given. Phylogenetic relationships of Asian Orthocrema are analyzed. The analysis revealed that the C. baduvi‐, C. binghamii‐, and C. biroi groups are monophyletic, and that the allopatric distribution patterns of closely related species imply that Asian Orthocrema is composed of relatively young taxa. There have been at least three west‐to‐east dispersal events across Wallace's line in the C. baduvi‐, C. quadriruga‐ and C. biroi groups. © 2016 The Linnean Society of London  相似文献   

8.
1. In many ant species, caste differentiation stems from trophic differences at the larval stage. Adult workers that feed larvae have great control over the allocation of colony resources to growth (production of workers) versus reproduction (production of queens). However, larval caste fate may also be constrained very early on through direct genetic effects or non‐genetic maternal effects. 2. Here, we combined isotopic and genetic analyses to study the developmental origin of queens and workers in a desert‐dwelling ant, Cataglyphis tartessica (Amor & Ortega, 2014). Queens do not found new colonies alone but rather disperse with workers. As the latter are always wingless, selection pressures on specific queen traits such as flight ability have become relaxed. Though the phylogenetically related species, C. emmae (Forel, 1909) only produces winged queens much larger than workers, C. tartessica produces two types of small queens relative to workers: brachypterous (short‐winged) queens and permanently apterous ergatoid (wingless and worker‐like) queens. 3. Upon emergence, workers and ergatoids have similar δ15N isotopic values, which were lower than those of brachypters, suggesting the latter are fed more protein as larvae. Microsatellite analyses indicated that: (i) colonies are mostly monogynous and monandrous; (ii) both ergatoids and brachypters are equally related to workers; and (iii) in the few polyandrous colonies, patrilines were evenly represented across workers, brachypters and ergatoids. 4. Overall, there was no evidence of genetic caste determination. We suggest that, in contrast to brachypters, ergatoids are selfish individuals that escape the nutritional castration carried out by workers and develop into queens in spite of the colony's collective interests.  相似文献   

9.
Reproductive division of labor and the coexistence of distinct castes are hallmarks of insect societies. In social insect species with multiple queens per colony, the fitness of nestmate queens directly depends on the process of caste allocation (i.e., the relative investment in queen, sterile worker and male production). The aim of this study is to investigate the genetic components to the process of caste allocation in a multiple-queen ant species. We conducted controlled crosses in the Argentine ant Linepithema humile and established single-queen colonies to identify maternal and paternal family effects on the relative production of new queens, workers, and males. There were significant effects of parental genetic backgrounds on various aspects of caste allocation: the paternal lineage affected the proportion of queens and workers produced whereas the proportions of queens and males, and females and males were influenced by the interaction between parental lineages. In addition to revealing nonadditive genetic effects on female caste determination in a multiple-queen ant species, this study reveals strong genetic compatibility effects between parental genomes on caste allocation components.  相似文献   

10.
11.
《Animal behaviour》1998,55(2):299-306
The morphologically specialized queen caste has been lost in various ponerine ants, and mated workers (‘gamergates’) reproduce instead of queens. Unlike previous reports in the literature, we found only one gamergate in each colony ofDinoponera quadriceps. We documented monogyny by dissecting ovaries and spermathecae in 914 workers from 15 colonies, and by observing mating in the laboratory. In colonies without a gamergate, aggressive interactions among some of the unmated nestmates led to the behavioural differentiation of a top-ranking worker (‘alpha’), which laid almost all the eggs. Only the alpha went outside the nest at night, and mated if foreign males were present (N=11 tests), thus becoming a gamergate. The alpha was sexually attractive even when her ovaries were not yet active. After intromission, the male remained linked to the alpha while she severed the end of his abdomen. Pieces of the male genitalia remained attached to her genital tract, and she removed them after 30±18 min (sdN=9). We interpret this to be a mating plug, preventing other males from fathering her offspring. None of these newly inseminated gamergates continued to go outside the nest, and, when tested, they never re-mated (N=4). Thus, gamergates ofD. quadricepsprobably mate only once. In queenless ant species, comparative evidence indicates that worker mating is often regulated in monogynous species, while unrestricted mating of young individuals is typical of polygynous species (oviposition is regulated subsequently). Furthermore, the occurrence of either monogyny or polygyny influences the mating strategies of males, and mating plugs have been reported only in some monogynous species.  相似文献   

12.
The success of an ant colony depends on the simultaneous presence of reproducing queens and non-reproducing workers in a ratio that will maximize colony growth and reproduction. Despite its presumably crucial role, queen–worker caste ratios (the ratio of adult queens to workers) and the factors affecting this variable remain scarcely studied. Maintaining polygynous pharaoh ant (Monomorium pharaonis) colonies in the laboratory has provided us with the opportunity to experimentally manipulate colony size, one of the key factors that can be expected to affect colony level queen–worker caste ratios and body size of eclosing workers, gynes and males. We found that smaller colonies produced more new queens relative to workers, and that these queens and workers both tended to be larger. However, colony size had no effect on the size of males or on the sex ratio of the individuals reared. Furthermore, for the first time in a social insect, we confirmed the general life history prediction by Smith and Fretwell (Am Nat 108:499–506, 1974) that offspring number varies more than offspring size. Our findings document a high level of plasticity in energy allocation toward female castes and suggest that polygynous species with budding colonies may adaptively adjust caste ratios to ensure rapid growth.  相似文献   

13.
14.
We studied the ant-feeding behavior of Asiatic black bears (Ursus thibetanus) through direct observation in the Ashio area of Japan. We recorded the bears’ “time foraging per ant nest” (TPN), documented the seasonal occurrence of ants in their scats, estimated phenological changes in caste composition of the nests of two abundant ant species (Lasius flavus and L. hayashi), and calculated the nutritional composition of queens, males, workers, queen pupae, and non-queen pupae of both species. We addressed two main hypotheses: (1) ant-nest phenology, especially the availability of pupae, affects bears’ myrmecophagy level; and (2) TPN changes according to the caste composition of ant nests. Bears in the Ashio area consumed more ants than in previous studies elsewhere in Japan, with consumption peaking in early July. The availability of pupae may trigger ant feeding by bears. And, because queen pupae were heavier than members of other castes, calories per individual were higher. TPN varied during the study period (late June–early August). There was a negative relationship between frequency of occurrence of pupae in ant nests and TPN; because pupae cannot move by themselves, bears could consume them effectively and quickly. Thus, bears may change their ant-foraging behavior (especially TPN) based on ant nest composition.  相似文献   

15.

Background

The dispersal ability of queens is central to understanding ant life-history evolution, and plays a fundamental role in ant population and community dynamics, the maintenance of genetic diversity, and the spread of invasive ants. In tropical ecosystems, species from over 40 genera of ants establish colonies in the stems, hollow thorns, or leaf pouches of specialized plants. However, little is known about the relative dispersal ability of queens competing for access to the same host plants.

Methodology/Principal Findings

We used empirical data and inverse modeling—a technique developed by plant ecologists to model seed dispersal—to quantify and compare the dispersal kernels of queens from three Amazonian ant species that compete for access to host-plants. We found that the modal colonization distance of queens varied 8-fold, with the generalist ant species (Crematogaster laevis) having a greater modal distance than two specialists (Pheidole minutula, Azteca sp.) that use the same host-plants. However, our results also suggest that queens of Azteca sp. have maximal distances that are four-sixteen times greater than those of its competitors.

Conclusions/Significance

We found large differences between ant species in both the modal and maximal distance ant queens disperse to find vacant seedlings used to found new colonies. These differences could result from interspecific differences in queen body size, and hence wing musculature, or because queens differ in their ability to identify potential host plants while in flight. Our results provide support for one of the necessary conditions underlying several of the hypothesized mechanisms promoting coexistence in tropical plant-ants. They also suggest that for some ant species limited dispersal capability could pose a significant barrier to the rescue of populations in isolated forest fragments. Finally, we demonstrate that inverse models parameterized with field data are an excellent means of quantifying the dispersal of ant queens.  相似文献   

16.
17.
Several genetic and nongenetic benefits have been proposed toexplain multiple mating (polyandry) in animals, to compensatefor costs associated with obtaining additional mates. The mostprominent hypotheses stress the benefits of increased geneticdiversity. In social insects, queens of most species mate onlyonce or have effective mating frequencies close to one. Yet,in a few species of ants, bees, and wasps, polyandry is therule. In these species, colonies are usually headed by a singlequeen, whereas multiple queening adds diversity in several ofthe remaining species, especially in ants. Here we investigatedmating frequency, inbreeding and relatedness between the queensand their mates in the polygynous ant Plagiolepis pygmaea, andthe effect of polyandry on the genetic diversity as a functionof the effective population size of individual colonies. Ourresults show that polyandry occurs frequently in the species.However, queens are frequently inseminated by close relatives,and additional sires add little genetic diversity among offspringof individual queens. In addition, the increase in diversityat the colony level is only marginal. Hence, contrary to establishednotions, polyandry in P. pygmaea seems not to be driven by substantialbenefits of genetic diversity. Nonetheless, very small or asyet unidentified genetic benefits to one party (males, workers,queens) in conjunction with low costs of mating may favor polyandry.Alternatively, nongenetic factors, such as convenience polyandry,may be more important than genetic factors in promoting polyandryin P. pygmaea.  相似文献   

18.
The breeding and non‐breeding ‘castes’ of eusocial insects provide a striking example of role‐specific selection, where each caste maximises fitness through different morphological, behavioural and physiological trait values. Typically, queens are long‐lived egg‐layers, while workers are short‐lived, largely sterile foragers. Remarkably, the two castes are nevertheless produced by the same genome. The existence of inter‐caste genetic correlations is a neglected consequence of this shared genome, potentially hindering the evolution of caste dimorphism: alleles that increase the productivity of queens may decrease the productivity of workers and vice versa, such that each caste is prevented from reaching optimal trait values. A likely consequence of this ‘intralocus caste antagonism’ should be the maintenance of genetic variation for fitness and maladaptation within castes (termed ‘caste load’), analogous to the result of intralocus sexual antagonism. The aim of this review is to create a research framework for understanding caste antagonism, drawing in part upon conceptual similarities with sexual antagonism. By reviewing both the social insect and sexual antagonism literature, we highlight the current empirical evidence for caste antagonism, discuss social systems of interest, how antagonism might be resolved, and challenges for future research. We also introduce the idea that sexual and caste antagonism could interact, creating a three‐way antagonism over gene expression. This includes unpacking the implications of haplodiploidy for the outcome of this complex interaction.  相似文献   

19.
Asexual reproduction and hybridisation are often found among highly invasive plants and marine invertebrates. Recently, it has been suggested that clonality may enhance the success of invasive ants. In contrast, obligate hybridisation (dependent lineage genetic caste determination or DL GCD in ants) may decrease the chances of population persistence if one lineage is less prevalent than the other (asymmetry in lineage ratio). Genetic data available for the invasive yellow crazy ant (Anoplolepis gracilipes) suggest that it has an unconventional mode of reproduction that may involve asexual reproduction by workers or queens, or a form of genetic caste determination. Here, we investigated whether A. gracilipes reproduction involved DL GCD. The potential for worker reproduction was also assessed. We used microsatellite markers to assess the population structure of A. gracilipes workers, males, queens and sperm in queen spermathecae, from field collections in Arnhem Land. We found that a single queen lineage is present in Arnhem Land. The presence of a single lineage of queens discounts the possibility of DL GCD. Population structure separated queens and workers into different lineages, suggesting that these castes are determined genetically in A. gracilipes, or the mode of reproduction differs between workers and queens. Evidence for worker reproduction was weak. We conclude that the reproductive mode of A. gracilipes does not involve DL GCD. The resolution of the reproductive mode of A. gracilipes is complicated by a high prevalence of diploid males. The determination of the A. gracilipes reproductive mode remains a fascinating research question, and its resolution will improve our understanding of the contribution of the reproductive system to invasion success.  相似文献   

20.
Polygyny is common in social insects despite inevitable decreases in nestmate relatedness and reductions to the inclusive fitness returns for cooperating non-reproductive individuals. We studied the prevalence and mode of polygyny in the African acacia-ant Crematogaster mimosae. These ants compete intensively with neighboring colonies of conspecifics and with three sympatric ant species for resources associated with the whistling-thorn acacias in which they all obligately nest. We used the genotypes of alate males at ten microsatellite loci to reconstruct queen genotypes and found that C. mimosae colonies are frequently secondarily polygynous, in that they include multiple closely related (and sometimes full-sib) queens, and (more rarely) unrelated queens. We also found that individual queens in both monogynous and polygynous colonies had mated with multiple males, making C. mimosae an interesting example of simultaneous polygyny and polyandry. The presence of polygyny in C. mimosae and the intense competition for nest-sites between C. mimosae and its conspecifics support the association between nest-site limitation and polygyny. Polygyny may allow for increased worker populations and a competitive advantage, as inter-colony conflicts are typically won by the colony with the larger number of workers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号