首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catecholamines induce unique growth and secretory responses in salivary glands. An analysis of three enzyme activities involved in cyclic AMP metabolism was carried out to identify the specificity of these responses for salivary glands. Although parotid adenylate cyclase has an unusually high specific activity, its kinetic properties and responses to NaF, guanine nucleotides, and isoproterenol are similar to other tissues not stimulated to grow after isoproterenol stimulation. Solubilized adenylate cyclase was separated from other membrane proteins by isoelectric focusing on polyacrylamide gels. There was a single broad peak of activity witha pI of 5.9. Parotid protein kinase has a subcellular distribution and substrate preference similar to hepatic protein kinase. Activation by cyclic AMP is also similar to that reported for other tissues, with a Ka of 1.2 - 10(-7) M. Parotid cyclic AMP and cyclic GMP phosphodiesterases are a heterogeneous group of enzymes with relatively low specific activity as compared with mouse pancreas, liver and brain. Isoelectric focusing of supernatant phosphodiesterases revealed at least sixpeaks of enzyme activity in the pI range of 4-6. Previous reports of a large increase in parotid cyclic AMP levels after in vivo administration of catecholamines and specific growth and secretion could be the result of a relatively high specific activity adenylate cyclase associated with low specific activity cyclic AMP phosphodiesterases.  相似文献   

2.
M K McMillian  B R Talamo 《Peptides》1989,10(4):721-727
Vasoactive intestinal peptide (VIP) is a putative neurotransmitter found in the salivary glands of many species, including the rat parotid gland. Parasympathetic denervation has been reported to deplete VIP in the rat parotid gland and to lead to supersensitivity to this peptide in vivo. We have compared the effects of VIP on acini isolated from parasympathetically denervated and unoperated parotid glands to examine possible supersensitivity to the peptide in vitro. VIP normally produced responses similar to those obtained with a low concentration of the beta adrenergic agonist isoproterenol (ISO), but strikingly different from the effects obtained with the muscarinic agonist carbachol (CARB). In parotid membrane preparations, VIP stimulated adenylate cyclase activity. Dissociated acini treated with VIP showed increases in cAMP accumulation and amylase release which were potentiated by forskolin and also by inhibition of phosphodiesterase. After parasympathetic denervation, maximal effects of VIP on adenylate cyclase, cAMP accumulation and amylase release in intact cells were increased two- to five-fold over contralateral control (or unoperated) parotid responses. The increase in adenylate cyclase-mediated responses after denervation was specific to VIP; there was no increased response nor increased sensitivity of any of these responses to ISO. Specific [125I]VIP binding to parotid acini increased two-fold per gland and three-fold per mg of protein after denervation; this probably explains the observed increases in the response to VIP.  相似文献   

3.
The beta-adrenergic catecholamine isoproterenol produces a large, rapid, but often a transient, elevation in cellular content of cyclic AMP. We have used the S49 mouse lymphoma cell line, in which genetic variants with specific defects in the pathway of cyclic AMP generation and function have been isolated, to study the increase and subsequent decrease in cyclic AMP levels (termed refractoriness) following incubation of cells with isoproterenol. In wild type S49 cells, isoproterenol produces a peak response in the cellular content of cyclic AMP within 30 min, but the cyclic AMP level falls rapidly thereafter, approaching basal levels by 6 h. Neither inactivation of the drug nor secretion of a nonspecific inhibitor of adenylate cyclase appears to account for the refractoriness. Because isoproterenol refractory cells can still be stimulated by cholera toxin, refractoriness to isoproterenol does not represent a generalized decrease in cellular cyclic AMP response. Particulate preparations from refractory cells have a selective loss of isoproterenol-responsive adenylate cyclase activity, but their activation constants and stereoselectivity for (-)- and (+)-isoproterenol are unaltered. In addition, refractory cells have decreased specific binding of the beta-adrenergic antagonist [125I]iodohydroxybenzylpindolol. This decrease appears to represent a reduction in the number, but not the affinity, of beta-adrenergic receptor sites. Similar studies in an S49 clone that lacks the enzyme cyclic AMP-dependent protein kinase yield essentially identical findings. Because kinase-deficient cells do not induce the cyclic AMP-degrading enzyme phosphodiesterase after the cellular content of cyclic AMP is increased, induced of phosphodiesterase cannot account for refractoriness to isoproterenol. Cyclic AMP-dependent protein kinase does not appear to be required for either the decrease in beta-adrenergic receptors and isoproterenol-responsive adenylate cyclase, nor does it appear to be required for the development of refractoriness to isoproterenol. In contrast, an S49 clone lacking hormone-responsive adenylate cyclase activity but retaining beta-adrenergic receptors does not appear to lose receptors after being incubated with isoproterenol, either alone or together with dibutyryl cyclic AMP. Therefore, in this clone, receptor occupancy alone or in combination with elevated cyclic AMP levels is insufficient to cause refractoriness. Refractoriness thus appears to require intact adenylate cyclase. This suggests that adenylate cyclase may exert regulatory controls on beta-adrenergic receptors in addition to generation of cyclic AMP.  相似文献   

4.
Isoproterenol induces both the secretion of protein and the stimulation of DNA synthesis and growth in rat salivary glands.The specific binding of the labelled beta-adrenergic antagonist [3H]dihydroalprenolol has been used to measure the number of beta-adrenergic receptors in rat parotid glands during isoproterenol-induced growth. Isoproterenol-enlarged glands display no change in the specific binding capacity per gland for [3H]-dihydroalprenolol compared with normal tissue.Catecholamine sensitive adenylate cyclase activity varies independently of the number of specific [3H]dihydroalprenolol binding sites during isoproterenol-induced growth.Previously-described differences in optimal isoproterenol doses which produce protein secretion and stimulation of DNA synthesis may reflect different responses to various rates of receptor occupancy, or may be due to the presence of more than one type of beta-adrenergic receptor.  相似文献   

5.
Crystallization of alpha 1-acid glycoprotein   总被引:1,自引:0,他引:1  
A possible link between cellular cyclic AMP content and Na+K+ATPase activity was investigated in homogenates of rat kidney. Enzyme kinetics of Mg2+ and Na+K+ATPase were run in the presence of cyclic AMP, dibutyryl cAMP and compounds expected to elevate cyclic AMP levels such as forskolin, a potent adenylate cyclase activator, IBMX, an inhibitor of phosphodiesterases, and the beta-agonist isoproterenol. Medullary Na+K+ATPase is strongly inhibited by cyclic AMP whereas cortical Na+K+ATPase was stimulated in the same conditions. The correlation between ATPase activity and cellular cyclic AMP content supports the concept of a possible regulation of the enzyme by cyclic AMP.  相似文献   

6.
The effect of an inhibitor of adenylate cyclase (ACI) was measured on some enzymes associated with cyclic nucleotide-regulated metabolism. Soluble guanylate cyclase was inhibited; both soluble and particulate cyclic GMP-phosphodiesterases were stimulated. Cyclic AMP phosphodiesterases were unaffected. In contrast, the activities of Na, K-ATPase, protein kinase, phosphorylase kinase, glycogen synthetase and a number of glycosidases were not altered by equipotent amounts of the inhibitor. It is concluded that this substance acts as a modulator of both cyclic AMP and cyclic GMP metabolism in heart and other tissues.  相似文献   

7.
The role of cyclic AMP in stimulus-secretion coupling was investigated in rat parotid tissue slices in vitro. Isoproterenol and norepinephrine stimulated a rapid intracellular accumulation of cyclic AMP, which reached a maximum level of 20–30 times the control value by 5 to 10 min after addition of the drug. Isoproterenol was approximately ten times more potent in stimulating both α-amylase release and cyclic AMP accumulation than were norepinephrine and epinephrine, which had nearly equal effects on these two parameters. Salbutamol and phenylephrine were less effective. A parallel order of potency and sensitivity was observed for the stimulation of adenylate cyclase activity in a washed particulate fraction. The results suggest that these drugs are acting on the parotid acinar cell through a β1-adrenergic mechanism.At the lowest concentrations tested, each of the adrenergic agonists stimulated significant α-amylase release with no detectable stimulation of cyclic AMP accumulation. Even in the presence of theophylline, phenylephrine at several concentrations increased α-amylase release without a detectable increase in cyclic AMP levels. However, phenylephrine did stimulate adenylate cyclase. These data suggest that, under certain conditions, large increases in the intracellular concentration of cyclic AMP may not be necessary for stimulation of α-amylase release by adrenergic agonists. Also consistent with this idea was the observation that stimulation of cyclic AMP accumulation by isoproterenol was much more sensitive to inhibition by propranolol than was the stimulation of α-amylase release by isoproterenol.Stimulation of α-amylase release by phenylephrine was only partially blocked by either α- or β-adrenerg blocking agents, whereas stimulation of adenylate cyclase by phenylephrine was blocked by propranolol and not by phentolamine. Phenoxybenzamine and phentolamine potentiated the effects of norepinephrine and isoproterenol on both cyclic AMP accumulation and α-amylase release. However, phenoxybenzamine also potentiated the stimulation of α-amylase release by N6,O2′-dibutyryl adenosine 3′,5′-monophosphate. These observations may indicate a non-specific action of phenoxybenzamine, and demonstrate the need for caution in interpreting evidence obtained using α-adrenergic blocking agents as tools for investigation of α- and β-adrenergic antagonism.  相似文献   

8.
The role of cyclic AMP in stimulus-secretion coupling with investigated in rat parotid tissue slices in vitro. Isoproterenol and norepinephrine stimulated a rapid intracellular accumulation of cyclic AMP, which reached a maximum level of 20-30 times the control value by 5 to 10 min after addition of the drug. Isoproterenol was approximately ten times more potent in stimulating both alpha-amylase release and cyclic AMP accumulation than were norepinephrine and epinephrine, which had nearly equal effects on these two parameters. Salbutamol and phenylephrine were less effectivema parallel order of potency and sensitivity was observed for the stimulation of adenylate cyclase activity in a washed particulate fractionmthe results suggest that these drugs are acting on a parotid acinar cell through a beta1-adrenergic mechanismmat the lowest concentrations tested, each of the adrenergic agonists stimulated significant alpha-anylase release with no detectable stimulation of cyclic AMP accumulationmeven in the presence of theophylline, phenylephrine at several concentrations increased alpha-amylase release without a detectable increase in cyclic AMP levels. However, phenylephrine did stimulate adenylate cyclase. These data suggest that, under certain conditions, large increases in the intra-cellular concentration of cyclic AMP may not be necessary for stimulation of alpha-amylase release by adrenergic agonists. Also consistent with this idea was the observation that stimulation of cyclic AMP accumulation by isoproterenol was much more sensitive to inhibition by propranolol than was the stimulation of alpha-amylase release by isoproterenol. Stimulation of alpha-amylase release by phenylephrine was only partially blocked by either alpha- or beta-adrenergic blocking agents, whereas stimulation of adenylate cyclase by phenylephrine was blocked by propranolol and not by phentolaminemphenoxybenzamine and phentolamine potentiated the effects of norepinephrine and isoproterenol on both cyclic AMP accumulation and alpha-amylase release by N-6,O-2'-dibutyryl adenosine 3',5'-monophosphate; These observations may indicate a non-specific action of phenoxybenzamine, and demonstrate the need for caution in interpreting evidence obtained using alpha-adrenergic blocking agents as tools for investigation of alpha- and beta-adrenergic antagonism.  相似文献   

9.
Electrical stimulation of either the parasympathetic or the sympathetic nerve supply to the parotid and submaxillary glands increases the intracellular level of cyclic GMP and the rate of DNA synthesis and cell division while only sympathetic stimulation raises cyclic AMP levels. The periods of electrical stimulation inducing hyperplasia also raise the cyclic GMP concentration but there is no similar correlation with changes in cyclic AMP levels. However, the extent of hyperplasia induced by parasympathetic and sympathetic stimulation is not directly related to the size of the increase in cyclic GMP concentration that these treatments produce. Changes in cyclic AMP levels are reflected in altered in vitro adenylate cyclase activity. This activity is raised after 2 min sympathetic stimulation and markedly decreased with 30 min sympathetic or parasympathetic stimulation. Guanylate cyclase activity shows no such changes with nerve stimulation.  相似文献   

10.
Adenylate cyclase, guanylate cyclase, and the cyclic nucleotide phosphodiesterases of Cylindrotheca fusiformis were characterized in crude and partially purified preparations. Both cyclases were membrane-bound and required Mn2+ for activity, though Mg2+ gave 50% activity with adenylate cyclase. Properties of adenylate cyclase were similar to those of higher eukaryotic cyclases in some respects, and in other respects were like lower eukaryotic cyclases. Guanylate cyclase was typical of other lower eukaryotic enzymes.

Two phosphodiesterase activities were found, one selective for cyclic AMP, the other for cyclic GMP. The 5′-nucleoside monophosphate was the major product of both activities and each of the enzymes had distinctive divalent cation requirements, pH optima, and kinetic parameters. Both phosphodiesterases were similar to those of other lower eukaryotes with one notable difference: the cyclic AMP enzyme was inhibited by calcium.

Changes in the cyclic nucleotide levels were quantitated in light-dark and silicon-starvation synchronized cultures using a more sensitive radioimmunoassay than used in a previously published study (Borowitzka and Volcani 1977 Arch Microbiol 112: 147-152). Contrary to the previous report, the cyclic GMP level did not change significantly in either synchrony. The cyclic AMP level increased dramatically very early in the period of DNA replication with the peak cyclic AMP accumulation substantially preceding that of DNA synthesis in both synchronies. There was no significant change in the activity of either cyclase or either phosphodiesterase during either synchrony. Thus, the mechanism for the rise in cAMP level remains unclear.

  相似文献   

11.
Since none of the hormones which activate adenylate cyclase in other tissues have been found to activate adenylate cyclase or to induce tyrosine aminotransferase in cultured Reuber hepatoma cells (H35), despite the stimulatory effects of cyclic AMP derivatives on the latter enzyme, we tested the ability of cholera toxin to influence these processes. At low concentrations cholera toxin was found to mimic the ability of cyclic AMP derivatives to selectively stimulate the synthesis of the aminotransferase. Adenylate cyclase and protein kinase activity were also enhanced, but only after a lag period as in other systems. Specific phosphorylation of endogenous H1 histone was also shown to be increased by cholera toxin treatment. The increase in tyrosine aminotransferase activity is due to an increase in de novo synthesis as shown by radiolabeling experiments utilizing specific immunoprecipitation. The activity of another soluble enzyme induced by dibutyryl cyclic AMP, PEP carboxykinase, was also stimulated by exposure of H35 cells to cholera toxin. Combinations of cholera toxin and dexamethasone led to greater than additive increases in the activity of both the aminotransferase and carboxykinase. Close coupling of cyclic AMP production with protein kinase activation and enzyme induction was suggested by the observation that the ED50 values for the stimulation of adenylate cyclase, cyclic AMP production, protein kinase, and tyrosine aminotransferase activities were found to be the same (5–7 ng/ml) within experimental error. The results indicate that the adenylate cyclase system in H35 cells is functionally responsive and they support the suggestion that activation of protein kinase is functionally linked to induction of specific enzymes.  相似文献   

12.
Activation of an S6 kinase from rat astroglial cells by cAMP   总被引:1,自引:0,他引:1  
Forskolin and isoproterenol, agonists of adenylate cyclase activity, and dibutyryl cyclic AMP, stimulated an S6 kinase activity in astroglial cells. This activity was insensitive to the thermostable inhibitor of cyclic AMP-dependent protein kinase and had the same behaviour on a DEAE-Sephacel column as the mitogen stimulated S6 kinase. These observations support the idea that the cyclic AMP cascade, as well as various growth factors, can activate S6 kinase.  相似文献   

13.
Simulations of the roles of multiple cyclic nucleotide phosphodiesterases.   总被引:2,自引:2,他引:0  
1. Simulations were performed using a model for cellular cyclic AMP metabolism involving a hormone-activated adenylate cyclase and two cyclic nucleotide phosphodiesterases with different Michaelis constants. 2. The response curves of cyclic AMP concentration as a function of hormone concentration were affected by regulating the phosphodiesterases. The maximum velocity of the high-affinity phosphodiesterase (V1) was important in determining the position of the response curve; when v1 was less than the maximal activity of adenylate cyclase (Vc), sigmoid response curves were readily produced. The maximum attainable concentration of cyclic AMP was determined primarily by V1 when Vc less than V1, and primarily by the activity of the low-affinity enzyme when Vc greater than V1 (V2 much greater than Vc in all cases). 3. The glucagon-stimulated adenylate cyclase and insulin-stimulated phosphodiesterase of the rat liver plasma membrane were simulated using experimentally determined values for the enzyme-kinetic parameters, and a considerable potential for regulation of the system by insulin was demonstrated. 4. Other possible functions for the regulation of phosphodiesterases are considered, in particular the value of increasing the speed of response to decreases in hormone concentration.  相似文献   

14.
Most tissues contain multiple forms of cyclic nucleotide phosphodiesterases (3':5'-cyclic-nucleotide 5' nucleotidohydrolase, EC 3.1.4.17). Consequently, in most, if not in all, tissues, substrate-velocity curves deviate from Michaelian kinetics and exhibit an apparent negative co-operativity. We have studied the possible theoretical consequences of this property on the quantitative features of cyclic AMP accumulation in response to activation of adenylate cyclase. Negative co-operativity of phosphodiesterases tends to generate a "positively co-operative" cyclic AMP accumulation curve. It amplifies the stimulation of cyclic AMP accumulation as compared with the stimulation of cyclic AMP synthesis. It enhances the sensitivity of cyclic AMP accumulation to slight variation of phosphodiesterase maximal velocity. It tends to shift the cyclic AMP accumulation curve to higher concentrations of stimulator as compared with the adenylate cyclase activation curve. This accounts for much of the data in the literature of hormonal effects on phosphodiesterase activity. It shows that the characteristics of cyclic nucleotide phosphodiesterases are as important as those of adenylate cyclase in determining the response of the system.  相似文献   

15.
Embryonic chick (7-9 day) and newborn chick myocardia contain one major peak of cyclic AMP-dependent protein kinase activity as assessed by DEAE-cellulose chromatography. Evidence is presented that the cyclic AMP-dependent protein kinase activity ratios (activity in absence of cyclic AMP/activity in presence of added cyclic AMP) of homogenates prepared with low ionic strength buffer reflect the endogenous activation state of the enzyme. The cyclic AMP content of newborn chick myocardium is lower than that of 7--9 day embryonic chick myocardium; the baseline cyclic AMP-dependent protein kinase activity is correspondingly reduced. Isoproterenol produces smaller elevations in cyclic AMP and in the cyclic AMP-dependent protein kinase activity ratio of newborn chick as compared to embryonic chick myocardium. Differences in the ability of isoproterenol to elevate cyclic AMP in the different preparations are not accompanied by appropriate changes in the adenylate cyclase or phosphodiesterase activities of the corresponding broken cell preparations. Studies with the phosphodiesterase inhibitor, Ro 20 1724 indicate that the changes in the ability of isoproterenol to elevate cyclic AMP in the developing chick myocardium are due to changes in the metabolism of the cyclic nucleotide by phosphodiesterase.  相似文献   

16.
Embryonic chick (7–9 day) and newborn chick myocardia contain one major peak of cyclic AMP-dependent protein kinase activity as assessed by DEAE-cellulose chromatography. Evidence is presented that the cyclic AMP-dependent protein kinase activity ratios (activity in absence of cyclic AMP/activity in presence of added cyclic AMP) of homogenates prepared with low ionicf strength buffer reflect the endogenous activation state of the enzyme. The cyclic AMP content of newborn chick myocardium is lower than that of 7–9-day embryonic chick myocardium; the baseline cyclic AMP-dependent protein kinase activity is correspondingly reduced. Isoproterenol produces smaller elevations in cyclic AMP and in the cyclic AMP-dependent protein kinase activity ratio in newborn chick as compared to embryonic chick myocardium. Differences in the ability of isoproterenol to elevate cyclic AMP in the different preparations are not accompanined by appropriate changes in the adenylate cyclase or phosphodiesterase activities of the corresponding broken cell preparations. Studies with the phosphodiesterase inhibitor, Ro 20 1724 indicate that the changes in the ability of isoproterenol to elevate cyclic AMP in the developing chick myocardium are due to changes in the metabolism of the cyclic nucleotide by phosphodiesterase.  相似文献   

17.
Treatment of cultured SV40-transformed normal rat kidney cells with the drug, 2-pyridine carboxylic acid, results in a pronounced potentiation in the ability of isoproterenol, prostaglandin E1, and cholera toxin to elevate cyclic AMP levels. With isoproterenol, the initial rate of cyclic AMP accumulation and the maximum cyclic AMP attainable are increased, and also the time of maximum cyclic AMP is prolonged. GTP-dependent adenylate cyclase activities are potentiated in crude membranes from the treated cells, but no evidence for alterations in cyclic nucleotide phosphodiesterase or release of cyclic AMP into the medium could be demonstrated. Results show that augmented adenylate cyclase activity alone, without changes in phosphodiesterase, can lead to dramatic alterations in cyclic AMP accumulation in response to cyclase agonists.  相似文献   

18.
Abstract: We studied the regulation of cyclic AMP responses by protein kinase C (PKC) in purified astrocyte and microglia cultures obtained from the neonatal rat brain. In astrocytes, a 10-min treatment with the phorbol esters phorbol 12-myristate 13-acetate (PMA) and 4β-phorbol 12,13-didecanoate (4β-PDD) (but not with 4α-PDD) or with diacylglycerol, which activate PKC, dose-dependently enhanced cyclic AMP accumulation induced by the β-adrenergic agonist isoproterenol and the adenylyl cyclase activator forskolin. Such enhancement was prevented by the PKC inhibitors staurosporine and calphostin-C and by down-regulation of PKC and was not related to activation of membrane receptors or Gs proteins or to inhibition of Gi proteins or phosphodiesterases. Instead, the activity of adenylyl cyclase doubled in PMA-treated astrocytes. In microglia, a 10-min treatment with PMA or PKC inhibitors did not affect cyclic AMP accumulation, whereas longer treatments with PMA or 4β-PDD (but not 4α-PDD) inhibited the cyclic AMP response in a time- and dose-dependent manner. Such inhibition was mimicked by staurosporine and calphostin-C. Also, in the case of microglia, the modulation of cyclic AMP responses appeared to occur at the level of adenylyl cyclase, and not elsewhere in the cyclic AMP cascade. The inhibition of microglial adenylyl cyclase was apparently not due to aspecific cytotoxicity. A differential regulation of adenylyl cyclase by PKC in astrocytes and microglia may help to explain qualitative and quantitative differences in the response of these cells to various physiological and pathological stimuli.  相似文献   

19.
The direct effects of chronic ethanol exposure on adenylate cyclase activity and cyclic AMP content were investigated in primary cerebellar cultures. By morphological criteria these cultures mainly contain granule cells with some astrocytes, and each cell type appears to contain both beta-adrenergic and adenosine-sensitive adenylate cyclase systems. Chronic treatment of the primary cerebellar cultures with 120 mM ethanol for 6 days caused a reduction in the stimulation of cyclic AMP content by isoproterenol and by the adenosine analogue 2-chloroadenosine. Kinetic analysis indicated that the chronic ethanol treatment decreased maximal activation of adenylate cyclase, as well as increased the EC50 values for norepinephrine and 2-chloroadenosine. Activation of norepinephrine-stimulated adenylate cyclase activity by in vitro ethanol was significantly enhanced after the chronic ethanol exposure. However, the chronic treatment did not alter activation of the 2-chloroadenosine-stimulated enzyme by in vitro ethanol. A similar difference in the response to in vitro ethanol after the chronic treatment was observed when cyclic AMP content of the intact cells was measured. The present data indicate that chronic ethanol exposure causes a selective increase in the sensitivity of adenylate cyclase to ethanol in some brain cells and a more generalized desensitization of receptor-stimulated cyclic AMP production.  相似文献   

20.
Jakobs, Bauer & Watanabe [(1985) Eur. J. Biochem. 151, 425-430] reported that treatment of platelets with phorbol 12-myristate 13-acetate (PMA) prevented GTP- and agonist-induced inhibition of adenylate cyclase in membranes from the platelets. This was attributed to the phosphorylation of the inhibitory guanine nucleotide-binding protein (Gi) by protein kinase C. In the present study, the effects of PMA on cyclic [3H]AMP formation and protein phosphorylation were studied in intact human platelets labelled with [3H]adenine and [32P]Pi. Incubation mixtures contained indomethacin to block prostaglandin synthesis, phosphocreatine and creatine kinase to remove ADP released from the platelets, and 3-isobutyl-1-methylxanthine to inhibit cyclic AMP phosphodiesterases. Under these conditions, PMA partially inhibited the initial formation of cyclic [3H]AMP induced by prostaglandin E1 (PGE1), but later enhanced cyclic [3H]AMP accumulation by blocking the slow decrease in activation of adenylate cyclase that follows addition of PGE1. PMA had more marked and exclusively inhibitory effects on cyclic [3H]AMP formation induced by prostaglandin D2 and also inhibited the action of forskolin. Adrenaline, high thrombin concentrations and, in the absence of phosphocreatine and creatine kinase, ADP inhibited cyclic [3H]AMP formation induced by PGE1. The actions of adrenaline and thrombin were attenuated by PMA, but that of ADP was little affected, suggesting differences in the mechanisms by which these agonists inhibit adenylate cyclase. sn-1,2-Dioctanoylglycerol (diC8) had effects similar to those of PMA. The actions of increasing concentrations of PMA or diC8 on the modulation of cyclic [3H]AMP formation by PGE1 or adrenaline correlated with intracellular protein kinase C activity, as determined by 32P incorporation into the 47 kDa substrate of the enzyme. Parallel increases in phosphorylation of 20 kDa and 39-41 kDa proteins were also observed. Platelet-activating factor, [Arg8]vasopressin and low thrombin concentrations, all of which inhibit adenylate cyclase in isolated platelet membranes, did not affect cyclic [3H]AMP formation in intact platelets. However, the activation of protein kinase C by these agonists was insufficient to account for their failure to inhibit cyclic [3H]AMP formation. Moreover, high thrombin concentrations simultaneously activated protein kinase C and inhibited cyclic [3H]AMP formation. The results show that, in the intact platelet, the predominant effects of activation of protein kinase C on adenylate cyclase activity are inhibitory, suggesting actions additional to inactivation of Gi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号