首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type-I interferons (IFNs) form a large family of cytokines that primarily act to control the early development of viral infections. Typical type-I IFN genes, such as those encoding IFN-α or IFN-β are upregulated by viral infection in many cell types. In contrast, the gene encoding IFN-ε was reported to be constitutively expressed by cells of the female reproductive tract and to contribute to the protection against vaginal infections with herpes simplex virus 2 and Chlamydia muridarum. Our data confirm the lack of induction of IFN-ε expression after viral infection and the constitutive expression of IFN-ε by cells of the female but also of the male reproductive organs. Interestingly, when expressed from transfected expression plasmids in 293T, HeLa or Neuro2A cells, the mouse and human IFN-ε precursors were inefficiently processed and secretion of IFN-ε was minimal. Analysis of chimeric constructs produced between IFN-ε and limitin (IFN-ζ) showed that both the signal peptide and the mature moiety of IFN-ε contribute to poor processing of the precursor. Immunofluorescent detection of FLAG-tagged IFN-ε in transfected cells suggested that IFN-ε and chimeric proteins were defective for progression through the secretory pathway. IFN-ε did not, however, act intracellularly and impart an antiviral state to producing cells. Given the constitutive expression of IFN-ε in specialized cells and the poor processing of IFN-ε precursor in fibroblasts and cell lines, we hypothesize that IFN-ε secretion may require a co-factor specifically expressed in cells of the reproductive organs, that might secure the system against aberrant release of this IFN.  相似文献   

2.
Japanese encephalitis virus (JEV) is a single stranded RNA virus that infects the central nervous system leading to acute encephalitis in children. Alterations in brain endothelial cells have been shown to precede the entry of this flavivirus into the brain, but infection of endothelial cells by JEV and their consequences are still unclear. Productive JEV infection was established in human endothelial cells leading to IFN-β and TNF-α production. The MHC genes for HLA-A, -B, -C and HLA-E antigens were upregulated in human brain microvascular endothelial cells, the endothelial-like cell line, ECV 304 and human foreskin fibroblasts upon JEV infection. We also report the release/shedding of soluble HLA-E (sHLA-E) from JEV infected human endothelial cells for the first time. This shedding of sHLA-E was blocked by an inhibitor of matrix metalloproteinases (MMP). In addition, MMP-9, a known mediator of HLA solubilisation was upregulated by JEV. In contrast, human fibroblasts showed only upregulation of cell-surface HLA-E. Addition of UV inactivated JEV-infected cell culture supernatants stimulated shedding of sHLA-E from uninfected ECV cells indicating a role for soluble factors/cytokines in the shedding process. Antibody mediated neutralization of TNF-α as well as IFNAR receptor together not only resulted in inhibition of sHLA-E shedding from uninfected cells, it also inhibited HLA-E and MMP-9 gene expression in JEV-infected cells. Shedding of sHLA-E was also observed with purified TNF-α and IFN-β as well as the dsRNA analog, poly (I:C). Both IFN-β and TNF-α further potentiated the shedding when added together. The role of soluble MHC antigens in JEV infection is hitherto unknown and therefore needs further investigation.  相似文献   

3.
4.
Measles virus (MeV) infection is characterized by the formation of multinuclear giant cells (MGC). We report that beta interferon (IFN-β) production is amplified in vitro by the formation of virus-induced MGC derived from human epithelial cells or mature conventional dendritic cells. Both fusion and IFN-β response amplification were inhibited in a dose-dependent way by a fusion-inhibitory peptide after MeV infection of epithelial cells. This effect was observed at both low and high multiplicities of infection. While in the absence of virus replication, the cell-cell fusion mediated by MeV H/F glycoproteins did not activate any IFN-α/β production, an amplified IFN-β response was observed when H/F-induced MGC were infected with a nonfusogenic recombinant chimerical virus. Time lapse microscopy studies revealed that MeV-infected MGC from epithelial cells have a highly dynamic behavior and an unexpected long life span. Following cell-cell fusion, both of the RIG-I and IFN-β gene deficiencies were trans complemented to induce IFN-β production. Production of IFN-β and IFN-α was also observed in MeV-infected immature dendritic cells (iDC) and mature dendritic cells (mDC). In contrast to iDC, MeV infection of mDC induced MGC, which produced enhanced amounts of IFN-α/β. The amplification of IFN-β production was associated with a sustained nuclear localization of IFN regulatory factor 3 (IRF-3) in MeV-induced MGC derived from both epithelial cells and mDC, while the IRF-7 up-regulation was poorly sensitive to the fusion process. Therefore, MeV-induced cell-cell fusion amplifies IFN-α/β production in infected cells, and this indicates that MGC contribute to the antiviral immune response.  相似文献   

5.
6.
MicroRNAs have been shown to contribute to a repertoire of host-pathogen interactions during viral infection. Our previous study demonstrated that microRNA-30e* (miR-30e*) directly targeted the IκBα 3′-UTR and disrupted the NF-κB/IκBα negative feedback loop, leading to hyperactivation of NF-κB. This current study investigated the possible role of miR-30e* in the regulation of innate immunity associated with dengue virus (DENV) infection. We found that DENV infection could induce miR-30e* expression in DENV-permissive cells, and such an overexpression of miR-30e* upregulated IFN-β and the downstream IFN-stimulated genes (ISGs) such as OAS1, MxA and IFITM1, and suppressed DENV replication. Furthermore, suppression of IκBα mediates the enhancing effect of miR-30e* on IFN-β-induced antiviral response. Collectively, our findings suggest a modulatory role of miR-30e* in DENV induced IFN-β signaling via the NF-κB-dependent pathway. Further investigation is needed to evaluate whether miR-30e* has an anti-DENV effect in vivo.  相似文献   

7.
Influenza viruses (IV) cause pneumonia in humans with progression to lung failure and fatal outcome. Dysregulated release of cytokines including type I interferons (IFNs) has been attributed a crucial role in immune-mediated pulmonary injury during severe IV infection. Using ex vivo and in vivo IV infection models, we demonstrate that alveolar macrophage (AM)-expressed IFN-β significantly contributes to IV-induced alveolar epithelial cell (AEC) injury by autocrine induction of the pro-apoptotic factor TNF-related apoptosis-inducing ligand (TRAIL). Of note, TRAIL was highly upregulated in and released from AM of patients with pandemic H1N1 IV-induced acute lung injury. Elucidating the cell-specific underlying signalling pathways revealed that IV infection induced IFN-β release in AM in a protein kinase R- (PKR-) and NF-κB-dependent way. Bone marrow chimeric mice lacking these signalling mediators in resident and lung-recruited AM and mice subjected to alveolar neutralization of IFN-β and TRAIL displayed reduced alveolar epithelial cell apoptosis and attenuated lung injury during severe IV pneumonia. Together, we demonstrate that macrophage-released type I IFNs, apart from their well-known anti-viral properties, contribute to IV-induced AEC damage and lung injury by autocrine induction of the pro-apoptotic factor TRAIL. Our data suggest that therapeutic targeting of the macrophage IFN-β-TRAIL axis might represent a promising strategy to attenuate IV-induced acute lung injury.  相似文献   

8.
9.
10.
Type I interferons (IFN-α and β) induce dynamic host defense mechanisms to inhibit viral infections. It has been recently recognized that the interferon-inducible transmembrane proteins (IFITM) 1, 2 and 3 can block entry of a broad spectrum of RNA viruses. However, no study to date has focused on the role of IFITM proteins in DNA virus restriction. Here, we demonstrate that IFN-α or -β treatment of keratinocytes substantially decreases human papillomavirus 16 (HPV16) infection while robustly inducing IFITM1, 2 and 3 expression. However, IFITM1, 2 and 3 overexpression did not inhibit HPV16 infection; rather, IFITM1 and IFITM3 modestly enhanced HPV16 infection in various cell types including primary keratinocytes. Moreover, IFITM1, 2 and 3 did not inhibit infection by two other DNA viruses, human cytomegalovirus (HCMV) and adenovirus type 5 (Ad5). Taken together, we reveal that the entry of several DNA viruses, including HPV, HCMV, and Ad5 is not affected by IFITM1, 2 and 3 expression. These results imply that HPV, and other DNA viruses, may bypass IFITM restriction during intracellular trafficking.  相似文献   

11.
12.
13.
14.
15.
Galectin-9 (Gal-9), a β-galactoside binding mammalian lectin, regulates immune responses by reducing pro-inflammatory IL-17-producing Th cells (Th17) and increasing anti-inflammatory Foxp3+ regulatory T cells (Treg) in vitro and in vivo. These functions of Gal-9 are thought to be exerted by binding to receptor molecules on the cell surface. However, Gal-9 lacks a signal peptide for secretion and is predominantly located in the cytoplasm, which raises questions regarding how and which cells secrete Gal-9 in vivo. Since Gal-9 expression does not necessarily correlate with its secretion, Gal-9-secreting cells in vivo have been elusive. We report here that CD4 T cells expressing Gal-9 on the cell surface (Gal-9+ Th cells) secrete Gal-9 upon T cell receptor (TCR) stimulation, but other CD4 T cells do not, although they express an equivalent amount of intracellular Gal-9. Gal-9+ Th cells expressed interleukin (IL)-10 and transforming growth factor (TGF)-β but did not express Foxp3. In a co-culture experiment, Gal-9+ Th cells regulated Th17/Treg development in a manner similar to that by exogenous Gal-9, during which the regulation by Gal-9+ Th cells was shown to be sensitive to a Gal-9 antagonist but insensitive to IL-10 and TGF-β blockades. Further elucidation of Gal-9+ Th cells in humans indicates a conserved role of these cells through evolution and implies the possible utility of these cells for diagnosis or treatment of immunological diseases.  相似文献   

16.
17.
18.
19.
20.
Infection by human cytomegalovirus (HCMV) is associated with the development of vascular diseases and may cause severe brain damage in infected fetuses. Platelet-derived growth factor receptors alpha and beta (PDGFR-α and -β) control important cellular processes associated with atherosclerosis and fetal development. In the present investigation, our goal was to determine whether infection by HCMV can influence the expression of PDGFR-α and -β in human smooth muscle cells (SMCs). In connection with HCMV infection in vitro the levels of PDGFR-α and -β at the cell surface and in the total cellular protein of SMCs were reduced in parallel with decreases in the levels of the corresponding mRNAs. These effects were dependent on immediate-early (IE) or early (E) HCMV gene products, since inhibition of late genes did not prevent HCMV from affecting the expression of PDGFR-α and -β. The downregulation of PDGFR caused by HCMV was dose dependent. Furthermore, confocal microscopy revealed that the localization of PDGFR-β was altered in HCMV-infected cells, in which this protein colocalized with proteins associated with endosomes (Rab4 and -5) and lysosomes (Lamp1 and -2), indicating entrance into pathways for protein degradation. Altogether these observations indicate that an IE and/or E HCMV protein(s) downregulates the expression of PDGFR-α and -β in SMCs. This phenomenon may disrupt cellular processes of importance in connection with cellular differentiation, migration, and/or proliferation. These observations may explain why congenital infection with HCMV can cause fetal brain damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号