首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer’s disease (AD) is a devastating neurodegenerative condition with no known cure. While current therapies target late-stage amyloid formation and cholinergic tone, to date, these strategies have proven ineffective at preventing disease progression. The reasons for this may be varied, and could reflect late intervention, or, that earlier pathogenic mechanisms have been overlooked and permitted to accelerate the disease process. One such example would include synaptic pathology, the disease component strongly associated with cognitive impairment. Dysregulated Ca2+ homeostasis may be one of the critical factors driving synaptic dysfunction. One of the earliest pathophysiological indicators in mutant presenilin (PS) AD mice is increased intracellular Ca2+ signaling, predominantly through the ER-localized inositol triphosphate (IP3) and ryanodine receptors (RyR). In particular, the RyR-mediated Ca2+ upregulation within synaptic compartments is associated with altered synaptic homeostasis and network depression at early (presymptomatic) AD stages. Here, we offer an alternative approach to AD therapeutics by stabilizing early pathogenic mechanisms associated with synaptic abnormalities. We targeted the RyR as a means to prevent disease progression, and sub-chronically treated AD mouse models (4-weeks) with a novel formulation of the RyR inhibitor, dantrolene. Using 2-photon Ca2+ imaging and patch clamp recordings, we demonstrate that dantrolene treatment fully normalizes ER Ca2+ signaling within somatic and dendritic compartments in early and later-stage AD mice in hippocampal slices. Additionally, the elevated RyR2 levels in AD mice are restored to control levels with dantrolene treatment, as are synaptic transmission and synaptic plasticity. Aβ deposition within the cortex and hippocampus is also reduced in dantrolene-treated AD mice. In this study, we highlight the pivotal role of Ca2+ aberrations in AD, and propose a novel strategy to preserve synaptic function, and thereby cognitive function, in early AD patients.  相似文献   

2.
Alzheimer’s disease is a neurodegenerative disorder where the cognitive deficit is the hallmark symptom reflecting the progression of the disease. Synaptic dysfunction is a sensitive parameter of the AD pathology. Rho GTPases and the Rho kinases, ROCK1/2, and PAK1-3, are important regulators of synaptic plasticity, especially in maintaining the actin cytoskeleton of dendritic spines. Recent studies have revealed that β-amyloid oligomers can inhibit PAK and stimulate ROCK-mediated signaling. Both of these effects enhance the disassembly of synaptic actin filaments and ultimately evoke synaptic loss. Brain tissue in AD recognizes the β-amyloid peptide oligomers as foreign protein particles and mounts an inflammatory defense via Toll-like receptor (TLR) signaling which causes synaptic impairment. We will review here the dysfunction of ROCK, PAK, and Toll signaling associated with AD pathology. The protection of synapses in AD may provide new therapeutic approaches to combatting the cognitive impairment in AD.  相似文献   

3.
As a fully differentiated organ, our brain is very sensitive to cumulative oxidative damage of proteins, lipids, and DNA occurring during normal aging because of its high energy metabolism and the relative low activity of antioxidative defense mechanisms. As a major consequence, perturbations of energy metabolism including mitochondrial dysfunction, alterations of signaling mechanisms and of gene expression culminate in functional deficits. With the increasing average life span of humans, age-related cognitive disorders such as Alzheimer’s disease (AD) are a major health concern in our society. Age-related mitochondrial dysfunction underlies most neurodegenerative diseases, where it is potentiated by disease-specific factors. AD is characterized by two major histopathological hallmarks, initially intracellular and with the progression of the disease extracellular accumulation of oligomeric and fibrillar β-amyloid peptides and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. In this review, we focus on findings in AD animal and cell models indicating that these histopathological alterations induce functional deficits of the respiratory chain complexes and therefore consecutively result in mitochondrial dysfunction and oxidative stress. These parameters lead synergistically with the alterations of the brain aging process to typical signs of neurodegeneration in the later state of the disease, including synaptic dysfunction, loss of synapses and neurites, and finally neuronal loss. We suggest that mitochondrial protection and subsequent reduction of oxidative stress are important targets for prevention and long-term treatment of early stages of AD.  相似文献   

4.
Alzheimer disease (AD) is the major locus of dementia worldwide. In the USA there are nearly 6 million persons with this disorder, and estimates of 13–20 million AD cases in the next three decades. The molecular bases for AD remain unknown, though processes involving amyloid beta-peptide as small oligomeric forms are gaining attention as known agents to both lead to oxidative stress and synaptic dysfunction associated with cognitive dysfunction in AD and its earlier forms, including amnestic mild cognitive impairment (MCI) and possibly preclinical Alzheimer disease (PCAD).Altered brain protein phosphorylation is a hallmark of AD, and phosphoproteomics offers an opportunity to identify these altered phosphoproteins in order to gain more insights into molecular mechanisms of neuronal dysfunction and death that lead to cognitive loss. This paper reviews what, to this author, are believed to be the known phosphoproteomics studies related to in vitro and in vivo models of AD as well as phosphoproteomics studies of brains from subjects with AD, and in at least one case in MCI and PCAD as well. The results of this review are discussed with relevance to new insights into AD brain protein dysregulation in critical neuronal functions and to potential therapeutic targets to slow, or in favorable cases, halt progression of this dementing disorder that affects millions of persons and their families worldwide.  相似文献   

5.
The non-Mendelian sporadic Alzheimer's disease (AD) is the most frequent form of dementia diagnosed worldwide. The most important risk factor to develop sporadic AD is aging itself. Next to hyperphosphorylated Tau, intracellular amyloid beta (A?) oligomers are known to initiate a cascade of pathological events ranging from mitochondrial dysfunction, synaptic dysfunction, oxidative stress, and loss of calcium regulation, to inflammation. All these events are considered to play an important role in the progressive loss of neurons. The molecular mechanisms determining the balance between A? production and clearance during the progression of the disease are not well understood. Furthermore, there is cumulating evidence that A? formation impairs mitochondrial function and that mitochondrial dysfunction is an early event in the pathogenesis of AD. On the other hand, mitochondrial dysfunction, in particular increased formation of mitochondrially derived reactive oxygen species, promote A? formation. Here, we review these latest findings linking mitochondrial dysfunction and A? formation. We propose that mitochondrial dysfunction, which is well-known to increase with age, is an initial trigger for A? production. As A? itself further accelerates mitochondrial dysfunction and oxidative stress, its formation is self-stimulated. Taken together, a vicious cycle is initiated that originates from mitochondrial dysfunction, implying that AD can be viewed as an age-associated mitochondrial disorder. The proposed mechanism sheds new light on the pathophysiological changes taking place during the progression of AD as well as in the aging process.  相似文献   

6.
7.
The energy demand and calcium buffering requirements of the brain are met by the high number of mitochondria in neurons and in these, especially at the synapses. Mitochondria are the major producer of reactive oxygen species (ROS); at the same time, they are damaged by ROS that are induced by abnormal protein aggregates that characterize human neurodegenerative diseases such as Alzheimer's disease (AD). Because synaptic mitochondria are long-lived, any damage exerted by these aggregates impacts severely on neuronal function. Here we review how increased TAU, a defining feature of AD and related tauopathies, impairs mitochondrial function by following the principle: ‘March separate, strike together!’ In the presence of amyloid-β, TAU's toxicity is augmented suggesting synergistic pathomechanisms. In order to restore mitochondrial functions in neurodegeneration as a means of therapeutic intervention it will be important to integrate the various aspects of dysfunction and get a handle on targeting distinct cell types and subcellular compartments. This article is part of a Special Issue entitled: Misfolded Proteins, Mitochondrial Dysfunction, and Neurodegenerative Diseases.  相似文献   

8.
Brain-derived neurotrophic factor (BDNF) is critical for the function and survival of neurons that degenerate in the late stage of Alzheimer's disease (AD). There are two forms of BDNF, the BDNF precursor (proBDNF) and mature BDNF, in human brain. Previous studies have shown that BDNF mRNA and protein, including proBDNF, are dramatically decreased in end-stage AD brain. To determine whether this BDNF decrease is an early or late event during the progression of cognitive decline, we used western blotting to measure the relative amounts of BDNF proteins in the parietal cortex of subjects clinically classified with no cognitive impairment (NCI), mild cognitive impairment (MCI) or mild to moderate AD. We found that the amount of proBDNF decreased 21 and 30% in MCI and AD groups, respectively, as compared with NCI, consistent with our previous results of a 40% decrease in end-stage AD. Mature BDNF was reduced 34 and 62% in MCI and AD groups, respectively. Thus, the decrease in mature BDNF and proBDNF precedes the decline in choline acetyltransferase activity which occurs later in AD. Both proBDNF and mature BDNF levels were positively correlated with cognitive measures such as the Global Cognitive Score and the Mini Mental State Examination score. These results demonstrate that the reduction of both forms of BDNF occurs early in the course of AD and correlates with loss of cognitive function, suggesting that proBDNF and BDNF play a role in synaptic loss and cellular dysfunction underlying cognitive impairment in AD.  相似文献   

9.
Alzheimer’s disease (AD) is a devastating disease characterized by synaptic and neuronal loss in the elderly. Compelling evidence suggests that soluble amyloid-β peptide (Aβ) oligomers induce synaptic loss in AD. Aβ-induced synaptic dysfunction is dependent on overstimulation of N-methyl-D-aspartate receptors (NMDARs) resulting in aberrant activation of redox-mediated events as well as elevation of cytoplasmic Ca2+, which in turn triggers downstream pathways involving phospho-tau (p-tau), caspases, Cdk5/dynamin-related protein 1 (Drp1), calcineurin/PP2B, PP2A, Gsk-3β, Fyn, cofilin, and CaMKII and causes endocytosis of AMPA receptors (AMPARs) as well as NMDARs. Dysfunction in these pathways leads to mitochondrial dysfunction, bioenergetic compromise and consequent synaptic dysfunction and loss, impaired long-term potentiation (LTP), and cognitive decline. Evidence also suggests that Aβ may, at least in part, mediate these events by causing an aberrant rise in extrasynaptic glutamate levels by inhibiting glutamate uptake or triggering glutamate release from glial cells. Consequent extrasynaptic NMDAR (eNMDAR) overstimulation then results in synaptic dysfunction via the aforementioned pathways. Consistent with this model of Aβ-induced synaptic loss, Aβ synaptic toxicity can be partially ameliorated by the NMDAR antagonists (such as memantine and NitroMemantine). PSD-95, an important scaffolding protein that regulates synaptic distribution and activity of both NMDA and AMPA receptors, is also functionally disrupted by Aβ. PSD-95 dysregulation is likely an important intermediate step in the pathological cascade of events caused by Aβ. In summary, Aβ-induced synaptic dysfunction is a complicated process involving multiple pathways, components and biological events, and their underlying mechanisms, albeit as yet incompletely understood, may offer hope for new therapeutic avenues.  相似文献   

10.
It has been widely accepted that vascular hypoperfusion induces oxidative stress and the outcome of this misbalance is brain energy failure. This abnormality leads to neuronal death which manifests as cognitive impairment and the development of brain pathology as in Alzheimer's disease (AD). It has been demonstrated that the AD brain is characterized by impairments in energy metabolism. We theorize that hypoperfusion induced mitochondrial failure plays a key role in the generation of reactive oxygen species, resulting in oxidative damage to brain cellular compartments, especially in the vascular endothelium and in selective population of neurons with high metabolic activity in the AD brain. All of these abnormalities have been found to occur before classic AD pathology inducing neuronal degeneration and amyloid deposition during the progression of AD. Therefore, expanding investigations into both the mechanisms behind amyloid beta (Abeta) deposition and the possible accelerating effects of environmental factors such as chronic hypoxia/reperfusion may open a new avenue for effective treatments of AD. Future studies examining the importance of mitochondrial pathobiology in brain cellular compartments provide insight not only into the better understanding of the neurodegenerative and/or cerebrovascular disease but also provide targets for treating these conditions.  相似文献   

11.
Alzheimer’s disease (AD) is a neurodegenerative disorder in which the amyloid-β (Aβ) oligomers are a key factor in synaptic impairment and in spatial memory decline associated with neuronal dysfunction. This impairment includes synaptic failure associated with the loss of synaptic proteins that contribute to AD progression. Interestingly, the use of natural compounds is an emergent conceptual strategy in the search for drugs with therapeutic potentials for treating neurodegenerative disorders. In the present study, we report that andrographolide (ANDRO), which is a labdane diterpene extracted from Andrographis paniculata, increases slope of field excitatory postsynaptic potentials (fEPSP) in the CA1 region of hippocampal slices and inhibits long-term depression (LTD), protecting the long-term potentiation (LTP) against the damage induced by Aβ oligomers in vitro, most likely by inhibiting glycogen synthase kinase-3β (GSK-3β). Additionally, ANDRO prevents changes in neuropathology in two different age groups (7- and 12-month-old mice) of an AβPPswe/PS-1 Alzheimer’s model. ANDRO reduces the Aβ levels, changing the ontogeny of amyloid plaques in hippocampi and cortices in 7-month-old mice, and reduces tau phosphorylation around the Aβ oligomeric species in both age groups. Additionally, we observed that ANDRO recovers spatial memory functions that correlate with protecting synaptic plasticity and synaptic proteins in two different age groups. Our results suggest that ANDRO could be used in a potential preventive therapy during AD progression.  相似文献   

12.
Alzheimer's disease (AD) is the first cause of dementia that leads to insidious and progressive loss of memory and cognitive functions. In the early stages of AD, there is a strong correlation between memory impairment and cortical levels of soluble amyloid-β peptide oligomers (Aβ). It has become clear that Aβ disrupt glutamatergic synaptic function, which in turn may lead to the characteristic cognitive deficits. Conversely, experiments in rodents have conforted the notion that Aβo impairs synaptic transmission and plasticity, and that mouse models with increased production of these oligomers display cognitive impairment. Many studies have attempted to determine the mechanisms by which Aβo disrupt synaptic plasticity and mediate their detrimental effect, but the actual pathways are still poorly understood. Here we review this thriving area of research which aims at understanding the mechanisms of synaptic dysfunction in the early phase of AD, and its consequences on the activity of neural circuits.  相似文献   

13.
Cerebrovascular dysfunction and cognitive decline are highly prevalent in aging, but the mechanisms underlying these impairments are unclear. Cerebral blood flow decreases with aging and is one of the earliest events in the pathogenesis of Alzheimer's disease (AD). We have previously shown that the mechanistic/mammalian target of rapamycin (mTOR) drives disease progression in mouse models of AD and in models of cognitive impairment associated with atherosclerosis, closely recapitulating vascular cognitive impairment. In the present studies, we sought to determine whether mTOR plays a role in cerebrovascular dysfunction and cognitive decline during normative aging in rats. Using behavioral tools and MRI‐based functional imaging, together with biochemical and immunohistochemical approaches, we demonstrate that chronic mTOR attenuation with rapamycin ameliorates deficits in learning and memory, prevents neurovascular uncoupling, and restores cerebral perfusion in aged rats. Additionally, morphometric and biochemical analyses of hippocampus and cortex revealed that mTOR drives age‐related declines in synaptic and vascular density during aging. These data indicate that in addition to mediating AD‐like cognitive and cerebrovascular deficits in models of AD and atherosclerosis, mTOR drives cerebrovascular, neuronal, and cognitive deficits associated with normative aging. Thus, inhibitors of mTOR may have potential to treat age‐related cerebrovascular dysfunction and cognitive decline. Since treatment of age‐related cerebrovascular dysfunction in older adults is expected to prevent further deterioration of cerebral perfusion, recently identified as a biomarker for the very early (preclinical) stages of AD, mTOR attenuation may potentially block the initiation and progression of AD.  相似文献   

14.
Alzheimer disease (AD) is a progressive, neurodegenerative disorder that leads to debilitating cognitive deficits. Although little is known about the early functional or ultrastructural changes associated with AD, it has been proposed that a stage of synaptic dysfunction might precede neurodegeneration in the development of this disease. Unfortunately, the molecular mechanisms that underlie such synaptic dysfunction remain largely unknown. Recently we have shown that beta-amyloid (Abeta), the main component of senile plaques, induced a significant decrease in dynamin 1, a protein that plays a critical role in synaptic vesicle recycling, and hence, in the signaling properties of the synapse. We report here that this dynamin 1 degradation was the result of calpain activation induced by the sustained calcium influx mediated by N-methyl-D-aspartate receptors in hippocampal neurons. In addition, our results showed that soluble oligomeric Abeta, and not fibrillar Abeta, was responsible for this sustained calcium influx, calpain activation, and dynamin 1 degradation. Considering the importance of dynamin 1 to synaptic function, these data suggest that Abeta soluble oligomers might catalyze a stage of synaptic dysfunction that precedes synapse loss and neurodegeneration. These data also highlight the calpain system as a novel therapeutic target for early stage AD intervention.  相似文献   

15.
Mitochondrial dysfunction is one of the early pathological features of Alzheimer''s disease (AD). Accumulation of cerebral and mitochondrial Aβ links to mitochondrial and synaptic toxicity. We have previously demonstrated the mechanism by which presequence peptidase (PITRM1)‐mediated clearance of mitochondrial Aβ contributes to mitochondrial and cerebral amyloid pathology and mitochondrial and synaptic stress in adult transgenic AD mice overexpressing Aβ up to 12 months old. Here, we investigate the effect of PITRM1 in an advanced age AD mouse model (up to 19–24 months) to address the fundamental unexplored question of whether restoration/gain of PITRM1 function protects against mitochondrial and synaptic dysfunction associated with Aβ accumulation and whether this protection is maintained even at later ages featuring profound amyloid pathology and synaptic failure. Using newly developed aged PITRM1/Aβ‐producing AD mice, we first uncovered reduction in PITRM1 expression in AD‐affected cortex of AD mice at 19–24 months of age. Increasing neuronal PITRM1 activity/expression re‐established mitochondrial respiration, suppressed reactive oxygen species, improved synaptic function, and reduced loss of synapses even at advanced ages (up to 19–24 months). Notably, loss of PITRM1 proteolytic activity resulted in Aβ accumulation and failure to rescue mitochondrial and synaptic function, suggesting that PITRM1 activity is required for the degradation and clearance of mitochondrial Aβ and Aβ deposition. These data indicate that augmenting PITRM1 function results in persistent life‐long protection against Aβ toxicity in an AD mouse model. Therefore, augmenting PITRM1 function may enhance Aβ clearance in mitochondria, thereby maintaining mitochondrial integrity and ultimately slowing the progression of AD.  相似文献   

16.
Brain mitochondrial dysfunction is hallmark pathology of Alzheimer’s disease (AD). Recently, the role of synaptosomal mitochondrial dysfunction in the development of synaptic injury in AD has received increasing attention. Synaptosomal mitochondria are a subgroup of neuronal mitochondria specifically locating at synapses. They play an essential role in fueling synaptic functions by providing energy on the site; and their defects may lead to synaptic failure, which is an early and pronounced pathology in AD. In our previous studies we have determined early synaptosomal mitochondrial dysfunction in an AD animal model (J20 line) overexpressing human Amyloid beta (Aβ), the key mediator of AD. In view of the limitations of J20 line mice in representing the full aspects of amyloidopathy in AD cases, we employed 5xFAD mice which are thought to be a desirable paradigm of amyloidopathy as seen in AD subjects. In addition, we have also examined the status of synaptosomal mitochondrial dynamics as well as Parkin-mediated mitophagy which have not been previously investigated in this mouse model. In comparison to nontransgenic (nonTg mice), 5xFAD mice demonstrated prominent synaptosomal mitochondrial dysfunction. Moreover, synaptosomal mitochondria from the AD mouse model displayed imbalanced mitochondrial dynamics towards fission along with activated Parkin and LC3BII recruitment correlating to spatial learning & memory impairments in 5xFAD mice in an age-dependent manner. These results suggest that synaptosomal mitochondrial deficits are primary pathology in Aβ-rich environments and further confirm the relevance of synaptosomal mitochondrial deficits to the development of AD.  相似文献   

17.
18.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by pathological deposits of β‐amyloid (Aβ) in senile plaques, intracellular neurofibrillary tangles (NFTs) comprising hyperphosphorylated aggregated tau, synaptic dysfunction and neuronal death. Substantial evidence indicates that disrupted neuronal calcium homeostasis is an early event in AD that could mediate synaptic dysfunction and neuronal toxicity. Sodium calcium exchangers (NCXs) play important roles in regulating intracellular calcium, and accumulating data suggests that reduced NCX function, following aberrant proteolytic cleavage of these exchangers, may contribute to neurodegeneration. Here, we show that elevated calpain, but not caspase‐3, activity is a prominent feature of AD brain. In addition, we observe increased calpain‐mediated cleavage of NCX3, but not a related family member NCX1, in AD brain relative to unaffected tissue and that from other neurodegenerative conditions. Moreover, the extent of NCX3 proteolysis correlated significantly with amounts of Aβ1–42. We also show that exposure of primary cortical neurons to oligomeric Aβ1–42 results in calpain‐dependent cleavage of NCX3, and we demonstrate that loss of NCX3 function is associated with Aβ toxicity. Our findings suggest that Aβ mediates calpain cleavage of NCX3 in AD brain and therefore that reduced NCX3 activity could contribute to the sustained increases in intraneuronal calcium concentrations that are associated with synaptic and neuronal dysfunction in AD.  相似文献   

19.
Ischemic retinopathies are clinically well-defined chronic microvascular complications characterized by gradually progressive alterations in the retinal microvasculature and a compensatory aberrant neovascularization of the eye. The subsequent metabolic deficiencies result in structural and functional alterations in the retina which is highly susceptible to injurious stimuli such as diabe-tes, trauma, hyperoxia, inflammation, aging and dys-plipidemia. Emerging evidence indicates that an effec-tive therapy may require targeting multiple components of the angiogenic pathway. Conceptually, mircoRNA(miRNA)-based therapy provides the rationale basis for an effective antiangiogenic treatment. miRNAs are an evolutionarily conserved family of short RNAs, each regulating the expression of multiple protein-coding genes. The activity of specific miRNAs is important for vascular cell signaling and blood vessel formation and function. Recently, important progress has been made in mapping the miRNA-gene target network andmiRNA-mediated gene expression control. Here wehighlight the latest findings on angiogenic and antian-giogenic miRNAs and their targets as well as potentiaimplications in ocular neovascular diseases. Emphasis isplaced on how specific vascular-enriched miRNAs regu-late cell responses to various cues by targeting severafactors, receptors and/or signaling molecules in orderto maintain either vascular function or dysfunction. Fur-ther improvement of our knowledge in not only miRNAspecificity, turnover, and transport but also how miRNAsequences and functions can be altered will enhancethe therapeutic utility of such molecules.  相似文献   

20.
The pathophysiology of Alzheimer's disease (AD) is comprised of complex metabolic abnormalities in different cell types in the brain. To date, there are not yet effective drugs that can completely inhibit the pathophysiological event, and efforts have been devoted to prevent or minimize the progression of this disease. Much attention has focused on studies to understand aberrant functions of the ionotropic glutamate receptors, perturbation of calcium homeostasis, and toxic effects of oligomeric amyloid beta peptides (Aβ) which results in production of reactive oxygen and nitrogen species and signaling pathways, leading to mitochondrial dysfunction and synaptic impairments. Aberrant phospholipase A(2) (PLA(2)) activity has been implicated to play a role in the pathogenesis of many neurodegenerative diseases, including AD. However, mechanisms for their modes of action and their roles in the oxidative and nitrosative signaling pathways have not been firmly established. In this article, we review recent studies providing a metabolic link between cytosolic PLA(2) (cPLA(2)) and neuronal excitation due to stimulation of ionotropic glutamate receptors and toxic Aβ peptides. The requirements for Ca(2+) binding together with its posttranslational modifications by protein kinases and possible by the redox-based S-nitrosylation, provide strong support for a dynamic role of cPLA(2) in serving multiple functions to neurons and glial cells under abnormal physiological and pathological conditions. Therefore, understanding mechanisms for cPLA(2) in the oxidative and nitrosative pathways in neurons will allow the development of novel therapeutic targets to mitigate the detrimental effects of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号