首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The C-terminal two α-helices of the ε-subunit of thermophilic Bacillus F(o)F(1)-ATP synthase (TF(o)F(1)) adopt two conformations: an extended long arm ("up-state") and a retracted hairpin ("down-state"). As ATP becomes poor, ε changes the conformation from the down-state to the up-state and suppresses further ATP hydrolysis. Using TF(o)F(1) expressed in Escherichia coli, we compared TF(o)F(1) with up- and down-state ε in the NTP (ATP, GTP, UTP, and CTP) synthesis reactions. TF(o)F(1) with the up-state ε was achieved by inclusion of hexokinase in the assay and TF(o)F(1) with the down-state ε was represented by εΔc-TF(o)F(1), in which ε lacks C-terminal helices and hence cannot adopt the up-state under any conditions. The results indicate that TF(o)F(1) with the down-state ε synthesizes GTP at the same rate of ATP, whereas TF(o)F(1) with the up-state ε synthesizes GTP at a half-rate. Though rates are slow, TF(o)F(1) with the down-state ε even catalyzes UTP and CTP synthesis. Authentic TF(o)F(1) from Bacillus cells also synthesizes ATP and GTP at the same rate in the presence of adenosine 5'-(β,γ-imino)triphosphate (AMP-PNP), an ATP analogue that has been known to stabilize the down-state. NTP hydrolysis and NTP-driven proton pumping activity of εΔc-TF(o)F(1) suggests similar modulation of nucleotide specificity in NTP hydrolysis. Thus, depending on its conformation, ε-subunit modulates substrate specificity of TF(o)F(1).  相似文献   

2.
A complex of γ, ε, and c subunits rotates in ATP synthase (FoF1) coupling with proton transport. Replacement of βSer174 by Phe in β-sheet4 of the β subunit (βS174F) caused slow γ subunit revolution of the F1 sector, consistent with the decreased ATPase activity [M. Nakanishi-Matsui, S. Kashiwagi, T. Ubukata, A. Iwamoto-Kihara, Y. Wada, M. Futai, Rotational catalysis of Escherichia coli ATP synthase F1 sector. Stochastic fluctuation and a key domain of the β subunit, J. Biol. Chem. 282 (2007) 20698-20704]. Modeling of the domain including β-sheet4 and α-helixB predicted that the mutant βPhe174 residue undergoes strong and weak hydrophobic interactions with βIle163 and βIle166, respectively. Supporting this prediction, the replacement of βIle163 in α-helixB by Ala partially suppressed the βS174F mutation: in the double mutant, the revolution speed and ATPase activity recovered to about half of the levels in the wild-type. Replacement of βIle166 by Ala lowered the revolution speed and ATPase activity to the same levels as in βS174F. Consistent with the weak hydrophobic interaction, βIle166 to Ala mutation did not suppress βS174F. Importance of the hinge domain [phosphate-binding loop (P-loop)/α-helixB/loop/β-sheet4, βPhe148-βGly186] as to driving rotational catalysis is discussed.  相似文献   

3.
H+-FOF1-ATP synthase couples proton flow through its membrane portion, FO, to the synthesis of ATP in its headpiece, F1. Upon reversal of the reaction the enzyme functions as a proton pumping ATPase. Even in the simplest bacterial enzyme the ATPase activity is regulated by several mechanisms, involving inhibition by MgADP, conformational transitions of the ε subunit, and activation by protonmotive force. Here we report that the Met23Lys mutation in the γ subunit of the Rhodobacter capsulatus ATP synthase significantly impaired the activation of ATP hydrolysis by protonmotive force. The impairment in the mutant was due to faster enzyme deactivation that was particularly evident at low ATP/ADP ratio. We suggest that the electrostatic interaction of the introduced γLys23 with the DELSEED region of subunit β stabilized the ADP-inhibited state of the enzyme by hindering the rotation of subunit γ rotation which is necessary for the activation.  相似文献   

4.
F(1)-ATP synthase (F(1)-ATPase) is equipped with a special mechanism that prevents the wasteful reverse reaction, ATP hydrolysis, when there is insufficient proton motive force to drive ATP synthesis. Chloroplast F(1)-ATPase is subject to redox regulation, whereby ATP hydrolysis activity is regulated by formation and reduction of the disulfide bond located on the γ subunit. To understand the molecular mechanism of this redox regulation, we constructed a chimeric F(1) complex (α(3)β(3)γ(redox)) using cyanobacterial F(1), which mimics the regulatory properties of the chloroplast F(1)-ATPase, allowing the study of its regulation at the single molecule level. The redox state of the γ subunit did not affect the ATP binding rate to the catalytic site(s) and the torque for rotation. However, the long pauses caused by ADP inhibition were frequently observed in the oxidized state. In addition, the duration of continuous rotation was relatively shorter in the oxidized α(3)β(3)γ(redox) complex. These findings lead us to conclude that redox regulation of CF(1)-ATPase is achieved by controlling the probability of ADP inhibition via the γ subunit inserted region, a sequence feature observed in both cyanobacterial and chloroplast ATPase γ subunits, which is important for ADP inhibition (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., Sugano, Y., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855-865).  相似文献   

5.
The γ and ε subunits of F(0)F(1)-ATP synthase from photosynthetic organisms display unique properties not found in other organisms. Although the γ subunit of both chloroplast and cyanobacterial F(0)F(1) contains an extra amino acid segment whose deletion results in a high ATP hydrolysis activity (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., Sugano, Y., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855-865), its ε subunit strongly inhibits ATP hydrolysis activity. To understand the physiological significance of these phenomena, we studied mutant strains with (i) a C-terminally truncated ε (ε(ΔC)), (ii) γ lacking the inserted sequence (γ(Δ198-222)), and (iii) a double mutation of (i) and (ii) in Synechocystis sp. PCC 6803. Although thylakoid membranes from the ε(ΔC) strain showed higher ATP hydrolysis and lower ATP synthesis activities than those of the wild type, no significant difference was observed in growth rate and in intracellular ATP level both under light conditions and during light-dark cycles. However, both the ε(ΔC) and γ(Δ198-222) and the double mutant strains showed a lower intracellular ATP level and lower cell viability under prolonged dark incubation compared with the wild type. These data suggest that internal inhibition of ATP hydrolysis activity is very important for cyanobacteria that are exposed to prolonged dark adaptation and, in general, for the survival of photosynthetic organisms in an ever-changing environment.  相似文献   

6.
F1-ATPase is an ATP-driven motor in which γε rotates in the α3β3-cylinder. It is attenuated by MgADP inhibition and by the ε subunit in an inhibitory form. The non-inhibitory form of ε subunit of thermophilic Bacillus PS3 F1-ATPase is stabilized by ATP-binding with micromolar Kd at 25 °C. Here, we show that at [ATP] > 2 μM, ε does not affect rotation of PS3 F1-ATPase but, at 200 nM ATP, ε prolongs the pause of rotation caused by MgADP inhibition while the frequency of the pause is unchanged. It appears that ε undergoes reversible transition to the inhibitory form at [ATP] below Kd.  相似文献   

7.
Effect of ε subunit on the nucleotide binding to the catalytic sites of F1-ATPase from the thermophilic Bacillus PS3 (TF1) has been tested by using α3β3γ and α3β3γε complexes of TF1 containing βTyr341 to Trp substitution. The nucleotide binding was assessed with fluorescence quenching of the introduced Trp. The presence of the ε subunit weakened ADP binding to each catalytic site, especially to the highest affinity site. This effect was also observed when GDP or IDP was used. The ratio of the affinity of the lowest to the highest nucleotide binding sites had changed two orders of magnitude by the ε subunit. The differences may relate to the energy required for the binding change in the ATP synthesis reaction and contribute to the efficient ATP synthesis.  相似文献   

8.
In order to get insight into the origin of apparent negative cooperativity observed for F1-ATPase, we compared ATPase activity and ATPMg binding of mutant subcomplexes of thermophilic F1-ATPase, α(W463F)3β(Y341W)3γ and α(K175A/T176A/W463F)3β(Y341W)3γ. For α(W463F)3β(Y341W)3γ, apparent Km's of ATPase kinetics (4.0 and 233 μM) did not agree with apparent Km's deduced from fluorescence quenching of the introduced tryptophan residue (on the order of nM, 0.016 and 13 μM). On the other hand, in case of α(K175A/T176A/W463F)3β(Y341W)3γ, which lacks noncatalytic nucleotide binding sites, the apparent Km of ATPase activity (10 μM) roughly agreed with the highest Km of fluorescence measurements (27 μM). The results indicate that in case of α(W463F)3β(Y341W)3γ, the activating effect of ATP binding to noncatalytic sites dominates overall ATPase kinetics and the highest apparent Km of ATPase activity does not represent the ATP binding to a catalytic site. In case of α(K175A/T176A/W463F)3β(Y341W)3γ, the Km of ATPase activity reflects the ATP binding to a catalytic site due to the lack of noncatalytic sites. The Eadie-Hofstee plot of ATPase reaction by α(K175A/T176A/W463F)3β(Y341W)3γ was rather linear compared with that of α(W463F)3β(Y341W)3γ, if not perfectly straight, indicating that the apparent negative cooperativity observed for wild-type F1-ATPase is due to the ATP binding to catalytic sites and noncatalytic sites. Thus, the frequently observed Km's of 100-300 μM and 1-30 μM range for wild-type F1-ATPase correspond to ATP binding to a noncatalytic site and catalytic site, respectively.  相似文献   

9.
The γ subunit located at the center of ATP synthase (FOF1) plays critical roles in catalysis. Escherichia coli mutant with Pro substitution of the γ subunit residue γLeu218, which are located the rotor shaft near the c subunit ring, decreased NADH-driven ATP synthesis activity and ATP hydrolysis-dependent H+ transport of membranes to ~60% and ~40% of the wild type, respectively, without affecting FOF1 assembly. Consistently, the mutant was defective in growth by oxidative phosphorylation, indicating that energy coupling is impaired by the mutation. The ε subunit conformations in the γLeu218Pro mutant enzyme were investigated by cross-linking between cysteine residues introduced into both the ε subunit (εCys118 and εCys134, in the second helix and the hook segment, respectively) and the γ subunit (γCys99 and γCys260, located in the globular domain and the carboxyl-terminal helix, respectively). In the presence of ADP, the two γ260 and ε134 cysteine residues formed a disulfide bond in both the γLeu218Pro mutant and the wild type, indicating that the hook segment of ε subunit penetrates into the α3β3-ring along with the γ subunits in both enzymes. However, γ260/ε134 cross-linking in the γLeu218Pro mutant decreased significantly in the presence of ATP, whereas this effect was small in the wild type. These results suggested that the γ subunit carboxyl-terminal helix containing γLeu218 is involved in the conformation of the ε subunit hook region during ATP hydrolysis and, therefore, is required for energy coupling in FOF1.  相似文献   

10.
Probing conformations of the beta subunit of F0F1-ATP synthase in catalysis   总被引:1,自引:0,他引:1  
A subcomplex of F0F1-ATP synthase (F0F1), alpha3beta3gamma, was shown to undergo the conformation(s) during ATP hydrolysis in which two of the three beta subunits have the "Closed" conformation simultaneously (CC conformation) [S.P. Tsunoda, E. Muneyuki, T. Amano, M. Yoshida, H. Noji, Cross-linking of two beta subunits in the closed conformation in F1-ATPase, J. Biol. Chem. 274 (1999) 5701-5706]. This was examined by the inter-subunit disulfide cross-linking between two mutant beta(I386C)s that was formed readily only when the enzyme was in the CC conformation. Here, we adopted the same method for the holoenzyme F0F1 from Bacillus PS3 and found that the CC conformation was generated during ATP hydrolysis but barely during ATP synthesis. The experiments using F0F1 with the epsilon subunit lacking C-terminal helices further suggest that this difference is related to dynamic nature of the epsilon subunit and that ATP synthesis is accelerated when it takes the pathway involving the CC conformation.  相似文献   

11.
利用ADP和放射性磷直接合成ATP的方法,研究了无机磷(Pi)和叠氮钠对猪心线粒体ATP合成酶(F1FO-ATPase)ATP合成活性的影响.结果发现无机磷除作为合成ATP的底物参与F1FO-ATPase的合成反应外,还对F1FO-ATPase的合成活性呈现抑制作用,在1 mmol/L ADP存在时,随着Pi浓度由0.01~10 mmol/L增加,抑制合成作用越来越强.与叠氮钠在低浓度时(小于1 mmol/L)只抑制ATP水解,不影响ATP合成的观点不同.实验结果显示0.1 mmol/L叠氮钠表观激活F1FO-ATPase的ATP合成活性,且激活程度与反应体系中所加Pi的浓度呈负相关.当固定Pi浓度(0.1 mmol/L)后,随着叠氮钠浓度的增加表观激活程度也在变化,叠氮钠与磷浓度相等时表观激活程度最大,直至叠氮钠浓度接近0.5 mmol/L时,开始呈现表观抑制现象,叠氮钠浓度高于1 mmol/L之后,就出现解偶联现象.  相似文献   

12.
H+-FOF1-ATP synthase (F-ATPase, F-type ATPase, FOF1 complex) catalyzes ATP synthesis from ADP and inorganic phosphate in eubacteria, mitochondria, chloroplasts, and some archaea. ATP synthesis is powered by the transmembrane proton transport driven by the proton motive force (PMF) generated by the respiratory or photosynthetic electron transport chains. When the PMF is decreased or absent, ATP synthase catalyzes the reverse reaction, working as an ATP-dependent proton pump. The ATPase activity of the enzyme is regulated by several mechanisms, of which the most conserved is the non-competitive inhibition by the MgADP complex (ADP-inhibition). When ADP binds to the catalytic site without phosphate, the enzyme may undergo conformational changes that lock bound ADP, resulting in enzyme inactivation. PMF can induce release of inhibitory ADP and reactivate ATP synthase; the threshold PMF value required for enzyme reactivation might exceed the PMF for ATP synthesis. Moreover, membrane energization increases the catalytic site affinity to phosphate, thereby reducing the probability of ADP binding without phosphate and preventing enzyme transition to the ADP-inhibited state. Besides phosphate, oxyanions (e.g., sulfite and bicarbonate), alcohols, lauryldimethylamine oxide, and a number of other detergents can weaken ADP-inhibition and increase ATPase activity of the enzyme. In this paper, we review the data on ADP-inhibition of ATP synthases from different organisms and discuss the in vivo role of this phenomenon and its relationship with other regulatory mechanisms, such as ATPase activity inhibition by subunit ε and nucleotide binding in the noncatalytic sites of the enzyme. It should be noted that in Escherichia coli enzyme, ADP-inhibition is relatively weak and rather enhanced than prevented by phosphate.  相似文献   

13.
14.
The role of αPhe-291 residue in phosphate binding by Escherichia coli F1F0-ATP synthase was examined. X-ray structures of bovine mitochondrial enzyme suggest that this residue resides in close proximity to the conserved βR246 residue. Herein, we show that mutations αF291D and αF291E in E. coli reduce the ATPase activity of F1F0 membranes by 350-fold. Yet, significant oxidative phosphorylation activity is retained. In contrast to wild-type, ATPase activities of mutants were not inhibited by MgADP-azide, MgADP-fluoroaluminate, or MgADP-fluoroscandium. Whereas, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) inhibited wild-type ATPase essentially completely, ATPase in mutants was inhibited maximally by ∼75%, although reaction still occurred at residue βTyr-297, proximal to αPhe-291 in the phosphate-binding pocket. Inhibition characteristics supported the conclusion that NBD-Cl reacts in βE (empty) catalytic sites, as shown previously by X-ray structure analysis. Phosphate protected against NBD-Cl inhibition in wild-type but not in mutants. In addition, our data suggest that the interaction of αPhe-291 with phosphate during ATP hydrolysis or synthesis may be distinct.  相似文献   

15.
Zhang Z  Inoue T  Forgac M  Wilkens S 《FEBS letters》2006,580(8):2006-2010
Vacuolar ATPases (V1V0 -ATPases) function in proton translocation across lipid membranes of subcellular compartments. We have used antibody labeling and electron microscopy to define the position of subunit C in the vacuolar ATPase from yeast. The data show that subunit C is binding at the interface of the ATPase and proton channel, opposite from another stalk density previously identified as subunit H [Wilkens S., Inoue T., and Forgac M. (2004) Three-dimensional structure of the vacuolar ATPase - Localization of subunit H by difference imaging and chemical cross-linking. J. Biol. Chem. 279, 41942-41949]. A picture of the vacuolar ATPase stalk domain is emerging in which subunits C and H are positioned to play a role in reversible enzyme dissociation and activity silencing.  相似文献   

16.
Drain P  Geng X  Li L 《Biophysical journal》2004,86(4):2101-2112
KATP channels assemble from four regulatory SUR1 and four pore-forming Kir6.2 subunits. At the single-channel current level, ATP-dependent gating transitions between the active burst and the inactive interburst conformations underlie inhibition of the KATP channel by intracellular ATP. Previously, we identified a slow gating mutation, T171A in the Kir6.2 subunit, which dramatically reduces rates of burst to interburst transitions in Kir6.2DeltaC26 channels without SUR1 in the absence of ATP. Here, we constructed all possible mutations at position 171 in Kir6.2DeltaC26 channels without SUR1. Only four substitutions, 171A, 171F, 171H, and 171S, gave rise to functional channels, each increasing Ki,ATP for ATP inhibition by >55-fold and slowing gating to the interburst by >35-fold. Moreover, we investigated the role of individual Kir6.2 subunits in the gating by comparing burst to interburst transition rates of channels constructed from different combinations of slow 171A and fast T171 "wild-type" subunits. The relationship between gating transition rate and number of slow subunits is exponential, which excludes independent gating models where any one subunit is sufficient for inhibition gating. Rather, our results support mechanisms where four ATP sites independently can control a single gate formed by the concerted action of all four Kir6.2 subunit inner helices of the KATP channel.  相似文献   

17.
Kato-Yamada Y 《FEBS letters》2005,579(30):6875-6878
Previously, we demonstrated ATP binding to the isolated epsilon subunit of F1-ATPase from thermophilic Bacillus PS3 [Kato-Yamada Y., Yoshida M. (2003) J. Biol. Chem. 278, 36013]. However, whether it is a general feature of the epsilon subunit from other sources is yet unclear. Here, using a sensitive method to detect weak interactions between fluorescently labeled epsilon subunit and nucleotide, it was shown that the epsilon subunit of F1-ATPase from Bacillus subtilis also bound ATP. The dissociation constant for ATP binding at room temperature was calculated to be 2 mM, which may be suitable for sensing cellular ATP concentration in vivo.  相似文献   

18.
Subunit a plays a key role in coupling H(+) transport to rotations of the subunit c-ring in F(1)F(o) ATP synthase. In Escherichia coli, H(+) binding and release occur at Asp-61 in the middle of the second transmembrane helix (TMH) of F(o) subunit c. Based upon the Ag(+) sensitivity of Cys substituted into subunit a, H(+) are thought to reach Asp-61 via aqueous pathways mapping to surfaces of TMH 2-5. In this study we have extended characterization of the most Ag(+)-sensitive residues in subunit a with cysteine reactive methanethiosulfonate (MTS) reagents and Cd(2+). The effect of these reagents on ATPase-coupled H(+) transport was measured using inside-out membrane vesicles. Cd(2+) inhibited the activity of all Ag(+)-sensitive Cys on the cytoplasmic side of the TMHs, and three of these substitutions were also sensitive to inhibition by MTS reagents. On the other hand, Cd(2+) did not inhibit the activities of substitutions at residues 119 and 120 on the periplasmic side of TMH2, and residues 214 and 215 in TMH4 and 252 in TMH5 at the center of the membrane. When inside-out membrane vesicles from each of these substitutions were sonicated during Cd(2+) treatment to expose the periplasmic surface, the ATPase-coupled H(+) transport activity was strongly inhibited. The periplasmic access to N214C and Q252C, and their positioning in the protein at the a-c interface, is consistent with previous proposals that these residues may be involved in gating H(+) access from the periplasmic half-channel to Asp-61 during the protonation step.  相似文献   

19.
In observations of single molecule behavior under V(max) conditions with minimal load, the F(1) sector of the ATP synthase (F-ATPase) rotates through continuous cycles of catalytic dwells (~0.2 ms) and 120° rotation steps (~0.6 ms). We previously established that the rate-limiting transition step occurs during the catalytic dwell at the initiation of the 120° rotation. Here, we use the phytopolyphenol, piceatannol, which binds to a pocket formed by contributions from α and β stator subunits and the carboxyl-terminal region of the rotor γ subunit. Piceatannol did not interfere with the movement through the 120° rotation step, but caused increased duration of the catalytic dwell. The duration time of the intrinsic inhibited state of F(1) also became significantly longer with piceatannol. All of the beads rotated at a lower rate in the presence of saturating piceatannol, indicating that the inhibitor stays bound throughout the rotational catalytic cycle. The Arrhenius plot of the temperature dependence of the reciprocal of the duration of the catalytic dwell (catalytic rate) indicated significantly increased activation energy of the rate-limiting step to trigger the 120° rotation. The activation energy was further increased by combination of piceatannol and substitution of γ subunit Met(23) with Lys, indicating that the inhibitor and the β/γ interface mutation affect the same transition step, even though they perturb physically separated rotor-stator interactions.  相似文献   

20.
F-ATPases synthesize ATP from ADP and phosphate coupled with an electrochemical proton gradient in bacterial or mitochondrial membranes and can hydrolyse ATP to form the gradient. F-ATPases consist of a catalytic F1 and proton channel F0 formed from the alpha3beta3gammadelta and ab2c10 subunit complexes, respectively. The rotation of gammaepsilonc10 couples catalyses and proton transport. Consistent with the threefold symmetry of the alpha3beta3 catalytic hexamer, 120 degrees stepped revolution has been observed, each step being divided into two substeps. The ATP-dependent revolution exhibited stochastic fluctuation and was driven by conformation transmission of the beta subunit (phosphate-binding P-loop/alpha-helix B/loop/beta-sheet4). Recent results regarding mechanically driven ATP synthesis finally proved the role of rotation in energy coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号