首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complete 18S rDNA sequences and sequences of domain III of mitochondrial 12S rDNA were obtained to assess phylogenetic relationships among major suprageneric taxa of leeches and the possibly closely related clitellate taxa Branchiobdellida and Acanthobdellida. The monophyly of the families Erpobdellidae, Piscicolidae, and Glossiphoniidae, the suborders Erpobdelliformes and Hirudiniformes, and the order Arhynchobdellida have been confirmed by parsimony and maximum likelihood phylogenetic analysis of separate and combined data sets. Both the nuclear 18S rDNA sequences and the mitochondrial 12S rDNA sequences were consistent in not supporting a monophyletic order Rhynchobdellida, represented by the families Piscicolidae and Glossiphoniidae. A topology with the Piscicolidae as the first branch in the leech tree followed by the Glossiphoniidae received the highest support in terms of taxonomic, character, and outgroup congruence. According to this topology, the putative apomorphies of the Rhynchobdellidae (e.g. the proboscis) can be parsimoniously explained as plesiomorphies already present in the ancestral leech. This common ancestor was probably a bloodsucking leech with a proboscis rather than an unspecialized ectocommensal, as suggested by previous hypotheses. During the course of leech evolution, a reduction of the proboscis could have taken place in predatory arhynchobdellid ancestors to enable swallowing of larger prey. A second gain of sanguivory by the jawed Hirudiniformes could have been facilitated by pre-adaptations to ectoparasitic blood feeding. The 18S rDNA analysis further indicates a close relationship between the clitellate groups Branchiobdellida and Acanthobdellida, although this relationship is not strongly supported.  相似文献   

2.
A scourge of tropical and subtropical jungles, bloodfeeding terrestrial leeches of Haemadipsidae have long confused systematists and defied sensible biogeographic interpretation. The family Haemadipsidae usually includes problematic taxa that neither fit the typical IndoPacific distribution of the group, nor properly match diagnostic characters used to define the family. Historically, four additional families-Xerobdellidae, Diestecostomatidae Mesobdellidae and Nesophilaemonidae-have occasionally been recognized for New World and European representatives, though agreement on the composition of those families has not been consistent. Here, we expand the phylogenetic sampling of non-IndoPacific (among other) genera to include Meso American Diestecostoma species and Nesophilaemon skottsbergii from the Juan Fernandez Archipelago in order to critically assess prior hypotheses in a molecular phylogenetic analysis of arhynchobdellid leeches. The result, based on nuclear 18S rDNA and 28S rDNA and mitochondrial COI indicates that there are two distantly related lineages of bloodfeeding terrestrial leeches. The otherwise monophyletic family Haemadipsidae is found to exclude species of Xerobdella, Mesobdella and Diestecostoma. Xerobdellidae is formally resurrected to accommodate species of those three genera. Morphological characteristics corroborate the distinction of Haemadipsidae and Xerobdellidae on the basis of sexual and nephridial characters. Idiobdella seychellensis belongs in Haemadipsidae notwithstanding its lacking respiratory auricles. Nesophilaemon skottsbergii too is in Haemadipsidae notwithstanding its geographic proximity to the xerobdellid Mesobdella gemmata. The characters used to define haemadipsoid families are reevaluated. Feeding preferences and biogeographic patterns are also examined.  相似文献   

3.
The evolutionary patterns of divergence of seven euhirudinean families were investigated by cladistic analysis of 33 euhirudinean species. Oligochaetes, Acanthobdella peledina, and branchiobdellidans were included as outgroup taxa. Cladistic analysis employed 1.8 kb of nuclear 18S ribosomal DNA and 651 bp of mitochondrial cytochrome c oxidase subunit I in addition to morphological data. The use of two molecular data sets, one nuclear gene and one mitochondrial gene, as well as morphological data combined historical information evolving under a variety of different constraints and therefore was less susceptible to the biases that could confound the use of only one type of data. Results suggest that the nuclear 18S rDNA gene yields a meaningful historical signal for determining higher level relationships. The more rapidly evolving CO-I gene was informative for recent or local areas of the evolutionary hypothesis, such as within-family relationships. Analyses combining all data from the three character sets yielded one most-parsimonious tree. Most of the higher taxa in recent leech systematics were well corroborated in the resulting topology. However, these results suggested paraphyly of the order Rhynchobdellida, which contradicts the presence of a proboscis as a synapomorphy. The medicinal leech family Hirudinidae was polyphyletic because Haemadipsidae and Haemopidae each have a hirudinid ancestor. In addition, all but one of the genera within the family Erpobdellidae must be either abandoned or renamed. Unusual findings included compelling evidence of historical plasticity in bloodfeeding behavior, having been lost at least four times in the course of euhirudinean evolution. Biogeographic patterns supported a New World origin for Arhynchobdellida.  相似文献   

4.
An epistemological–evolutionary conception of leeches (Hirudinida) based on features of the female reproductive system in combination with other morphological characters is presented in the spirit of the cladistic school of taxonomy. Characters relating to the structure of the ovary and the course of oogenesis in leeches were interpreted in this manner, for the first time. Each study was conducted on type species of higher taxonomic groups of true leeches. Results of analyses using features of the reproductive system only as well as in combination with other morphological characters show Piscicolidae and Glossiphoniidae as sister clades making Rhynchobdellida a monophyletic group. Also, Hirudiniformes and Erpobdelliformes appeared to be sister clades within Arhynchobdellida. The relationship between the outgroup specimens and leeches remained unresolved, because both Acanthobdella peledina and branchiobdellidans appeared to be in an equivocal relationship to hirudinidans. Characters concerning the structure of the female reproductive system and course of oogenesis thus appeared to be useful, although conservative, for reconstruction of leech phylogeny, and they well reflect phylogenetic relationships of Hirudinida at the family level.  相似文献   

5.
Thum  Ryan A. 《Hydrobiologia》2004,519(1-3):135-141
The phylogenetic relationships among the numerous genera of diaptomid copepods remain elusive due to difficulties in obtaining sufficient numbers of phylogenetically informative morphological characters for cladistic analysis. Molecular phylogenetic techniques offer high potential to resolve phylogenetic relationships in the absence of sufficient morphological characters because of the ease in which many characters can be unambiguously coded. I present the first molecular phylogeny for diaptomid copepod genera using 18S rDNA. Specifically, I test Light’s (1939) hypothesis regarding the interrelationships among the North American diaptomid genera. The 18S phylogeny is remarkably consistent with Light’s hypothesis. The endemic North American genera represent a monophyletic group exclusive of the non-endemic genera. Moreover, his hypothesized basal genus for the North America genera, Hesperodiaptomus, is the basal genus in this analysis. However, his Leptodiaptomus group is not reciprocally monophyletic with his Hesperodiaptomus group, but is rather a derived member of the latter group. Finally, the genus Mastigodiaptomus is found to be more closely allied with the non-endemic genera, as Light suggested. This phylogeny contributes heavily to the understanding of phylogenetic relationships among North American diaptomids and has large implications for the systematics of diaptomids in general. The use of 18S rDNA sequences in phylogenetic analyses of diaptomid copepods can be used to confirm the monophyly of recognized genera, the interrelationships among genera, and subsequent biogeographic interpretation of the family’s diversification. The use of molecular data, such as 18S rDNA sequences, to test phylogenetic hypotheses based on a very limited number of morphological characters will be a particularly useful approach to phylogenetic analysis in this system.  相似文献   

6.
本研究选取优茧蜂亚科Euphorinae(膜翅目Hymenoptera:茧蜂科Braconidae)的8族19属23种作为内群,茧蜂其它6个亚科的8属8种作外群,首次结合同源核糖体28S rDNA D2基因序列片段和41个形态学特征对该亚科进行了系统发育学研究。利用"圆口类"的内茧蜂亚科Rogadinae、茧蜂亚科Braconinae、矛茧蜂亚科Doryctinae的3个亚科为根,以PAUP*4.0和MrBayes3.0B4软件分别应用最大简约法(MP)和贝叶斯法对优茧蜂亚科的分子数据和分子数据与非分子数据的结合体进行了分析;并以PAUP*4.0对优茧蜂亚科的28S rDNA D2基因序列的片段的碱基组成与碱基替代情况进行了分析。结果表明:优茧蜂亚科的28S rDNA D2基因序列片段的GC%含量在40.00%~49.25%之间变动,而对于碱基替代情况来讲,优茧蜂亚科各个成员间序列变异位点上颠换(transversion)大于转换(transition);不同的分析和算法所产生的系统发育树都表明目前根据形态定义出的优茧蜂亚科Euphorinae不是一个单系群,而是一个与蚁茧蜂亚科Neoneurinae和高腹茧蜂亚科Cenocoelinae混杂在一起的并系群;在优茧蜂亚科内部,悬茧蜂族Meterorini和食甲茧蜂族Microctonini(排除猎户茧蜂属Orionis)为单系群,而宽鞘茧蜂族Centistini、大颚茧蜂族Cosmophorini、优茧蜂族Euphorini、瓢虫茧蜂族Dinocampini为并系群;悬茧蜂族Meterorini在优茧蜂亚科Euphorinae内位于基部位置的观点得到部分的支持,同时食甲茧蜂族Microctonini被判定为相对进化的类群。此外对于优茧蜂亚科内各属之间的相互亲缘关系,不同算法所得到的系统发育属的结果不完全一致,这表明优茧蜂亚科内(属及族)的系统发育关系还有待于进一步研究。  相似文献   

7.
时敏  陈学新  马云  何俊华 《昆虫学报》2007,50(2):153-164
本研究选取矛茧蜂亚科Doryctinae(昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)的6族15属18种做内群,茧蜂科其它7亚科11属11种做外群,首次结合同源核糖体28S rDNA D2基因序列片段和100个形态学和解剖学特征对该亚科进行了系统发育学研究。利用“非圆口类"的小腹茧蜂亚科Microgastrinae为根,以PAUP*4.0和MrBayes 3.0B4软件分别应用最大简约法(MP)和贝叶斯法对矛茧蜂亚科的分子数据和分子数据与非分子数据的结合体进行了运算分析;并以PAUP*4.0对矛茧蜂亚科的28S rDNA D2基因序列片段的碱基组成与碱基替代情况进行了分析。结果表明:矛茧蜂亚科的28S rDNA D2基因序列片段的GC含量在39.33%~48.28%之间变动,而对于碱基替代情况来讲,矛茧蜂亚科各成员间序列变异位点上颠换(transversion)大于转换(transition)。不同的分析算法所产生的系统发育树都表明矛茧蜂亚科是一个界限分明的单系群;在矛茧蜂亚科内,除了吉丁茧蜂族Siragrini为单系群外,其他族(矛茧蜂族Doryctini和方头茧蜂族Hecabolini)都是并系群。对于矛茧蜂亚科内各属之间的相互亲缘关系,不同算法所得的系统发育树的拓扑结构不完全一致,表明矛茧蜂亚科内(属及族)的系统发育关系还有待于进一步研究。  相似文献   

8.
Phylogenetic analyses of the leech family Macrobdellidae were accomplished with all nominal species in the family save one. A total of 17 specimens in nine ingroup species were analysed, along with four outgroup taxa. Twenty-two morphological characters based on jaw dentition, sexual anatomy, and external morphology failed to provide a resolution for many of the relationships in the family. DNA sequence data from nuclear 18S rDNA, nuclear 28S rDNA, mitochondrial 12S rDNA, and mitochondrial cytochrome c oxidase subunit I were examined separately and in combination with morphological characters. The resulting combined analysis strongly corroborated the placement of the genus Philobdella within the family Macrobdellidae and as sister to a monophyletic genus Macrobdella , the typical North American medicinal leeches. Furthermore, sequence divergences among these taxa confirmed the existence of two species, Philobdella gracilis and P. floridana , readily distinguishable on the basis of jaw dentition .  相似文献   

9.
戴仁怀  陈学新  李子忠 《昆虫学报》2008,51(10):1055-1064
首次在国内利用28S rDNA D2区段和16S rDNA基因序列,结合50个形态特征对角顶叶蝉亚科(Deltocephalinae)[半翅目(Hemiptera): 叶蝉科(Cicadellidae)]19个属进行系统发育分析研究。从无水乙醇浸泡保存的标本中提取基因组DNA并扩增了19个内群和1种外群Typhlocybinae[半翅目(Hemiptera): 叶蝉科(Cicadellidae)]种类的28S rDNA D2基因片段并测序,同时扩增了16S rDNA基因片段并测序11条,采用了GenBank中1个种类的16S rDNA同源序列。采用PAUP*4.0和MrBayes3.0两个分析软件和3种建树方法,利用同源28S D2 rDNA和16S rDNA两个基因序列与形态特征结合进行系统发育分析研究。分析结果表明,二叉叶蝉族Macrostelini是一个单系,并在角顶叶蝉亚科的系统发育中处于基部的位置,是内群中最原始的族;角顶叶蝉族Deltocephalini中除了纹翅叶蝉属Nakaharanus,其余各属构成单系;殃叶蝉族Euscelini内属的归属比较混乱,可能是一个并系群,属间差异有待进一步研究。隆额叶蝉族Paralimnini与顶带叶蝉族Athysanini是姐妹群。带叶蝉属Scaphoideus与纹翅叶蝉属Nakaharanus是姐妹群,二者与木叶蝉属Phlogotettix的关系最近,三者构成一个单系,建议将三者归为带叶蝉族Scaphoideini。研究结果还表明,小眼叶蝉族Xestocephalini和Balcluthini的系统发育位置不明,有待进一步研究。  相似文献   

10.
A phylogenetic analysis of Passifloraceae sensu lato was performed using rbcL, atpB, matK, and 18S rDNA sequences from 25 genera and 42 species. Parsimony analyses of combined data sets resulted in a single most parsimonious tree, which was very similar to the 50% majority consensus tree from the Bayesian analysis. All nodes except three were supported by more than 50% bootstrap. The monophyly of Passifloraceae s.l. as well as the former families, Malesherbiaceae, Passifloraceae sensu stricto, and Turneraceae were strongly supported. Passifloraceae s.s. and the Turneraceae are sisters, and form a strongly supported clade. Within Passifloraceae s.s., the tribes Passifloreae and Paropsieae are both monophyletic. The intergeneric relationships within Passifloraceae s.s. and Turneraceae are roughly correlated with previous classification systems. The morphological character of an androgynophore/gynophore is better used for characterizing genera grouping within Passifloraceae s.s. Other morphological characters such as the corona and aril are discussed.  相似文献   

11.
Up to few years ago, the phylogenies of tardigrade taxa have been investigated using morphological data, but relationships within and between many taxa are still unresolved. Our aim has been to verify those relationships adding molecular analysis to morphological analysis, using nearly complete 18S ribosomal DNA gene sequences (five new) of 19 species, as well as cytochrome oxidase subunit 1 (COI) mitochondrial DNA gene sequences (15 new) from 20 species, from a total of seven families. The 18S rDNA tree was calculated by minimum evolution, maximum parsimony (MP) and maximum likelihood (ML) analyses. DNA sequences coding for COI were translated to amino acid sequences and a tree was also calculated by neighbour-joining, MP and ML analyses. For both trees (18S rDNA and COI) posterior probabilities were calculated by MrBayes. Prominent findings are as follows: the molecular data on Echiniscidae (Heterotardigrada) are in line with the phylogenetic relationships identifiable by morphological analysis. Among Eutardigrada, orders Apochela and Parachela are confirmed as sister groups. Ramazzottius (Hypsibiidae) results more related to Macrobiotidae than to the genera here considered of Hypsibiidae. Macrobiotidae and Macrobiotus result not monophyletic and confirm morphological data on the presence of at least two large groups within Macrobiotus. Using 18S rDNA and COI mtDNA genes, a new phylogenetic line has been identified within Macrobiotus , corresponding to the ' richtersi-areolatus group'. Moreover, cryptic species have been identified within the Macrobiotus ' richtersi group' and within Richtersius . Some evolutionary lines of tardigrades are confirmed, but others suggest taxonomic revision. In particular, the new genus Paramacrobiotus gen. n. has been identified, corresponding to the phylogenetic line represented by the ' richtersi-areolatus group'.  相似文献   

12.
Entomopathogenic nematodes in Steinernema, together with their symbiont bacteria Xenorhabdus, are obligate and lethal parasites of insects that can provide effective biological control of some important lepidopteran, dipteran, and coleopteran pests of commercial crops. Phylogenetic relationships among 21 Steinernema species were estimated using 28S ribosomal DNA (rDNA) sequences and morphological characters. Sequences of the rDNA internal transcribed spacers were obtained to provide additional molecular characters to resolve relationships among Steinernema carpocapsae, Steinernema scapterisci, Steinernema siamkavai, and Steinernema monticolum. Four equally parsimonious trees resulted from combined analysis of 28S sequences and 22 morphological characters. Clades inferred from analyses of molecular sequences and combined datasets were primarily reliably supported as assessed by bootstrap resampling, whereas those inferred from morphological data alone were not. Although partially consistent with some traditional expectations and previous phylogenetic studies, the hypotheses inferred from molecular evidence, and those from combined analysis of morphological and molecular data, provide a new and comprehensive framework for evaluating character evolution of steinernematids. Interpretation of morphological character evolution on 6 trees inferred from sequence data and combined evidence suggests that many structural features of these nematodes are highly homoplastic, and that some structures previously used to hypothesize relationships represent ancestral character states.  相似文献   

13.
Previous phylogenetic analyses of Ranunculales, which have mostly been focused on an individual family and were based on molecular data alone, have recovered three main clades within the order. However, support for relationships among these three clades was weak. Earlier hypotheses were often hampered by limited taxon sampling; to date less than one-tenth of the genera in the order have been sampled. In this study, we used a greatly enlarged taxon sampling (105 species, representing 99 genera of all seven families in the order). Our study is, furthermore, the first to employ morphology (65 characters) in combination with sequence data from four genomic regions, including plastid rbcL, matK and trnL-F, and nuclear ribosomal 26S rDNA to reconstruct phylogenetic relationships within Ranunculales. Maximum parsimony and Bayesian inference were performed on the individual and combined data sets. Our analyses concur with those of previous studies, but in most cases provide stronger support and better resolution for relationships among the three main clades retrieved. The first, comprised solely of the monogeneric family Eupteleaceae, is the earliest-diverging lineage. The second clade is composed exclusively of taxa of Papaveraceae, which is sister to the third clade, the core Ranunculales, comprising the other five families of the order. Circaeasteraceae and Lardizabalaceae form a strongly supported clade. Pteridophyllum is supported as sister to Hypecoum, contradicting the viewpoint that the former is the earliest-diverging genus in Papaveraceae. Glaucidium is basalmost in Ranunculaceae. Within this phylogenetic framework, the evolution of selected characters is inferred and diagnostic morphological characters at different taxonomic levels are identified and discussed. Based on both morphological and molecular evidence, a classification outline for Ranunculales is presented, including the proposal of two new subfamilies, Menispermoideae and Tinosporoideae in Menispermaceae and a new tribe, Callianthemeae, for the genus Callianthemum (Ranunculaceae).  相似文献   

14.
Utevsky, S. Y. & Trontelj, P. (2004). Phylogenetic relationships of fish leeches (Hirudinea, Piscicolidae) based on mitochondrial DNA sequences and morphological data. — Zoologica Scripta, 33 , 375–385.
Phylogenetic relationships of fish leeches (Piscicolidae) were deduced from combined mitochondrial DNA sequences of 12S rDNA and COI genes using Bayesian inference and Maximum Likelihood, as well as from a combined molecular-morphological data matrix using Maximum Parsimony. Monophyly of the family was confirmed. The traditional subdivision into three subfamilies, the Platybdellinae, Pontobdellinae, and Piscicolinae, received weak support, but was not challenged by alternative groupings. In contrast to prior classifications, a basal split emerged between the Pontobdellinae on the one hand, and the Platybdellinae and Piscicolinae on the other. The complex coelomic system of pontobdellines is viewed as plesiomorphic, and independent reductions of the coelom in other fish leech groups are hypothesized. According to the inferred phylogeny, seawater was the primary habitat of fish leeches. Eurasian freshwaters were colonized by a species-rich freshwater clade (genera Piscicola , Baicalobdella , Cystobranchus and Caspiobdella ) and, probably independently, by the Asian genus Limnotrachelobdella .  相似文献   

15.
Abstract. Because the taxonomy of marine sponges is based primarily on morphological characters that can display a high degree of phenotypic plasticity, current classifications may not always reflect evolutionary relationships. To assess phylogenetic relationships among sponges in the order Verongida, we examined 11 verongid species, representing six genera and four families. We compared the utility of morphological and molecular data in verongid sponge systematics by comparing a phylogeny constructed from a morphological character matrix with a phylogeny based on nuclear ribosomal DNA sequences. The morphological phylogeny was not well resolved below the ordinal level, likely hindered by the paucity of characters available for analysis, and the potential plasticity of these characters. The molecular phylogeny was well resolved and robust from the ordinal to the species level. We also examined the morphology of spongin fibers to assess their reliability in verongid sponge taxonomy. Fiber diameter and pith content were highly variable within and among species. Despite this variability, spongin fiber comparisons were useful at lower taxonomic levels (i.e., among congeneric species); however, these characters are potentially homoplasic at higher taxonomic levels (i.e., between families). Our molecular data provide good support for the current classification of verongid sponges, but suggest a re-examination and potential reclassification of the genera Aiolochroia and Pseudoceratina . The placements of these genera highlight two current issues in morphology-based sponge taxonomy: intermediate character states and undetermined character polarity.  相似文献   

16.
With about 60,000 described species, Curculionoidea represent the most species-rich superfamily in the animal kingdom. The immense diversity apparently creates difficulties in the reconstruction of the phylogenetic relationships. Independent morphological studies have led to very different classifications. This study is based on molecular data from two independent molecular sources, the 16S and 18S rDNA. Sensitivity analyses were conducted for the sequence alignment (gap costs were varied) as well as the phylogenetic reconstruction algorithms and some of their parameters. The higher-level relationships reconstructed within Curculionoidea are sensitive to alignment and reconstruction method. Nemonychidae or Oxycorynidae+Belidae were found to be sister to all remaining Curculionoidea in many analyses. The 16S rDNA sequence data (obtained from 157 species) corroborate many tribes and genera as monophyletic. It is observed that the phylogenetic reconstruction of genera with specific genetic features such as polyploidy and parthenogenetic reproduction is difficult in weevils. The curculionid subfamily Lixinae appears monophyletic. A new monophylum consisting of Entiminae, Hyperinae, Cyclominae, Myllorhinus plus possibly the Cossoninae is distinguished and we call it Entiminae s.l. For most other subfamilies and families homoplasy concealed the phylogenetic signal (due to saturation of the 16S sequences), or the species sampling was insufficient, although our sampling scheme was rather broad. We observed that although data from one source can easily be misleading (16S) or hardly informative (18S), the combination of the two independent data sets can result in useful information for such a speciose group of organisms. Our study represents the most thorough analysis of molecular sequence data of the Curculionoidea to date and although the phylogenetic results appear less stable than expected, they reflect the information content of these sequence data realistically and thus contribute to the total knowledge about the phylogeny of the Curculionoidea.  相似文献   

17.
A stable phylogenetic hypothesis for families within jellyfish class Scyphozoa has been elusive. Reasons for the lack of resolution of scyphozoan familial relationships include a dearth of morphological characters that reliably distinguish taxa and incomplete taxonomic sampling in molecular studies. Here, we address the latter issue by using maximum likelihood and Bayesian methods to reconstruct the phylogenetic relationships among all 19 currently valid scyphozoan families, using sequence data from two nuclear genes: 18S and 28S rDNA. Consistent with prior morphological hypotheses, we find strong evidence for monophyly of subclass Discomedusae, order Coronatae, rhizostome suborder Kolpophorae and superfamilies Actinomyariae, Kampylomyariae, Krikomyariae, and Scapulatae. Eleven of the 19 currently recognized scyphozoan families are robustly monophyletic, and we suggest recognition of two new families pending further analyses. In contrast to long-standing morphological hypotheses, the phylogeny shows coronate family Nausithoidae, semaeostome family Cyaneidae, and rhizostome suborder Daktyliophorae to be nonmonophyletic. Our analyses neither strongly support nor strongly refute monophyly of order Rhizostomeae, superfamily Inscapulatae, and families Ulmaridae, Catostylidae, Lychnorhizidae, and Rhizostomatidae. These taxa, as well as familial relationships within Coronatae and within rhizostome superfamily Inscapulatae, remain unclear and may be resolved by additional genomic and taxonomic sampling. In addition to clarifying some historically difficult taxonomic questions and highlighting nodes in particular need of further attention, the molecular phylogeny presented here will facilitate more robust study of phenotypic evolution in the Scyphozoa, including the evolution characters associated with mass occurrences of jellyfish.  相似文献   

18.
The phylogenetic relationships within the fungus gnat subfamily Mycetophilinae (Diptera) are addressed using a combined morphological and molecular approach. Twenty-four species, representing nine genera of the tribe Mycetophilini and 15 genera of the tribe Exechiini, were included in the study. Analyses include nucleotide sequences of mitochondrial (cytochrome oxidase I and 16S), and nuclear (18S and 28S rDNA) genes, in addition to 65 morphological characters. A combined parsimony analysis, including all characters, supports the monophyly of the subfamily Mycetophilinae and two of its tribes, Exechiini and Mycetophilini. There is also statistical support for a Mycetophila- group and a Phronia- group within the tribe Mycetophilini. The Phronia- group includes the genera Phronia , Macrobrachius and Trichonta . The Mycetophila- group includes the genera Mycetophila , Epicypta , Platurocypta , Sceptonia and Zygomyia . A Bayesian analysis based on the nucleotide sequences alone also support these clades within Mycetophilini except for the position of Dynatosoma which is recovered as the sister taxon to the Phronia- group. A somewhat different pattern, however, is observed for the tribe Exechiini – neither molecular data nor the combined data set support unambiguously any intergeneric relationships within Exechiini.  相似文献   

19.
A portion of mitochondrial 12S rDNA sequences (337-355 base pairs) and 63 morphological characters of 36 hard-tick species belonging to 7 genera were analyzed to determine the phylogenetic relationships among groups and species of Rhipicephalus and between the genera Rhipicephalus and Boophilus. Molecular and morphological data sets were first examined separately. The molecular data were analyzed by maximum parsimony (MP), maximum likelihood, and neighbor-joining distance methods; the morphological data were analyzed by MP After their level of congruence was evaluated by a partition homogeneity test, all characters were combined and analyzed by MP. The branches of the tree obtained by combining the data sets were better resolved than those of the trees inferred from the separate analyses. Boophilus is monophyletic and arose within Rhipicephalus. Boophilus species clustered with species of the Rhipicephalus evertsi group. Most of the clustering within Rhipicephalus was, however, consistent with previous classifications based on morphological data. Morphological characters were traced on the molecular reconstruction in order to identify characters diagnostic for monophyletic clades. Within the Rhipicephalus sanguineus complex, the sequences of specimens morphologically identified as Rhipicephalus turanicus were characterized by a high level of variability, indicating that R. turanicus-like morphology may cover a spectrum of distinct species.  相似文献   

20.
Phylogeny of Tunicata inferred from molecular and morphological characters   总被引:5,自引:0,他引:5  
The phylogeny of the Tunicata was reconstructed using molecular and morphological characters. Mitochondrial cytochrome oxidase I (cox1) and 18S rDNA sequences were obtained for 14 and 4 tunicate species, respectively. 18S rDNA sequences were aligned with gene sequences obtained from GenBank of 57 tunicates, a cephalochordate, and a selachian craniate. Cox1 sequences were aligned with the sequence of two ascidians and a cephalochordate obtained from GenBank. Traditional, morphological, life history, and biochemical characters of larval and adult stages were compiled from the literature and analyzed cladistically. Separate and simultaneous parsimony analyses of molecular and morphological data were carried out. Aplousobranch ascidians from three different families were included in a molecular phylogenetic analysis for the first time. Analysis of the morphological, life history, and biochemical characters results in a highly unresolved tree. Aplousobranchiata form a strongly supported monophylum in the analysis of the 18S rDNA data, the morphological data, and the combined data set. Cionidae is not included in the Aplousobranchiata but nests within the Phlebobranchiata. Appendicularia (=Larvacea) nest within the 'Ascidiacea' as the sister taxon of Aplousobranchiata in the parsimony analysis of the 18S rDNA data and the combined analysis. A potential morphological synapomorphy of Aplousobranchiata plus Appendicularia is the horizontal orientation of the larval tail. In the 18S rDNA and the combined analysis, Thaliacea is included in the 'Ascidiacea' as the sister group to Phlebobranchiata. Pyrosomatida is found to be the sister taxon to the Salpidae in analyses of 18S rDNA and combined data, whereas the analysis of the morphological data recovers a sister group relationship between Doliolidae and Salpidae. Results of cox1 analyses are incongruent with both the 18S rDNA and the morphological phylogenies. Cox1 sequences may evolve too rapidly to resolve relationships of higher tunicate taxa. However, the cox1 data may be useful at lower taxonomic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号