首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
In the cooperatively breeding apostlebird (Struthidea cinerea, Corcoracidae) both sexes are philopatric and help to raise offspring. However, male helpers provision nestlings more often than females, an activity associated with reduced nestling starvation and enhanced fledgling production. Presuming that males are the more helpful sex, we examined the helper repayment hypothesis by testing the predictions that offspring sex ratio should be skewed toward the production of males (a) among breeding groups with relatively few helpers, and (b) in the population as a whole. The relationship between sex and hatching order was examined as a potential mechanism of biasing sex allocation. The sex ratio of all sexed offspring was male biased (57.9%; n = 171) as was the mean brood sex ratio (0.579; n = 70 broods). These biases were less pronounced in the subset of clutches/broods in which all offspring were sexed. This overall bias appeared to result from two distinct patterns of skew in the hatching order. First, mothers in small breeding groups produced significantly more males among the first-hatching pair. This is consistent with the helper repayment hypothesis given that later hatching chicks were less likely to survive, particularly in small groups. Second, almost all fourth-hatching chicks, usually the last in the brood, were male (91.7%, n = 12). This bias is difficult to interpret but demonstrates the value of examining hatching sequences when evaluating specific predictions of sex allocation theory in birds.  相似文献   

2.
Summary Species of parasitic Hymenoptera that manifest female-biased sex ratios and whose offspring mate only with the offspring of the natal patch are assumed to have evolved biased sex ratios because of Local Mate Competition (LMC). Off-patch matings, i.e. outcrossing, are inconsistent with the conditions favouring biased sex ratios because they foster a mating structure approaching panmixia. Such a mating structure favours parents who invest equally in daughters and sons, assuming the production of each sex is of equal cost.Pachycrepoideus vindemiae (Rondani) is a solitary pupal parasitoid of patchily distributed frugivorousDrosophila, whose offspring manifest a female-biased sex ratio. Thus this species appears to manifest a population structure and progeny sex ratio consistent with LMC. However, preliminary observations and subsequent greenhouse experiments suggest that the males participate in off-patch matings and that this propensity is unlikely to be an experimental artefact. FemaleP. vindemiae dispersed from patches in which either the males were lacking (12% of the emigrant females), both resident (sibling) and immigrant males were present (23% of the females), only immigrant males were present (14% of the females), or their opportunity to mate could not be determined (14% of the females). Of the 12% that emigrated from a patch lacking males, an estimated 7% mated at an oviposition site and 5% remained unmated, presumably because they arrived at an oviposition site that lacked males before they were dissected to determine whether they were inseminated. Thus the degree of bias in the sex ratios of the progeny (18% males), coupled with the suggested outcrossing potential from the experiments (26–37%), is inconsistent with the assumptions of LMC or variants of it, i.e. asynchronous brood maturation. Thus the explanation for a biased sex ratio in the offspring ofP. vindemiae remains a conundrum. More importantly,P. vindemiae does not appear to be an isolated example.  相似文献   

3.
Råberg L  Stjernman M  Nilsson JA 《Oecologia》2005,145(3):496-503
In birds and mammals with sexual size dimorphism (SSD), the larger sex is typically more sensitive to adverse environmental conditions, such as food shortage, during ontogeny. However, some recent studies of altricial birds have found that the larger sex is less sensitive, apparently because large size renders an advantage in sibling competition. Still, this effect is not an inevitable outcome of sibling competition, because several studies of other species of altricial birds have found the traditional pattern. We investigated if the sexes differ in environmental sensitivity during ontogeny in the blue tit, a small altricial bird with c. 6% SSD in body mass (males larger than females). We performed a cross-fostering and brood size manipulation experiment during 2 years to investigate if the sexes were differently affected as regards body size (body mass, tarsus and wing length on day 14 after hatching) and pre-fledging survival. We also investigated if the relationship between body size and post-fledging survival differed between the sexes. Pre-fledging mortality was higher in enlarged than in reduced broods, representing poor and good environments, respectively, but the brood size manipulation did not affect the mortality rate of males and females differently. In both years, both males and females were smaller on day 14 after hatching in enlarged as compared to reduced broods. In one of the years, we also found significant Sex × Experiment interactions for body size, such that females were more affected by poor environmental conditions than that of males. Body size was positively correlated with post-fledging survival, but we found no interactive effects of sex and morphological traits on survival. We conclude that in the blue tit, females (the smaller sex) are more sensitive to adverse environmental conditions which, in our study, was manifest in terms of fledgling size. A review of published studies of sex differences in environmental sensitivity in sexually size-dimorphic altricial birds suggests that the smaller sex is more sensitive than the larger sex in species with large brood size and vice versa.  相似文献   

4.
I present the hypothesis that asynchronous hatching is a means of ensuring an equal degree of parental investment in the progeny of each sex in altricial species of birds that are sexually dimorphic in size. In a comparative analysis of bird species of Africa and the Western Palearctic, I find a positive relationship between hatching asynchrony and sexual size dimorphism, in support of the hypothesis. The relation is significant for species in which males are larger than females, and in species in which females are larger than males. In addition, it holds even if allometric effects of body size are controlled for. No such relationship is found in species with self-feeding young. Alternative hypotheses to explain asynchronous hatching in altricial birds are discussed. The results of the comparative study are also consistent with some of these hypotheses. For instance, asynchronous hatching may be a mechanism used by parents of dimorphic species to deal with unpredictable primary sex ratios; it may be a way of avoiding simultaneous peak food demands by the young; or it may be a way of advancing the time of hatching so that the division of labor between the parents is optimized.  相似文献   

5.
Warner DA  Shine R 《Oecologia》2007,154(1):65-73
To understand how selection shapes life-history traits, we need information on the manner in which offspring phenotypes influence fitness. Life-history allocation models typically assume that “bigger offspring are better”, but field data paint a more complex picture: larger offspring size sometimes enhances fitness, and sometimes not. Additionally, higher survival and faster growth of larger offspring might be due to indirect maternal effects (e.g., mothers allocate hormones or nutrients differently to different-sized eggs), and not to offspring size per se. Alternative factors, such as seasonal timing of hatching, may be more important. We examined these issues using 419 eggs from captive jacky dragon lizards (Amphibolurus muricatus). The mothers were maintained under standardized conditions to minimize variance in thermal and nutritional history, and the eggs were incubated under controlled conditions to minimize variance in offspring phenotypes due to incubation temperature and moisture. We reduced the size of half the eggs (and, thus, the size of the resultant hatchlings) from each clutch by yolk extraction. The hatchlings were marked and released at a field site over a 3-month period, with regular recapture surveys to measure growth and survival under natural conditions. Growth rates and survival were strongly enhanced by early-season hatching, but were not affected by hatchling body size.  相似文献   

6.
Craig S. Hieber 《Oecologia》1992,89(3):442-448
Summary The abilities of the cocoons of the spiders Mecynogea lemniscata and Argiope aurantia to protect the enclosed egg and spiderling stages from desiccation were investigated in the laboratory under controlled humidities, and in the field under ambient conditions. For M. lemniscata, which has a relatively small clutch (8–30 eggs) and remains in the cocoon for approximately 9–10 months, removal of the cocoon had no effect on water loss from the egg stage, nor did it adversely affect hatching or molting success. Cocoon removal did, however, significantly affect water loss and, consequently, survival in the spiderling stage at all humidities in the laboratory and in the field. The importance of the cocoon for survival is probably related to the unusually long time M. lemniscata spiderlings spend in the cocoon overwintering. For A. aurantia, which has a substantially larger clutch size (300–1400 eggs) and remains in the cocoon for a shorter 6–7 months, cocoon removal had no effect on water loss, egg hatching success, molting success, nor spiderling survival. The lack of an effect suggests that other factors (e.g., relative humidity at the oviposition site, or a large clutch size) may be more important in controlling water loss for A. aurantia.  相似文献   

7.
We examine sex ratio variation and sex-specific probability of successful fledgling in relation to hatching date across 376 broods of Great Reed Warblers (Acrocephalus arundinaceus). The sex ratio of complete broods as well as broods with partial mortality did not deviate significantly from parity (0.5 and 0.53, respectively). Variation in sex ratio between broods was not larger than expected from binomial distribution, thus females seem not to manipulate the sex ratio of their broods in the studied population. As a consequence, sex ratio did not vary in relation to hatching date, years and fishponds. Female offspring showed lower fledgling success than their brothers, but the relationship between probability of successful fledgling and hatching date differed between sexes. Fledgling success of female offspring declined with hatching date more strongly than the success of male offspring. Thus, our study shows that Great Reed Warblers do not adjust offspring sex to match observed seasonal sex-specific variation in survival.  相似文献   

8.
Sex allocation theory predicts that if benefits of producing sons and daughters differ and outweigh the costs of sex ratio adjustment, parents should produce more of the offspring that provide them with greater fitness. Potential benefits may be more likely to outweigh costs where sexual size dimorphism and, in birds, single‐egg clutches exist. Great frigatebirds Fregataminor are seabirds in which females are larger than males and clutch size is one egg. In our study population, sexual size dimorphism develops primarily during the period of complete juvenile dependence on parental care, consistent with a higher cost of producing daughters than sons. Over the course of the 1998 breeding season there was a shift from early season prevalence of daughters to late‐season prevalence of sons. Variation in food availability at time of egg laying, as indexed by sea surface temperature (SST), was a strong predictor of offspring sex in 1998. In contrast, SST in 2003 was not a predictor of offspring sex, nor was there a seasonal shift in the hatching sex ratio, despite a seasonal shift in SST. Besides food availability, we tested two additional factors in 2003 that could explain sex ratio adjustment in relation to the cost of reproduction. Offspring sex in 2003 was not related to natural or experimentally induced variation in maternal body condition; pre‐laying food supplements raised the body condition of females at the time of egg laying but did not affect offspring sex or egg mass. In addition, offspring sex was not predicted by the length of maternal telomere restriction fragments (TRFs), an index of age and possibly of reproductive experience. Broad confidence intervals on effect size suggest that undetected effects of maternal condition on offspring sex ratio could easily exist, but confidence intervals were narrower on the non‐significant effects of SST and TRF length on offspring sex ratio. The cause of different seasonal patterns of hatching sex ratio and different SST effects in 1998 and 2003 is unclear.  相似文献   

9.
Bias in sex ratios at hatching and sex specific post hatching mortality in size dimorphic species has been frequently detected, and is usually skewed towards the production and survival of the smaller sex. Since common terns Sterna hirundo show a limited sexual size dimorphism, with males being only about 1–6% larger than females in a few measurements, we would expect to find small or no differences in production and survival of sons and daughters. To test this prediction, we carried out a 2-year observational study on sex ratio variation in common terns at hatching and on sex specific post hatching mortality. Sons and daughters hatched from eggs of similar volume. Post hatching mortality was heavily influenced by hatching sequence. In addition, we detected a sex specific mortality bias towards sons. Overall, hatching sex ratio and sex specific mortality resulted in fledging sex ratios 8% biased towards females. Thus, other reasons than body size may be influencing the costs of rearing sons. Son mortality was not homogeneous between brood sizes, but greater for two-chick broods. Since adults rearing two-chick broods were younger, lighter and bred consistently later than those rearing three-chick broods, it is suggested that lower capacity of two-chick brood parents adversely affected offspring survival of sons. Though not significantly, two-chick broods tended to be female biased at hatching, perhaps to counteract the greater male-biased nestling mortality. Thus, population bias in secondary sex ratio is not limited to strongly size dimorphic species, but species with a slight sexual size dimorphism can also show sex ratio bias through a combination of differential production and mortality of sons and daughters.  相似文献   

10.
Conclusion (3Z,6Z,9Z)-1,3,6,9-nonadecatetraene, the synthetic sex pheromone of the female of O. brumata is highly active in attracting males of this species in the field (Germany and Switzerland). No analogous compounds possessing attractivity to O. brumata males have been found up to now, nor did they show any inhibitory effects to the same species.Therefore (3Z,6Z,9Z)-1,3,6,9-nonadecatetraene (I) can be recommended as a good attractant in the prognosis or monitoring of this lepidopteran pest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号