首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
He Z  Zhu Q  Dabi T  Li D  Weigel D  Lamb C 《Transgenic research》2000,9(3):223-227
Onset of flowering, or heading date, is an important agronomic trait of cereal crops such as rice and early-heading varieties are required for certain regions in which rice is cultivated. Since the floral control gene LEAFY from Arabidopsis can dramatically accelerate flowering in dictoyledonous plants, the usefulness of LEAFY for manipulating heading date in rice has been tested. Constitutive expression of LEAFY from the cauliflower mosaic virus 35S promoter caused early flowering in transgenic rice, with a heading date that was 26–34 days earlier than that of wild-type plants. Early flowering was accompanied by a small yield penalty and some panicle abnormality. These observations suggest that floral regulatory genes from Arabidopsis are useful tools for heading date improvement in cereal crops.  相似文献   

2.
DNA binding factor GT-2 from Arabidopsis   总被引:2,自引:0,他引:2  
Complementary DNA clones encoding a DNA-binding factor have been obtained from Arabidopsis by DNA hybridization with a GT-2 factor cDNA clone from rice. The GT-2 gene appears to be present as a single copy in the Arabidopsis genome and is transcribed as a 2.1 kb mRNA which is not light-regulated. The longest open reading frame in the sequenced clones predicts a protein of 65 kDa, beginning with the first in-frame methionine. The protein contains basic, acidic, and proline/glutamine-rich motifs and has significant amino acid sequence homology to the rice GT-2 factor, including three regions of 50–75 amino acids each of greater than 60% identity. Two of these regions are predicted to form similar trihelix structures postulated to be involved in selective binding to specific variations of a GT-box motif DNA sequence found in the promoter regions of several plant genes. Except for weak similarity to a tobacco GT-box binding factor, GT-1a/B2F, Arabidopsis GT-2 has no similarity to other sequences in the databases. DNA-binding studies show that Arabidopsis GT-2 has binding characteristics similar to those of the rice GT-2 factor, but dissimilar to those of the tobacco GT-1a/B2F factor. The data indicate that a DNA-binding factor containing domains of similar structure and target-sequence specificity has been conserved between monocots and dicots.  相似文献   

3.
Flow cytometric analysis of nuclear DNA content was performed by using nuclei isolated from young leaf tissue of tef (Eragrostis tef). The method was very useful for rapid screening of ploidy levels in cultivars and lines of tef representing the phenotypic variability of this species in Ethiopia. The results of the analysis showed that all cultivars were tetraploid. Flow cytometry was also used to determine nuclear DNA content in absolute units (genome size) in four tef cultivars. Nuclei isolated from tomato (Lycopersicon esculentum, 2C=1.96 pg) were used as an internal reference standard. The 2C DNA content of individual tef cultivars ranged from 1.48 to 1.52 pg (1C genome size: 714 Mbp-733 Mbp), the differences among them being statistically nonsignificant. The fact that the nuclear genome of tef is only about 50% larger than that of rice should make it amenable for analysis and mapping at the molecular level.  相似文献   

4.
The effect of rice culture on changes in the number of a strain of soybean root-nodule bacteria, (Bradyrhizobium japonicum CB1809), already established in the soil by growing inoculated soybean crops, was investigated in transitional red-brown earth soils at two sites in south-western New South Wales. At the first site, 5.5 years elapsed between the harvest of the last of four successive crops of soybean and the sowing of the next. In this period three crops of rice and one crop of triticale were sown and in the intervals between these crops, and after the crop of triticale, the land was fallowed. Before sowing the first rice crop, the number of Bradyrhizobium japonicum was 1.32×105 g–1 soil. The respective numbers of bradyrhizobia after the first, second and third rice crops were 4.52 ×104, 1.26×104 and 6.40×102 g–1 soil. In the following two years the population remained constant. Thus sufficient bradyrhizobia survived in soil to nodulate and allow N2-fixation by the succeeding soybean crop. At the second site, numbers of bradyrhizobia declined during a rice crop, but the decline was less than when the soil was fallowed (400-fold cf. 2200-fold). Multiplication of bradyrhizobia was rapid in the rhizosphere of soybean seedlings sown without inoculation in the rice bays. At 16 days after sowing, their numbers were not significantly different (p<0.05) from those in plots where rice had not been sown. Nodulation of soybeans was greatest in plots where rice had not been grown, but yield and grain nitrogen were not significantly different (p<0.05). Our results indicate that flooding soil has a deleterious effect on the survival of bradyrhizobia but, under the conditions of the experiments, sufficient B. japonicum strain CB 1809 survived to provide good nodulation after three crops of rice covering a total period of 5.5 years between crops of soybean.  相似文献   

5.
Nuclear DNA content was determined in nuclei isolated from needles, stems and roots of in vitro grown seedlings and from megagametophytes and embryo of mature seeds in three accessions of Pinus sylvestris L. One accession was from Inari, northern Finland at timber line, and two accessions were from the Alpine region in Italy. Nuclei were mechanically isolated by a chopping method, stained with propidium iodide, and DNA content was determined using an EPICS PROFILE laser flow cytometer. Nuclei isolated from leaves of barley (Hordeum vulgare L. cv. Sultan; 2C=11.12 pg) were used as an internal standard for measurement of pine nuclei. Mean 1C nuclear DNA content of P. sylvestris was 27.88 pg as determined from megagametophyte tissue. Mean 2C value was 52.25 pg as determined from stem and root tissue, and 55.58 pg as determined from embryo tissue. The ratio of 2C to 1C value was 1.87 and 1.99, respectively. Extracts of nuclei from needles contained propidium iodide-absorbing debris which may have interfered with measurements and resulted in lower 2C values than those obtained from stem and root.  相似文献   

6.
Nuclei were isolated from leaf tissue of differentCapsicum species and the relative fluorescence intensity was measured by flow cytometry after propidium iodide staining.Pisum sativum nuclei with known nuclear genome size (9.07 pg) were used as internal standard to determine nuclear DNA content of the samples in absolute units. The 2C DNA contents ranged between 7.65 pg inC. annuum and 9.72 pg inC. pubescens, and the general mean of the genus was 8.42 pg. These values correspond, respectively, to 1C genome size of 3.691 (C. annuum), 4.690 (C. pubescens) and 4.063 (general mean) Mbp. In general, white-flowered species proved to have less DNA, with the exception ofC. praetermissum, which displayed a 2C DNA content of 9.23 pg. It was possible to divide the studied species into three main groups according to their DNA content, and demonstrate differences in DNA content within two of the three species complexes established on the basis of morphological traits.  相似文献   

7.
Intronless genes, a characteristic feature of prokaryotes, constitute a significant portion of the eukaryotic genomes. Our analysis revealed the presence of 11,109 (19.9%) and 5,846 (21.7%) intronless genes in rice and Arabidopsis genomes, respectively, belonging to different cellular role and gene ontology categories. The distribution and conservation of rice and Arabidopsis intronless genes among different taxonomic groups have been analyzed. A total of 301 and 296 intronless genes from rice and Arabidopsis, respectively, are conserved among organisms representing the three major domains of life, i.e., archaea, bacteria, and eukaryotes. These evolutionarily conserved proteins are predicted to be involved in housekeeping cellular functions. Interestingly, among the 68% of rice and 77% of Arabidopsis intronless genes present only in eukaryotic genomes, approximately 51% and 57% genes have orthologs only in plants, and thus may represent the plant-specific genes. Furthermore, 831 and 144 intronless genes of rice and Arabidopsis, respectively, referred to as ORFans, do not exhibit homology to any of the genes in the database and may perform species-specific functions. These data can serve as a resource for further comparative, evolutionary, and functional analysis of intronless genes in plants and other organisms. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
High-resolution fluorescence in situ hybridization (FISH) on interphase and pachytene nuclei, and extended DNA fibers enabled microscopic distinction of DNA sequences less than a few thousands of base pairs apart. We applied this technique to reveal the molecular organization of telomere ends in japonica rice (Oryza sativa ssp. japonica), which consist of the Arabidopsis type TTTAGGG heptameric repeats and the rice specific subtelomeric tandem repeat sequence A (TrsA). Southern hybridizations of DNA digested with Bal31 and EcoRI, and FISH on chromosomes and extended DNA fibers demonstrated that (1) all chromosome ends possess the telomere tandem repeat measuring 3–4 kb; (2) the subtelomeric TrsA occurs only at the ends of the long arms of chromosomes 6 and 12, and measure 6 and 10 kb, which corresponds to 231 and 682 copies for these sites, respectively; (3) the telomere and TrsA repeats are separated by at most a few thousands of intervening nucleotide sequences. The molecular organization for a general telomere organization in plant chromosomes is discussed.  相似文献   

9.
Proteins with the A20/AN1 zinc-finger domain are present in all eukaryotes and are well characterized in animals, but little is known about their function in plants. Earlier, we have identified an A20/AN1 zinc-finger containing stress associated protein 1 gene (SAP1) in rice and validated its function in abiotic stress tolerance. In this study, genome-wide survey of genes encoding proteins possessing A20/AN1 zinc-finger, named SAP gene family, has been carried out in rice and Arabidopsis. The genomic distribution and gene architecture as well as domain structure and phylogenetic relationship of encoded proteins numbering 18 and 14 in rice and Arabidopsis, respectively, have been studied. Expression analysis of the rice SAP family was done to investigate their response under abiotic stress conditions. All the genes were inducible by one or the other abiotic stresses indicating that the OsSAP gene family is an important component of stress response in rice. Manipulation of their expression and identification of their superior alleles should help confer stress tolerance in target crops.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

10.
DNA contents have been determined cytophotometrically in the three Central European, relatedScilla speciesS. bifolia (2n = 18, 2 x, 1 C = 6.2 pg),S. drunensis (2n = 36, 4 x, 1 C = 12.8 pg), andS. vindobonensis (2n = 18, 2 x, 1 C = 9.4 pg). The tetraploid speciesS. drunensis contains twice as much DNA as the diploidS. bifolia. However, the diploid speciesS. vindobonensis differs in DNA content fromS. bifolia by a factor of about 1.5. This difference is largely due to euchromatic DNA, although the higher DNA content inS. vindobonensis is combined with higher heterochromatin content. The data indicate thatS. bifolia andS. drunensis on the one hand, andS. vindobonensis on the other hand are phyletically well separated. Previous taxonomic conclusions from morphology as well as C-banding are thus corroborated.Evolution ofScilla and Related Genera, V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号